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ON INTERPOLATION I

QUADRATURE- AND MEAN-CONVERGENCE IN THE LAGRANGE-
INTERPOLATION!

By P. Erpos anp P. TuriAN

(Received March 19, 1936)

Let
7D
242 22
(1) B=4 :
PRI OIS

be an aggregate of points, where for every n
(2) 122>z > o> > 1,

Let f(z) be defined in the interval [—1, +1]. We define the n*" Lagrange-
parabola of f(x) with respect to B, as the polynomial of degree = n — 1, which
takes at the points 2", 2%, ..., z{*) the values f(z*), fz5), - - -, f@'™).
We denote this polynomial by L.(f) and we sometimes omit to indicate its de-
pendence upon z and B. It is known,? that

3) L) = X @M@ = 3 @) la).
The functions [;(z), called the fundamental functions of the interpolation,
are polynomials of degree n — 1 and if
(®) o(e) = wn@) = 11 @ = =)
then
(5) l(z) = o)

o' () (x — ;)

1 This paper was partly read at the Math. and Phys. Association, Budapest, May 26,
1934.
2 In the symbol E(‘.“](x) the letter n is an index, and does not indicate the n'® differential

quotient. In the paragraphs 1. and 2. as far as possible we shall not explicitly denote the
dependence upon n.
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It is known that if ¢(z) is a polynomial of the m** degree, then

(6) Lun(®) = ¥(2) piar i
When ¢(z) = 1, we obtain from (6) and (3)
58) Zﬂ: I{z) = 1.

i=1

The first problem is that of convergence, i.e. if f(z) and B are given, we ask
whether or not at any given z, the sequence of polynomials L.(f) tends to
f(zo). Suppose f(z) to be a continuous function; then according to the well
known theorem of Faber,?® to any given B we may find a continuous function*
fi(z) such that in the interval [—1, 41] the L,(fi) parabolas do not converge
uniformly to fi(z). In 1931 Bernstein® proved that, given any B, we may find
a continuous function fa(x) such that the sequence L.(f:) is unbounded at a
certain fixed & where —1 = & =< +1. The proof is. based upon the following
theorem of Hahn:®

The necessary and sufficient condition that

n—+0

for a given B, at a given zo(—1 = zo = +1), for any continuous f(z), is that

(7) A(n)

21|lv(xo)|<0

where C is a positive constant independent of n. Thus it was only necessary
to prove that for any given B we could find a £ in [—1, +1] such that the
sequence (7) was unbounded, if n — .

If we are to prove the divergence not at a certain z,, but at a countable aggre-
gate in the interval [—1, +1], we obtain a sufficient condition in the following
generalisation of Hahn’s theorem.” Let

(8) Az, m) = ; 11,(2) |

be an unbounded sequence of numbers for any fixed z(—1 < z £ +1). In this
case for any countable aggregate 2, in [—1, +1] we can find a continuous

3 G. Faber: Uber die interpolatorische Darstellung stetiger Funktionen. Jahresbericht
der Deutschen Mathematikervereinigung, Bd. 23. 1914, S. 190-210.

¢ In the whole of this paper the expression ‘‘continuous’’ denotes a function continuous
in the whole of the interval [—1, +1].

5 Bernstein: Sur la limitation des valeurs ete. Bull. Acad. Sc. de 'URSS. 1931. No. 8.
1025-1050.

¢ H. Hahn: iiber das Interpolationsproblem. Math. Zeitschrift 1, 1918. 115-142. His
proof is based on a general principle of Lebesgue.

7 Banach-Steinhaus: Sur le principe de la condensation des ungularités Fundamenta
Math. (1927).
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f3(x) so, that L,(f;) is unbounded for any element of @;. G. Griinwald® proved
that (8) holds for an important class of matrices, the ntt line of which is pro-
vided by the real roots of Jacobi’s polynomial J,.(z, a, 8). To put it roughly the
Lagrange interpolation taken for any B is “bad” from the point of view of
convergence.

Let now B be defined so that its nt® line is given by the n different real roots in
(—1, +1) of the Tschebyscheff-polynomial T',.(z) (for which T,(cos §) = cos nd).
Then we may easily verify that?

s

n—1
L.(f) = ao + 2 a cosrd
r=1
where
(9) < 1 & 2 & o —
a=— Y flxs), o= =D f(x) cosr 11r,
N =1 N p=1
g T bw=1,2, - 1.
B on r=1,2---n—1.

