ON SOME NEW QUESTIONS ON THE DISTRIBUTION
OF PRIME NUMBERS

P. ERDOS AND P. TURAN

1. Introduction. In connection with some recent unpublished in-
vestigations concerning the Riemann hypothesis one of us raised the
question whether log $. is convex for sufficiently large %, or at least
whether it has few points of inflexion. (Throughout this paper p; =2,
p2=3, - - -, Pn, - - + denotes the sequence of primes.) In other words:
Is it true that the inequalities

6) Do Bany Sids  Bepbead 20

both have infinitely many solutions? We shall show that the answer
is affirmative.

A still simpler question is whether the sequence of primes itself is
convex or concave from a certain # on. We shall prove that this is
not so, that is, the equations

(2) ?n—l + Pa-t-l e P,‘, ?m—l + ?n+1 < Pm
2 2
have infinitely many solutions.

If the well known hypothesis about prime twins is true, that is, if
the equation p.41—p.=2 has infinitely many solutions, (1) and (2)
of course are trivially satisfied.

The first inequality of (2) is inserted only for the sake of complete-
ness. It follows from the well known fact that lim sup (ppy1—pn) =
(since n!4+2, #!+3, - + -, nl4n are all composite). The proof of the
other inequalities will be simple, but less trivial.

Clearly pp1pn1>p) implies (pni+tPns1)/2>pn and ppn> (P
4 pms1)/2 implies p2 > pm_1pms1. The well known relations between
the various mean values suggest the following questions: Is it true
that for every ¢ the inequalities

t ¢ 1
(3) (L-;Pfi) > pa

and
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have infinitely many solutions? By the well known relations between
the means it follows that (1) and (2) is a consequence of (3) and (4),
and that it suffices to prove (3) for £<0 and (4) for t>0. (The in-
equality about means states that ((a‘+5%)/2)* is an increasing func-
tion of £.)?

An elementary proof of (3) and (4) is given in §2. The only result
we use about primes is that

(5) 7(x) > 1 x/log x.

This can be found in the first pages of Ingham's book The distribu-
tion of prime numbers. (w(x) denotes the number of primes not ex-
ceeding x.)

All these questions can be investigated by a method which is less
elementary than that given in §2, but which perhaps can be used to
attack some of the unsolved problems which can be raised here. Only
(2) is treated by this method (in §3).

In §4 we state without proof some results about the number of
solutions of (3) and (4). Finally we state some unsolved problems,
which are natural generalizations of our theorems.

2. Elementary proofs.

THEOREM 1. The inequalities (3) and (4) have infinitely many solu-
tions.

We need the following lemma.

LemMA, Let A >0 be any constant. Then the inequalities

(6) Pr— i1 < Prv1 — Pry P — pr < AP;!’,
@) Prer— P < Pr = Py, Prr — P < AP;N

have tnfinitely many solutions.

The proof of (6) is quite trivial. It follows from (5) that for infi-
nitely many m and a suitable ¢s, pmi1 = Pm <Cz log pn. Determine the
least 2 >m for which pii1— P> Pmir— Pm. Then clearly pr—1, pr, Prnr
satisfy (6).

Now we prove (7). Assume that (7) has only a finite number of
solutions (that is, there are no solutions for > p,). Let m be large

2 See, for example, Hardy-Littlewood-Pélya, Inegualities, p. 26.
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and pamy1—Pm<c2 log pm. Let p, be the smallest prime greater than
2. Then clearly

(8) Pr—l-l"'Pr épﬂ—ﬂ_ Pri1 R é Pm-{—l"" Pm<‘:2 10g?.n.

For if not let 2 (r <k=m) be the greatest index for which py1—px
<pr—pr—1. Then clearly pr_i, pr, pry1 satisfy (7) (since pupi—ps
L Pmp1—Pm<C2 108 Pm <ca(pm)* <ca(pr)?). This proves (8). But if
Pmi—pi=pur—Pa= * ** =P —Pra=d We evidently have s <d
(since the integers x, x+d, - - -, x+xd=x(d+1) can not all be
primes). Hence we obtain from (8) that

m—rS1+24 -+ [calog pm] < (c21log pm)?

or
m=x(pm) S 7+ (c2log pn)’ < pm + (czl0g )’

which contradicts (5), and completes the proof of the lemma.

