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1. Introduction. In connection with some recent unpublished in- 
vestigations concerning the Riemann hypothesis one of us raised the 
question whether log P,, is convex for sufficiently large n, or at least 
whether it has few points of inflexion. {Throughout this paper p1 = 2, 
P2=3, * - * , Pm * - . denotes the sequence of primes.) In other words: 
Is it true that the inequalities 

(1) pn-1*pn+1 > pi, pnl+&a-1 < pi 

both have infinitely many solutions? We shall show that the answer 
is affirmative. 

A still simpler question is whether the sequence of primes itself is 
convex or concave from a certain n on. We shall prove that this is 
not soI that is, the equations 

(2) 
pa-1 + p?l+1 

> Pm 
pm-1 + pm+1 

2 2 
< Pm 

have infinitely many solutions.’ 
If the well known hypothesis about prime twins is true, that is, if 

the equation $~,,+r-$,,=2 has infinitely many solutions, (1) and (2) 
of course are trivially satisfied. 

The first inequality of (2) is inserted only for the sake of complete- 
ness. It follows from the well known fact that lim sup (~~+~-p,) = CO 
(since n!f2, n!+3, * = 1 , rt!+n are all composite). The proof of the 
other inequalities will be simple, but less trivial. 

Clearly &-.~p~+~ >di implies (&I+&-I> /2 BP, and P,,, > &-I 
+pm+r)/2 implies pi>&-$,+r. The well known relations between 
the various mean values suggest the following questions: Is it true 
that for every t the inequalities 

( 
p:-1 + pi+1 lit 

2 > 
> Pm 

and 
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have infinitely many solutions? By the well known relations between 
the means it follows that (1) and (2) is a consequence of (3) and (4), 
and that it suffices to prove (3) for t <0 and (4) for t>O. (The in- 
equality about means states that ((e’ +bt)/2)l’” is an increasing func- 
tion of t.)” 

An elementary proof of (3) and (4) is given in $2. The only result 
we use about primes is that 

(5) m(x) > Cl x/log x. 

This can be found in the first pages of Ingham’s book The distribu- 
tion of prime numbers. (R(X) denotes the number of primes not ex- 
ceeding x.) 

All these questions can be investigated by a method which is less 
elementary than that given in $2, but which perhaps can be used to 
attack some of the unsolved problems which can be raised here. Only 
(2) is treated by this method (in $3). 

In $4 we state without proof some results about the number of 
solutions of (3) and (4). Finally we state some unsolved problems, 
which are natural generalizations of our theorems. 

2. Elementary proofs. 

THEOREM 1. The inequalities (3) and (4) have infinitely many so&- 
tions, 

We need the following lemma, 

LEMMA. Let A > 0 be any constant. Then the inequalities 

(6) ek - #k-l < fk+l - pk, $k - pk-4 < &“, 

(7) pk.+1 - fk < pk - pk-4, fik+l - pk < A&” 

have infinitely mafiy solutions. 

The proof of (6) is quite trivial. It follows from (5) that for infi- 
nitely many m and a suitable 62, $m+l-p, <cn log &. Determine the 
least k >m for which $k+1-pk>j&,+1-p~. Then clearly &--I, pk, pk+l 

satisfy (6). 
Now we prove (7). Assume that (7) has only a finite number of 

solutions (that is, there are no solutions for fi>p~). Let m be large 

* See, for example, Hardy-Littlewood-P61ya, InequuZi&~s, p. 26. 
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and &+I -Pm Cc2 log Pm. Let pr be the smallest prime greater than 
PF. Then clearly 

(8) *,+I - p, 5 &t2 - Pr+, < * * * S Pm+I - Pm < 62 1% Pm 

For if not let k (r <k 5~) be the greatest index for which pk+l-pk 

<$k-p&-I. Then clearly pk-1, Pk, pk+l satisfy (7) (since pk+l-pk 

~Pp,+l-p,<t2 log Pm<~2(p,)1’4<~2(Pk)l’2). This proves (8). But if 
~~+~-p~=p~+~-P~+~= . . . =~~~+~-p~+~=d we evidently have ss;d 
(since the integers x, x+G?, 0 . * , x+xd=z(d+l) can not all be 
primes). Hence we obtain from (8) that 

nt-rs1+2+*** -I- [c2 log pm] < (c2 log pm)* 

or 

m = ?r(pm) 6 r + (c2 log PJ s PZ” + (cz log Pm) 2 

which contradicts (S), and completes the proof of the Iemma. 
Now WecanproveTheorem 1. Since, for a>O, b>O, ((~~-kb’)/Z)“~ 

is an increasing function of t, it suffices to prove (3) if t is a negative 
integer not greater than -2, say t = -1. Let pk-1, pk, pk+l satisfy (6) 
with A <l/W. Then we show that they also satisfy (3). put Sk-@k--l 

=u; since ((a’+b9/2)1/’ is an increasing function of a and 6 it will 
clearly be sufficient to show that (3) is satisfied in case pk+l-Pk 

=w+l. Thus we have to show that (t= -15 -2) 

or 

( 

(pk - u)- 2 + (pb + 24 + l)-’ -r/l 

2 > 
> Pk 

or 

(#k - u)-’ + (pk + G + I)-’ < 2&i’ 

(pk + ti + 1)‘(2(pk - a)’ - p:) > p:(pk - d. 