By a heuristic limiting process we might obtain the Fourier series of
f(cos ¥), which indicates an interesting analogy between these special inter-
polation parabolas and the Fourier series of f(cos #). This analogy also appears
in many other relations e.g. the form of (8) taken for 7', which determines the
convergence, is completely analogous to Lebesgue’s constants, well known in
the theory of Fourier-series. Another analogy: We know that for any given
countable aggregate Q. we may find a continuous f(z) so that the partial sums
of its Fourier-series are uniformly bounded in [0, 27] and nevertheless they oscil-
late at every point of Q. For the Lagrange interpolation we proved that for
any given countable Q; we may find a continuous fi(x) so that its Lagrange-
parabolas with respect to T are uniformly bounded in [—1, +1] and nevertheless
they do not converge to fi(x) at the points of Q3. For the present we omit the
proof. We only indicate that it is based upon the well known construction-
principle of Lebesgue. Connected with these facts and others that we did not
mention, the following result is very astonishing. There is a continuous fs(z)
such that the first-order arithmetical means of its Lagrange parabolas at z = 0
taken for T

¢ﬂ(0) = Ll(fﬁ)ﬂ + S + Ln(fﬁ)ﬂ

n

are unbounded. We omit the proof; we may obtain it without any difficulty
from Hahn’s theorem. It seems that the same is true for the arithmetical means
of any order; as far as we know this is not decided as yet. We do not even
know with certainty whether or not the convergent Lagrange-parabolas of a

8 Oral communication.
® L. Fejér, Die Abschditzung eines Polynoms etc. Math. Zeitschrift 32, 1930, 426.
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continuous function taken for any B at z, can converge to another value than
f(zo). The remarks above show that the question is difficult. Nevertheless a
certain analogy between the Fourier-series and these special interpolation
parabolas for the arithmetical means may be preserved in a way found by
Prof. Fejér.1°

The second group of questions is concerned with the so called “quadrature-
1

convergence’’ i.e. the examination of the sequence [ L.(f)dz,(n = 1,2, .-. ).
=1

Stieltjes! proved that if the n* line of B is given by the n different real roots of

P,(x) = 0, P,(x) being the n** Legendre-polynomial, then the integrals of the

Lagrange parabolas belonging to any bounded and R integrable (“R integrable”

means a function integrable in Riemann’s sense in [—1, +1]) f(z) tend to
1

f(x)dz, or as we shall say in the following pages: there is quadrature-
-1

convergence for this matrix. Since then Fejér? and Szego'® gave a powerful
generalisation of this theorem. Pélya* proved that we have quadrature-
convergence for continuous f(z) if and only if the sequence

L3

A1(n) = E |7\{kn}|

k=1

1
remains below a bound independent of 7; here Ay = / M(z)dz,n=1,2, ---,

-1
k=12 ... n. \%) are the so called “Cotes numbers’” of the matrix. Fejér'?
proved that the positiveness of all of the A\{* is sufficient for the quadrature-
convergence. In the following pages we examine instead of the quadrature-
convergence the so called mean convergence, which requires more than the pre-
vious one. Mean convergence requires for any bounded and R integrable
function f(z)

(10) im [ [f(z) — La(f)Pdz = 0.

n—ow J—

In §1 we show very simply that for a general class of matrices there is mean
convergence.

The matrix-class in question is given in the following theorem.

TaeoreEM I. Let p(x) be a function such that

(11a) plx) 2 M >0 -1z +1

W], Fejér: Uber Interpolation. Gottinger Nachrichten 1916. 66-91.

11 Stieltjes: Oeuvres Bd. I. 377-395.

12 L, Fejér, Mechanische Quadraturen mit positiven Cotesschen Zahlen. Math. Zeitschr.
37, 1933, 287-310.

1B G. Szegd, Asymptotische Entwicklungen der Jacobischen Polynome, Schriften der
Konigsberger Gelehrten Gesellschaft, 1933.

U G. Pélya: Uber die Konvergenz von Quadraturverfahren, Math. Zeitsehr. 37. 1933, 264
287.
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(11b) f : p(z) dz exists.