Now we can prove Theorem 1. Since, for ¢>0, 5>0, ((a*+b¥)/2)/¢
is an increasing function of ¢, it suffices to prove (3) if ¢ is a negative
integer not greater than —2, say t= —1I. Let pi_1, P, prn1 satisfy (6)
with 4 <1/2[%. Then we show that they also satisfy (3). Put pr— pi—
=u; since ({at+b%)/2)V¢ is an increasing function of a and b it will
clearly be sufficient to show that (3) is satisfied in case pri1—pz
=w+1. Thus we have to show that (f=—I<—2)

(cpk — w4 ;pk +ut 1) *)—w> N

or
e— )" + et u+ 1) <2p%
or
(prt u+ D@ — ' = 1) > pilpe —w)'.
Now clearly for u <p}/?/2i?

' ! _
i br = ps < (ps =8 <pr—ilpp +(2)u2p12+ coa
< by — (ub—1/2D)py .

Thus it suffices to show that

(pe + (w4 Dipe )pr — 20ipe ) > pelor — (ul — 1/2)px ),

or
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@ —1/2px " > 2Wulu + D)pi

which is clearly satisfied for % <pL?/212, which proves (3).

Now we prove (4). Assume that pi_1, Pr, Prw satisfy (7) with
A <1/28%. Put ppp1—pr=wu. As before it suffices to consider the case
Pr—pPr1=u-+1 and £=2. Then we have to show that

(r~ (u+ 1) + (e + 0 = 2px < 0.
We have as in (8) for #<(1/2%)p}? (¢22)

(10) (b +w)' < i+ (e + 1/2)pr .
Thus from (8) and (9)

(s — @+ 1) + (b + 0)' ~ 290 < 21 — ((w + 1t — 1/Dpy
+ (ut+ 1/2)pr — 2pi < 0,
which proves (4) and completes the proof of Theorem 1.

THEOREM 2. Leta; <as < - - - be an infinite sequence of iniegers whick
do not form an arithmetic progression from a certain point on. Let
t<1 and ay <k*/4(1—t) —ck, for every ¢ if k is sufficiently large. Then

1
(11) (ks + 0112)/2)"" > 04
have infinitely many solutions.

THEOREM 3. Let a1<ax< - - - be an infinite sequence of integers
which do not form a convex sequence from a certain point on (that is,
Qk—Qr-1> Qe —ax has infinitely many solutions). Let t>1 and
ar <k*/4(1—1t) —ck for every c if k is sufficiently large. Then

(12) (011 + 010)/2)"" < @
has infinitely many solutions.

The inequalities in both theorems are best possible in the following
sense: For every ¢ there exists a sequence ¢;<a:< - - - of integers
with a; <k®/4(1—t) —ck for all %, the a’s not forming an arithmetic
progression from a certain point on, and so that (11) has only a finite
number of solutions. The same holds for (12).

REMARK. It follows from (5) and our lemma (in §2) that Theorem
1 is a consequence of Theorems 2 and 3.

We prove Theorem 2 only in the special case =0; the proof of the
general case and that of Theorem 3 is similar but requires slightly
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longer calculations. It is well known that for £=0 the left side of (11)
becomes (@x—1a¢41)"/2. Thus we have to prove that if a; <k2/4—ck for
every c if % is sufficiently large, then

2
(13) Cp—1Ckt1 > Ak

has finitely many solutions.

Suppose this is not true. Then for ky<kE, @iy a1 <al. Since the
a’s do not form an arithmetic progression from a certain point on,
it is clear that the equation @i2—@xy1 > @ry1—a;i has infinitely many
solutions. Put az1—ar=2; we have awp2=az+2x+1. Thus since
Gi.120x Qryz We have

(14) (e + %)? = ax(ar + 26+ 1), or 2?2 a;.

Assume now that, for some &>k, (@r41—aw)?<az. Determine the
least >k for which a1 —a;>a;—a;_;. Then we have from (14)

(Grpr = ae)® = (61— 014)? = a1y = 0y

an evident contradiction. But this means that, for 2> ko, (ars1—ax)?
Zay. Thus we clearly obtain that for large enough # the number of
¢'s in the interval (n?, (n+1)?) (where n? is counted in the interval
but (z+1)? not) does not exceed 2. Thus we evidently have a, > k2/4
—ck for sufficiently large ¢, an evident contradiction. This completes
the proof. The sequence #?, #(n+1) with an arbitrary finite set added
to it shows that the result is best possible.

