Application of random walks in algorithms (in geometry)
- Lovász, László; Simonovits, Miklós: The mixing rate of Markov
chains, an isoperimetric inequality, and computing the volume. 31st
Annual Symposium on Foundations of Computer Science, Vol. I, II
(St. Louis, MO, 1990), 346--354, IEEE Comput. Soc. Press, Los
Alamitos, CA, 1990.
- Lovász, L.; Simonovits, M. Random walks in a convex body and an
improved volume algorithm. Random Structures Algorithms 4 (1993),
no. 4, 359--412.
- L. Lovász, and M. Simonovits: On the randomized complexity of
volume and diameter, {\it Proc. 33rd IEEE FOCS}, (1992) 482--491.
- Kannan, R.; Lovász, L.; Simonovits, M. Isoperimetric problems for
convex bodies and a localization lemma. Discrete Comput. Geom. 13
(1995), no. 3-4, 541--559.
- Kannan, Ravi; Lovász, László; Simonovits, Miklós: Random walks and
an $O^*(n\sp 5)$ volume algorithm for convex bodies. Random
Structures Algorithms 11 (1997), no. 1, 1--50.
- A. Brieden, Gritzman, R. Kannan, V. Klee, L. Lov\'asz, M. Simonovits:
Approximation of diameters: randomization doesn't
help, Proc. 39th IEEE Symp. Found. Comput. Sci. (FOCS '98),
1998, pp. 244-251.
- A. Brieden, Gritzman, R. Kannan, V. Klee, L. Lov\'asz, M. Simonovits:
Approximation of Radii and norm-maxima: no need to randomize,
Accepted in Mathematika, 2000 (to appear in 2002)
Selected further papers in this topic
- Gyorgy Elekes (1986): A geometric inequality and the complexity
of computing volume, Discrete and Computational Geometry,
pp. 289--292.
-
I. Bárány and Z. F\"uredi (1986): Computing the volume is difficult,
Proc. of the 18th Annual ACM Symposium on Theory of Computing,
pp. 442--447.
-
Berndt~Carl (1985): Inequalities of Bernstein-Jackson-type and the degree of
compactness of operators in Banach spaces, {\it The Annales de
l'Institute Fourier} {\bf 35}, pp. 79--118.
- Sinclair, Alistair; Jerrum, Mark Approximate counting, uniform
generation and rapidly mixing Markov chains (extended
abstract). Graph-theoretic concepts in computer science (Staffelstein,
1987), 134--148, Lecture Notes in Comput. Sci., 314, Springer, Berlin,
1988.
- Jerrum, Mark; Sinclair, Alistair Approximating the permanent. SIAM
J. Comput. 18 (1989), no. 6, 1149--1178.
-
Sinclair, Alistair; Jerrum, Mark Approximate counting, uniform
generation and rapidly mixing Markov chains. Inform. and Comput. 82
(1989), no. 1, 93--133.
- Dyer, Martin; Frieze, Alan, Computing the volume of convex
bodies: a case where randomness provably helps. Probabilistic
combinatorics and its applications (San Francisco, CA, 1991),
123--169, Proc. Sympos. Appl. Math., 44, Amer. Math. Soc., Providence,
RI, 1991.
- Dyer, Martin; Frieze, Alan; Kannan, Ravi: A random polynomial-time
algorithm for approximating the volume of convex
bodies. J. Assoc. Comput. Mach. 38 (1991), no. 1, 1--17.
- Applegate-Kannan:
- Frieze, Alan; Kannan, Ravi,
Log-Sobolev inequalities and sampling from log-concave distributions.
Ann. Appl. Probab. 9 (1999), no. 1, 14--26.
- Chen, Fang; Lovász, László; Pak, Igor: Lifting Markov chains to speed
up mixing. Annual ACM Symposium on Theory of Computing (Atlanta, GA, 1999),
275--281 (electronic), ACM, New York, 1999.
- Lovász, László; Ravi Kannan: Faster mixing via average conductance.
Annual ACM Symposium on Theory of Computing (Atlanta, GA, 1999),
282--287 (electronic), ACM, New York, 1999.
-
L. G. Khachiyan (1988): On the complexity of computing the volume of a
polytope. {\it Izvestia Akad. Nauk SSSR, Engineering Cybernetics} {\bf 3},
pp. 216--217.
-
László Lovász; Winkler, Peter Mixing times. Microsurveys in discrete
probability (Princeton, NJ, 1997), 85--133, DIMACS Ser. Discrete
Math. Theoret. Comput. Sci., 41, Amer. Math. Soc., Providence, RI,
1998.
- Lovász, László: Hit-and-run mixes fast. Math. Program. 86 (1999),
no. 3, Ser. A, 443--461.
- L. Lovász-Santosh Vempala: ...
The basic book:
M. Gr\"otschel, L. Lov\'asz and A. Schrijver (1988): {\it Geometric
Algorithms and Combinatorial Optimization}, Springer-Verlag.