1

It is known that there is an infinite sequence of polynomials wo(z), wi(z), - - -
where the degree of w,(x) is n with

! =0 . .n=m, . =, -
[_1 wn(Z)wn(z)p(z) dx ~ 0 if o ot coefficient of x™ in w.(z) = 1.
As known w,(z) has in [—1, +1]n different real roots. Then our relation (10) ts
true for any matrix formed of these roots. Or more generally,

TraeoreM la. Let w,(x) be the above polynomials, A, and B, constants such
that the equation

(12) R.(z) =2"+ -+ = wn(z) + Anwn(z) + Brwna(z) =0

may have in [—1, +1]n different real roots and B, < 0; then (10) holds also for
the matrices.formed by these roots.

In §1 we prove this Theorem Ia. We communicated our Theorem I to Pro-
fessor Szego and he found for it essentially the same proof as we did.

The restriction on the roots of (12) is not very great, for it is evident that in
[—1, +1] there are always at least (n — 2) changes of sign.

We prove Theorem Ia by proving the relation

(13) li_r.?o _: [f(z) — L.()Fp(x)dz = 0,

which will be shown to be a consequence of p(z) = M and of the existence of

1
[ p(z) de. From (13) it follows by (11a) that

1

1
-1

05 [ U@ - Lipliz s & [ U@ — LiPa@ ds,

and this by (13) establishes Theorem Ia.
CoroLLARY OF THEOREM Ia. For all bounded and R integrable f(x) we have
for the matrices given in Theorem Ia

(14) lim _11 | #(z) — La(f) | dz = 0

and a fortiori there is quadrature convergence for these matrices.
Considering only the quadrature convergence or rather the validity of the

more rigorous (14) we shall prove the following more precise
TaEOREM II. Let

(15a) p(z) = 0 [—1, +1];
suppose further the existence of

1 1 1
(15b) -/_.1 p(x)dx and _/:1 2@) dz.
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If the polynomials (12) are formed with the orthogonalised polynomials w.(x) be-
longing to such p(z), (14) holds for the corresponding matriz.

In Theorem Ia and II we have—as far as we know—the first general theorem
for mean and quadrature-convergence.

Now we mention some interesting special matrix-classes. Let

-1 <

IA

0

p@) = (1 —2)* (1 + 2)°
-1 <8 =0

and A, = B, = 0. Then evidently (12) is satisfied i.e. there is mean con-
vergence. The w,(z) belonging to this moment-function are the Jacobi-poly-
nomials for the parameters « and 8. If « = 8 = 0, we have the case of the
Legendre-polynomials P,(z); for « = 8 = —3% the Tschebischeff polynomials
T.(z).

Let now « = 8 = 0, and A, and B, such that (12) be satisfied. Fejér'
proved the quadrature-convergence for this matrix class; as we see, here we
obtained mean convergence. Ifa =8 =0,4, =0, B, = —1wehave R.(z) =
P.(x) — P,2(z) and obtain a matrix conspicuous by its interesting extremal
properties.’® Now suppose

-1 <a<l

px) = 1 — 2)* (1 + z)8
—-1<8<1

and A, = B, = 0and consideronly (14), which—as Theorem II shows—is satisfied.
Szego6' proved that for max («, 8) < § we have quadrature-convergence but for
max (a, B) > 4 we have not. Thus, by the special case of our Theorem II, we
obtain a new proof of Szegd’s theorem for —1 < a < 1, —1 < 8 < 1; we even

1
obtain more, for according to Szego ] (f(z) — L.(f))dx — 0 whereas we have
=1

1
[lf(x)—Ln(f)|dx—>0, asn— ., Fora = 8 = }we have the case of the
-1

Tschebischeff-polynomials U,(x), where U,(cos ¢) = sin(n + 1)d/sin 4.
If we consider the interpolating parabolas, instead of in [—1, +1], only in
[-1 + ¢ 1 — ¢, then, as here (1 — z)* (1 + z)# = M > 0, we obtain for all
g > —1

1

lim [f(z) — La(f)}dz = 0.
n—w J—1+¢
This is interesting from the point of view of Szegd’s result. It shows that
in the case of max (a, 8) > $ the divergence is due to the rapid growth of the
parabolas on the margin.

11, Fejér, Bestimmung derjenigen Abscissen etc., Annali della R. Scuola Normale
Superiore di Pisa, serie II, Vol. I, 1932.
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We immediately obtain Theorem II from (13), viz.

) A i 3 aves | A
0§[_1|f(a:)—Ln(f)ld-’c-/_1|f(”) L v Pl s
< ,‘/ _i [f(z) — L.(f)]? p(2) dz - _1 5%%

and by (13) this proves (14).