3. Analytical proof. Now we give an alternative proof of (2) which
uses deeper tools. We use the prime number theorem for arithmetic
progressions in the form given by A. Page?®

1 z dy ’
¢(k)J . logy

1 ” * log =
< ayx(exp (— as(log x)V/?) + (k) Ll Y W)

(15)

where 7(x, £, /) denotes the number of primes not exceeding x which
are congruent to ! (mod k) (we assume (&, I)=1) and a4, - - - are in-
dependent of x, 2 and I. We also need the following result due to
Kusmin:* Let 81, B2, + + +, Ba bereal and v<B—fi=< - - - £B—Bnu
<1—» (0=v=<1/2). Then

# A. Page, Proc. London Math. Soc. (2) vol. 39 (1935) pp. 116-141,
fR. O. Kusmin, Zhurnal Leningradskoe Fiziko-Matematicheskoe obshchestvo
vol. 1 (1927) pp. 233-239.
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2
=
v

n
Z 621(3,

r=l

(16)

We are going to show that for sufficiently large x there exist primes
(A7) 2 = pr1 < pu < pr41 S 42 so that ppyy — px < P — Pi-1.

Suppose (17) is not satisfied. Let x be sufficiently large, and consider
the primes

Pi<¥=2pin < - < puaS2x < ppapa < -
< pirmir = 4.

Since we assume that (17) is false, we have

(18)

(19) pive— pi1  Piss — Pire < -+ < PiymsE — PiraiE—1

We evidently have
(20) Pitrs1 — Pipr < (3/2) log = forr < H.

For if not, then, by (19), m(4x) —w(2x) =E <(4x/3 log x)4+1 which
contradicts the prime number theorem.

Put
Pav:s

S(’y) = E e=irp,

re=j4-1

where (40 log x)~! <y < (12 log x)~1. We have by (20)

1
< 1= P <._..
20 log = V(tr1 = £) 2

Thus from (16)
(21) | Sty) | < 20 10g x.

Let g be any prime satisfying 12 log # <g <40 log x (such a ¢ exists
for sufficiently large x). We evidently have

1 -1
S(_)l = Y erritla 3 g
q

=1

(22)

where the prime indicates that the summation is extended over the
p»=I (mod ¢) with j4+1=r=<j+H. We have by (15)

(23) |>:’1 =
g—1 Pi log y

Thus from (23) and (22)

1 H

Gog x 1/2 )

<eagxexp| —as——
= p( _ (log log x)*
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Pi+H
s(3)-7=S
vt logy
We have from the prime number theorem ;1 <1.01x, p;, x> 1.99,
Thus

[ (1 | 1 199z gy
Jof e
 Ng/i" 40log xJ 101x logy

— apx log x exp (— o

(log 2)!7* )

= ex"( ™ (tog log 0/

(24) (log 2)1/? )} 1 ’

(log log x)? 80 (log x)? ’
which contradicts (20) and proves (16). Hence (2) follows immedi-

ately since, as remarked in the introduction, fr.1— > pr— pr—1 has
(trivially) infinitely many solutions.

4. Problems and conjectures. In connection with the Riemann
hypothesis the question arose how often the expression

2
Pe—1Pr+1 — Pr
changes its sign. We can show by using Brun’s method that for 2<#

R .\
(25) (.p’_l_-lz-ﬂ) - P

changes its sign ¢z times (as remarked before if t=0, (25) becomes

Pr1pri1—Pr)-

The inequalities (2) can be stated as follows: The inequalities

P:H—l - Pn w { wnd Pu+l - P‘n <1
Pn o pn—l Pn e 'Pn--l
have infinitely many solutions. By Brun’s method we can show that
lim sup s B > 1 1 T g s ke <1
P — Pna Pn — Pra

It is very probable that the lim sup is infinite and the lim inf is 0.
(2) can be generalized as follows: Let Z’;_,ar‘xk be any linear form,
What is the necessary and sufficient condition that both inequalities

(26) Z arx, > 0 and Z arx, < 0
ke 1 k=1

have infinitely many solutions in consecutive primes pyi1, * * -,
Puin? From the prime number theorem we obtain the necessary
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condition » s.,a;=0. But x3—x, shows that this condition is not
sufficient. Pélya remarked that if (25) has infinitely many solutions
we can not have ¢,20, a1+a=0, - - -+, a1+a:+ - + - +a,20. The
characterization of the forms which satisfy (26) seems a difficult prob-
lem.

Finally we mention two more questions:

(1) Cantheinequalities pn 1 —Pn <Pure—Prt1< * * » <Prsk— Prrha
have infinitely many solutions for every fixed k?

(2) Is it true that the number of solutions of P 1— P> pr— pr—r,
kE<nis n/2+o(n)? As we already have stated we can show that the
number of solutions in question is between ¢z and (1—¢)n.
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