Now clearly for zd <Pifa/212 

1 l-l 
- dp;‘< (pk - u>’ < p: - dPk + 

< p: - (UZ - l/z)P;-‘. 

Thus it suffices to show that 

(p: + (u + l)Ep;-l)(p: - 2tizpY) > P:(P: - W - WP3 

or 
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(I - 1/2)Pk1 > 2Z2U(16 + l)PP, 

which is clearly satisfied for G <pii2/21”, which proves (3). 
Now we prove (4). Assume that @k-l, #k, $k+l satisfy (‘I) with 

a’d <1/2t2. Put J&l-p& =u. As before it suffices to consider the case 
&-P&l= u-l-1 and t 2 2. Then we have to show that 

tpk - tU+l))t~tPk+U)t-2p:<0. 

We have as in (8) for IC <(l/2tz)Pin (‘t 12) 

(10) (Pk + d < p: + 0s + 1/2)gk1. 

Thus from (8) and (9) 

(pk - (16 + l)$ + (PK + Il)f - 2p: < 2p: - tt’u + 1)t - l/Z)Pf;’ 

-I- (ut + l/2$? - 2p: < 0, 

which proves (4) and completes the proof of Theorem 1. 

THEOREM 2. Let al <at< a 0 - be an infinite sepzsence of integers which 
do not form an arithmetic progression from a certain point on. Let 
t <l and uk <k2/4(1 -t) -ck, for every c if k is suficiently large. Then 

(11) ((&l + d+l)/$” > ak 

have infinitely many solutions. 

THEQREM 3. Let al<az< * . * be an infinite sequence of integers 
which do nut form a convex sequence from a certain point on (tEat is, 
ak -ak-lb ak+l- ak has infinitely many solutions). Let t > 1 and 
ak <k2/4(1 -1) -ck for every c if k is sujiciently large. Then 

W) 
1/t 

((ii-l+ &$/2) < ak 

has infinitely many solutions. 

The inequalities in both theorems are best possible in the following 
sense: For every c there exists a sequence al <a2 < * . . of integers 
with ak <k2/4(1 -t) -ck for all k, the a’s not forming an arithmetic 
progression from a certain point on, and so that (11) has only a finite 
number of solutions. The same holds for (12). 

REMARK. It follows from (5) and our lemma (in $2) that Theorem 
1 is a consequence of Theorems 2 and 3. 

We prove Theorem 2 only in the special case t = 0 ; the proof of the 
general case and that of Theorem 3 is similar but requires slightly 
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longer caIcuIations. It is well known that for t = 0 the left side of (11) 
becomes (a&--lak+J l12. Thus we have to prove that if ab <k2/4-ck for 
every c if k is sufficiently large, then 

(13) ak--lak+l > ait 

has finitely many solutions. 
Suppose this is not true. Then for ko<k., ak-l.ak+lSai. Since the 

u’s do not form an arithmetic progression from a certain point on, 
it is clear that the equation ak+n-ak+l >aa+l--ak has infinitely many 
solutions. Put ak+l-ak =x; we have ak+zhak+bfl. Thus since 
ai+l 2 ak . ak+2 we have 

(14) (ak + x)2 2 ak(ak + 2% + I>, or x2 2 ak, 

Assume now that, for some k >ko, (a&+~ -ak)* <ak. Determine the 
least E>k for which al+l-anl>ai-al-l. Then we have from (14) 

(ak+l - uk)” 2 (al - al-l)’ 2 al-l 2 ak 

an evident contradiction. But this means that, for k > ko, (ak+l-a$ 
Zak. Thus we clearly obtain that for large enough n the number of 
a’s in the interval (n2, (n+l)“) ( w h ere n2 is counted in the interval 
but (~+l)~ not) does not exceed 2. Thus we evidently have ak>k2/4 

-ck for sufficiently large c, an evident contradiction. This completes 
the proof. The sequence nf, n(laS 1) with an arbitrary finite set added 
to it shows that the result is best possible. 