From the above mentioned theorem of Szeg6 we see that there are B matrices,
for which we have no quadrature-convergence and thus a fortiori no mean
convergence. The most important problem in this connection would be to
give the necessary and sufficient condition of the mean convergence. Our
Theorem III gives a necessary condition for the mean convergence. It asserts

TaeoreMm III. If the sequence

n 1
C(n) = Z l;,(a:)’ dz
k=1 J—1
18 unbounded as n — «, there exists a continuous fe(x) such that for our matrix
. 4
lim | [fe(z) — Lu(fol dz = + .

n—wo J—1
§1

As explained in the introduction we have to prove (13) for the fundamental
points given by the roots of the R,(z) polynomials of (12). First we prove'® that

(16a) _l li(z) p(x)dx = 0 t=1,2 0240
and
(16b) Z;: _1 Li(z)? p(z)dz < f_ i p(z)dz.

Consider the expression
1
. [Li(x)? — L(x)] p(x)dz.

But l;(z)? — li(x) = R.(x)F(z), where F(z) is a polynomial of degree (n — 2),
in which the coefficient of the highest term is evidently 1/w,.(z:)%. Thus if
F(z) = cowo(x) + --- 4 wnso(z)/wn(x:)?, by the orthogonality of the w,(x)’s
we have

1

_1 Lz — L) pladde = B2 | wusla) pla)de < 0

w, (2:)? J-1

16 For p(z) = 1 the proof of (16a) is to be found in Fejér’s®? paper.
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ie.
1 1
(160) | uer ptaie s [ ute) plarie
~~3 1
which immediately establishes (16a); by summation for ¢ = 1, 2, ... , n we

obtain (16b) in consequence of (6a).
Let now Q4 be an aggregate in [—1, +1] formed of closed non-overlapping
intervals. We prove that

m ¥ T | @i e

i

$E;n){g4 .’.U{kn) {94 .‘E(l-n}{ﬂ.;

=2 ) l li(z)? p(z)dz.

o |

First we assert that forevery k,2with1 <=k =n,1 =<7 =n

(18) (—1)#H [, = (—1)HkH 1 Li(z) In(z) p(x)dz = 0 if ¢ # k.

For by (5)
1 ! R.(z)

R R L w e

R.(z) p(z)dz.

Asi =k,

R.(z)
(x.— 1) (x — )

= dﬂ ('-’O(x) + v + dn—a wn—:'l(x) + wn—2(x)-

Hence considering the definition of R.(x) we have

Bn k
 Ro(z) Bo(m) J
which proves (18), as B, < 0 and sign R,(z)) R,(z:) = (—1)#**. Thus we
have

E \ " U eyl

1 k —1
x{iu){g‘l x{kn}{ﬂé

wn—2()? p(x)dz

Iik

= 2 L pleyde = 2, 2, (—1)* ' L) li(x) p(x)dw

-1 -1

2\ {Q, 2™ (@ 25 {
gy f LG Bl f_ S D L@E p@de
x(,-") {ﬂ.; I‘én) {94

S S L

g
2 {Q
thus (17) is proved.
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If Q4 denotes the whole of the interval [—1, +1], in consequence of (16b) we
have

(19) il kzﬂ:l <2 /_i p(z)dz.

Let now f(z) be continuous, ¢(z) the polynomial of degree n — 1 that gives
the best approximation to it in Tschebischeff’s sense for the interval [—1, +1].
Write

[ i Li(z) li(z) p(x)dz

(20) (@) — o(x) = Alx)
(21) s | f(z) — ¢(2) | = Ena

L= [ UG - Lk pa)is.
Then by (6) we have

I, = -/: [A(z) — L.(A)) p(z)dz < 2 j: Az)? p(z)dx

(22) 1
+ 2 f L.(A) p(z)de = I, + I,.
-1
We have evidently
1
(23) I, S28. [ p(z)dz.
—1

Further by (3)

|17 =2  A(z) A [_ () b(2) pla)dz
s=1 k=1

by (19); from (22), (23) and (24) we have

x

<2E;,

(24)

>
3

1
= 4E£-1 fl p(x)da:

f_ 1 L(z) l(z) p(z)dz

(25) |I.| < 6E}_, f : p(z)dx

which by Weierstrass’ theorem establishes (13) for any continuous f(z).
Now we require a Lemma.
Fejér's' theorem asserts: if for any aggregate of points B the “Cotes numbers”
1

[ l;(x)dz are non-negative for any z and n, then we have quadrature con-
-1
vergence. It may be proved in the very same way that if for a given matrix

the ‘“Cotes numbers belonging to the non negative and R integrable p(z)”

(26) Rerer
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are non-negative for any ¢ and n and f(z) is bounded and R integrable, then

1 1
lim L.(f)p(z)dz = 1 f(z)p(z)dz.
n—o0 J—1 -
It would be superfluous to repeat the proof. We require this in the proof of
our
LemMA. Let B, be a matriz satisfying (26), and Qs be a set of a finite num-
ber of non-overlapping intervals in [—1, +1]; then for n > n, we have

(27) ll,;(:x:);t’)(:!:)d:t: <2 [ p(z)dzx.
i -1 125
z&") (9

Proor. We easily obtain this result if we consider the function y(z) having
the value 1 for points of Q5 and 0 elsewhere. ¥(z) is evidently bounded and R
integrable, so that according to Fejér’s theorem

1 1
(28) lim ’ L.(y)p(x)dz = i Y(2)p(z)dz.
But by the definition of ¢(z) we may write
1 1
(20) [ rm@iz= T [ w@pes,
=i"’lﬂa
further
(30 [ vtz = [ pasin

(27) is an evident consequence of (28), (29) and (30).
Now we consider the matrix B defined as in Theorem Ia. In consequence of
(16a) the Lemma is applicable; we obtain from (16c¢) and (27)

(31) 35 [_ : L(z)p(z)de < 32 _i lz)p(a)dz <2 L p(z)dz,

1:")[91 SE') (Qs
and finally from (17)
(32) b I ; l _i L(z)l(z)p(x)dz | < 4 j; p(z)dz.

zM(a M (%

Let now f(z) be any bounded and R integrable function. Then in virtue
of the Riemann integrability, to any ¢ we can find a finite aggregate of non-
overlapping open intervals of total length < e such that if we exclude these
intervals, the oscillation of the function is £ e at any point of the remaining
aggregate Q5. We now define f7(z) as follows: 1. in Qg let fi(z) = f(z). 2. if
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we denote the excluded intervals by (p1, 1) - - - (py, @), (v finite), the function
f2(z) is represented in (p:, ¢;) by the straight line connecting the point (s, f(p:))
and (gi, f(¢:)). Thus we define f;(x) for the whole of [—1, +1], and its oscilla-
tion is at any point < e. But then f;(z) may be uniformly approximated by a
polynomial ¢(z) to within 2¢. Let the degree of ¢(z) be m = m(e). Then we
have

L= [ &) - LiPp@iz 5 2 | 1) — L(DFp@)iz

1
1

6 +2[ - fi— L - @i 52 [ 136 - LIPp@i

1 1
e 4[ lf — fiPp(z)dz + 4[ L.(f — f)?p(z)dz = J, + J, + Jo,
—1 o
say. Asthe degree of approximation to f;(x) is 2¢, we have by (25) for n > m(e)

1
(34) |J.| < 24€ f p(z)dz.
X

Further as f(z) — fi(x) differs from 0 only upon intervals, of which the total
length is < e and as | f(z) — f2(z) | £ 2 max | f(z) | = 2M, we have
lz]=1

v a4
(35) |Jal 2 16M2 3 | pl)da.

1=1 P

For J.' we may evidently writé

n ki

= 3 3 (@) — i) S — i) [ Web@pds.

i=l k=1

In consequence of the definition of f;(x) the terms of this sum differ from
0 only when z; and z lie in intervals (p;, ;) and (p,, g,.) respectively.
Hence

1
|JW | S4M2 Y > | L(z)l(z)p(z)dzx
1 k -1
(36) b e L M g
<162 Y | p(z)dz
i=1 p‘-
by (32).