3. Analytical proof. Now we give an alternative proof of (2) which 
uses deeper tools. We use the prime number theorem for arithmetic 
progressions in the form given by A. Pages 

1 
7r(x, k, 2) - - 

= dY 
- 

(15) 
I 4(k) s I 2 1% Y 

< alx(exp (- cut(log zt~)l’~) + AT- 
log x 

- ar2 k”2(log k)2 

where R(X, k, Z) denotes the number of primes not exceeding x which 
are congruent to I (mod k) (we assume (k, E) = 1) and ~1, . . . are in- 
dependent of x, k and Z. We also need the following result due to 
Kusmin+ Let PI, &, . . * , fin be real and vS&-&S . * + r/3,,-j3n-1 
51-v (OS~51/2). Then 

‘A. Page, Proc. London Math. SIC (2) vol. 39 (1935) pp. 116141. 
’ R. 0. Kusmin, Zhumal Leningradskoe Fiziko-Matematicheskoe obshchestvo 

vol. 1 (1927) pp. 233-239. 
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We are going to show that for sufficiently large r there exist primes 

(17) x r *k-l < $k < fk+l 5 4% so that $k+l - pk < pk - pk-1. 

Suppose (17) is not satisfied. Let x be sufficiently large, and consider 
the primes 

wu 
pi<xS pj+l< " ' < pj+E 5 22 < pj+B+l < * * ' 

-c pj+iz+, d 4x. 

Since we assume that (17) is false, we have 

(l9) Pi+2 - p&l s Pi+2 - pi+2 < ’ ’ * < fi+E-fB - pKR+E-1. 

We evidentIy have 

(20) P f+r+l - Pf+r < (3/2) log 2 for r 5 H. 

For if not, then, by (19)‘ a&) -7r(2x) =E < (4x/3 log X) +l which 
contradicts the prime number theorem. 

Put 
f-w 

S(y) = C ezriyh 
m-j+1 

where (40 log x)-r <y < (12 log x)-l. We have by (20) 

1 

20 log x 
< Y(Pr+l - PI) <: f . 

Thus from (16) 

(21) 1 S(y) ] < 20 log x. 

Let q be any prime satisfying 12 Iog 2 <p <40 log x (such a p exists 
for sufficiently large 1~). We evidently have 

cw 

where the prime indicates that the summation is extended over the 
Pp4 (mod q) withj+l lvSj+H. We have by (15) 

Thus from (23) and (22) 
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We have from the prime number theorem ~~+~<l.Olx, P~+~> 1.99x. 
Thus 

’ ,s’ > 
(24) ’ 

( >’ 
* ’ 

1 

s 

1.99x dy 

40 log x 1.012 log y 

- (Ybx log x exp - a4 
(log x)1’? 

(log log x)” > 
> 

1 
so 

X 

(log’ 

which contradicts (20) and proves (16). Hence (2) follows immedi- 
ately since, as remarked in the introduction, fik+l--p~>pl;-&-I has 
(trivially) infinitely many solutions. 

4. Problems and conjectures. In connection with the Riemann 
hypothesis the question arose how often the expression 

jk-$k+l - p: 

changes its sign. We can show by using Brun’s method that for k S;n 

changes its sign cn times (as remarked before if t =0, (25) becomes 

Pk-lPk+l- P3. 
The inequalities (2) can be stated as follows: The inequalities 

P n+l - pn P,l - 
> 1 and __- Pn <1 

Pn - Pw-1 pn - Pn-1 

have infinitely many solutions. By Brun’s method we can show that 

P - Pn 
lim sups-- 

P 
> 1 and lim inf -!!I?--- -pn<l 

’ P* - pn-1 p* - pm-1 

It is very probable that the lim sup is infinite and the lim inf is 0. 
(2) can be generalized as follows: Let x:-rarcxk be any linear form. 

What is the necessary and sufficient condition that both inequalities 

2 akXk > 0 and 2 akxk < 0 
L=l k=l 

have infinitely many solutions in consecutive primes &+I, . . . , 

P %+*? From the prime number theorem we obtain the necessary 
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condition x;-,ak=O. But x2 -xl shows that this condition is not 
sufficient. P61ya remarked that if (25) has infinitely many solutions 
we can not have alLO, ar+azLO, * s *, al+az+ * . = +a,ZO. The 
characterization of the forms which satisfy (26) seems a difficult prob- 
lem. 

Finally we mention two more questions: 
(1) Can theinequalitiesp,,l-p,<p,+z-p,,+l< . * . <pn+k-p,+h-1 

have infinitely many solutions for every f&d k? 
(2) Is it true that the number of solutions of p&l-pb>pk-p&-l, 

k S;n is n/2+0(n) ? As we already have stated we can show that the 
number of solutions in question is between cln and (1 -cJn. 
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