As the total length of the range of integration is < ¢, it is evident by (33), (34),
(35) and (36), that I, — 0asn — «. Hence the result.
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§2
In this paragraph we shall prove Theorem III. Let us write
n 1
Sn) = 3 li(x)*dz,
y=1 J-1

and suppose this to be unbounded as n — «. We shall prove that we can find
a continuous function f(x) with

1

lim sup f [f(z) — L.())fdx = + .
n—oo -1

By hypothesis there exists an infinite sequence n; < ny < - - - with S(n;) <

S(ny) < ... — «. For the sake of simplicity of notation we denote by m
the m*" element of this sequence n,,.

w-q——————
wn-——————
»

U ol e o o e
-

1 g.'" E:a +1
1 1 ]
: L[ Smes :
| |
| |
| |
Fi1a. 1

Let the m** fundamental points be 1 = ™ > & > ... > ™ > —1,
We regard them as abscissas and to any £ we adjoin an ordinate &, where
@, &, - - - , €, have arbitrarily the values +1 or —1. Thus we have m points;
we connect them as in Fig. 1 and obtain a continuous function y.(z) with

(37a) |¢e(z)| = 1for —1 =2 = +1

and

(37h) f ety e =3 Bt o [ @),
-1 p=1 »=1 g

By variation of the €s we obtain 2™ different ¢.(z) functions. For these
functions we have by forming the sums of (37b)

(38) 2% | Lawrds = 3 [ terds = s,

r=1 J-—1



154 P. ERDOS AND P. TURAN

hence we may choose ¢€’s, so that for the corresponding ¥.(x) which we simply
denote by y(x), we have

(39) f ' La(y)tdz = S(m).

1

According to Weierstrass, ¢(r) may be approximated by a polynomial f,(z)
of degree u(m) so that

(402) | fa(z) | <3 ~1=<z=<+1
and
1
(40b) f Ln(fn)?dz = 1S(m).
-1
Now we select a partial sequence fn,, fm,, - - - of the sequence f1(z), fa(x), -

and define a sequence of constants c;, ¢a, - - - in the following way. Let f,(z) =
fi(z) and ¢; = 1. Suppose m,_,, that is fn _ (z) and c,—,, already defined, then
we define

s 1
(41) PR 641, o
max | 3= |
lz|=1 k=1
and m, as the least integer satisfying the following conditions:
(42&) my = P(mr—-l) G i |
1
(428) c? / Lo, (fm,)2dz — 8c, 1/2[1 Lo, (fu,)2dx > 47;
= i

these 2 conditions can evidently be satisfied in consequence of (40b) and
limp_,, S(m) = .
We now form with these ¢, and f,.,(z) the function

00

(43) fz) = 22 crfni().

r==1

We shall prove that this is the function postulated in our Theorem III.
By (41)

lIA

1
(44) Cr yE
and in consequence of (44) and (40a) it is evident that the infinite series for
f(z) uniformly converges in [—1, +1] i.e. f(z) is continuous.

Now we consider L., (f) for a fixed value p of r. According to (42a)

- p—l

Lm;(f) T E Cffmr(x) + 2 Cr me(fmr);

r=1
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hence

I, = f Lm(f) — Sz
(45) 3

o0

- f_ ’ [c, B )b 3} o hutl) = 3o ,.,(x)]z dz.

1 r=p+1 r=p

But in consequence of (44)

-]

> G fu ()

r=p

and in accordance with (40a) and (41)

(46a)

gg(1+i-+4—12+---)=2,

(46b) Y ¢ Ln,(fum) < Zlcr-%‘élt‘:‘»’(z)lé%(1+%+---)=2.

r=p+1 r=p+

From (45), (46a) and (46b)

1
(47) In, = [¢y Lin,(fm,) — 4 6] dx with || = 1.
-1
Further
1 1
L, > 2 f Ly (fm,)? dz — 8¢, / | Lm,(fm,) | dz — 16
- -1

1

> 65 [_: Lun,(fn,)?dz — 8¢, [2[: L, (fm,)? d:n:r —~ 186,

and by (428)
In, > 4 — 16. p=123,-....

Hence Theorem III is established.
In conclusion, we take the opportunity of expressing our deep gratitude to
Professor Fejér for his valuable help.

Note added November 27, 1936. The problem, whether the Lagrange-para-
bolas of a continuous function taken on a given B matrix can converge to any
other value than the function itself is, as mentioned, undecided. Recently
I. Marczinkievicz proved for the fundamental points given by the roots of

sin (n+1)8)
sin 8

Udz) = 0 (U,. (cos 6) =
that if the parabolas are convergent they always converge to the function
itself. If the fundamental points are the roots of T'.(z), we proved the same
for z # g'.tr, (p,q9 = 1,p =q =1 (mod 2). On the other hand P. Erdés
succeeded in showing that there exists a continuous function such that its

Lagrange-parabolas taken upon this matrix converge to 4+ « at z = g .

Buparest, HUNGARY.
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