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In our new and elementary proof of the prime number 
theorem, Selberg and I(r) prove the following Tauberian 
theorem : 

Let 1 <PI <p2< ,.. be an infinite sequence of real 
numbers which satisfies 

I. 1 (log pJ”+ c log pi log pj = 2x log xf 

QjQX Qj Qji<Z 

0(x log x) 

II. c 
y = [1+0(1)-J log x 

i 
Pj<X 

III. 6(X) = c log p, > C x. 
P;<* 

Then 

lim &(x)/x= I. 0) x+m 

I is the fundamental asymptotic formula of Selberg(2) 
for which he obtained an ingenious and elementary proof, 
and which was the starting point of our investigations. 
11 is due to Mertens and III to Tchebichef, both of 
course have well-known elementary proofs. 

It might be of interest to investigate whether (I) can 
be deduced from Ialone. This indeed turns out to be 
the case if we use I with the stronger error term O(x) 
(which indeed was proved by SeIberg@). Thus we 
shall prove the following 
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THEOREM I. Let I <p, <p, < .., Assume that 

I’, C (log pd)‘+ C log PilOg pj = 2 X log X+0(‘)* 

Pi<" 

Thoz ( I) hoZds. 
PiPjCx 

We shall prove Theorem I by showing that I’ implies 

II’. c 
1% Pa ---? =logx-+O (I). 
Pi 

II and III are easy consequences of II’, (thus (I) 
follows from our work with Selbergt*)). This is clear for 
II and easy for II, for if III does not hold, we have 
6(x) < E x with E < I for suitable x. Then we evidently 
have 

c 
x log p. 6(x) 

d < e’/ZX < &1’2> 
xvt Pi 

thus II’ cannot hold(s). 

Our principal tool in proving Theorem I will be the 
following Tauberian theorem which is of interest by itself: 

THEOREM 2. Let ak > of put stn = c aka Assume that 

S(n) = C ak(ssdk+k) = n2=t0(n). (4 

Then 
k=I 

s, = n+O(I). 
First we shall show that I’ implies 

I”: c 
(1% Pi)” log Pi log Pi 

Pi + YE Pi Pi 
P;G Bi Pjj<” 

= (loi x)2+o(log x).(4 

We use partial summation. Put 

Pi<" 

We evidently have 

Pi Pj<Q 

= 224 log u+O(u). 
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(lW Pi)" 
= 

&?i rp1 

hif Pi log Pi 

i + c - [Pipi]- 
P;Pjd;x 

(since D(u) = O(u Iog u)), Thus 

x-1 
= c D(U) 
UC2 N”-- I) 

+ D(x) ’ -y- +0(I) = (log x)2+o(k x>, 
which proves II’. 

Put now 

i?“= #, ak = c hi? Pi 
.k=l 

Pi 

Then we obtain from I’# by a simple computation 

$j k”kfO( c ak) + i a&+a2+...+a,,-k) 

kc1 kzl k=l 

ak an-k+l ) =k2+O(n). (3) 

We obtain (3) from IN by putting (1% PiY p = l"gPilogPi 

Ibi 

= kly+ 0 (‘y), for ek--l <pi < ek’ and by remark- 

ing that if ek--l <pi c ek then in pi pj ~ en, en--R <pi < en-k+l, 

also a,<c. 

Thus finally we obtain from (3) 
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n 

c ( ak s++k+k) = la2+0 (n), o 4 ak (ak < c is not needed 
k=l 

any more). Hence from Theorem z 

$98 = n+O (I), 
or in other words II’ holds, which proves Theorem I. 

Thus we onIy have to prove Theorem 2, The diffi- 
culty is caused by the sharpness of the error term. First 
to illustrate our method we prove that 

s, = n+O(log n). (4) 
In the proof we shall use some of the ideas used in 

our proof with SelbergCI). We shall prove (4) in stages. 
The first step is to prove that 

4% = n+o(n). (5) 
Apply (2) for n and n+~ and subtract- Then we obtain 

@+I> 4x+1 < 2?2+0(?2) (since ak ) o), 
or 

a, < c. (6) 
Put 

We obtain from (2) by a very simple argument that 
a< I,A> 1. In fact if a< 1 we have s,,k+k>n+o(.n). 
Thus from (2) 

n2f0 (12) = i ak(&-ktk) 2 (n+ o(n)) i ak 

A=1 A=1 

orA<I,i.e.a=A=~. Hencewecanassumea<r,and 
similarly A > I. 

(6) implies A < CO. Ghoose n so that s, = A.n+o(n). 
We clearly can assume a < A (otherwise (5) holds and 
there is nothing to prove). For k < En (E small but fixed) 
we have by (6) 

S,-k-tk > s,-k G+k > h-e cn-v(n) > (a+@ n, (7) 
where 6 = ,s (E) > o is a fixed number. For k> E n we 
have 
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S,-k+k > a (n-k) f k-o(n) = an+k (r-a) - o(n) 

>an+En (I-a)--o(n) > (a+6) n (8) 
Hence from (2), (7) and (8) we have 

n2+0 (72) = i ak (S,-k+k) >(a+@ n. i dk 

k=l k=l 

= A a n2+A 8 n2+o(n2), 
or Aa < I. By choosing n so that s, = an+o(-n), we obtain 
similarly Aa > I, an evident contradiction, which proves 
that A = a = I, hence (5) is proved. 

Next we prove 

s, = nf 0 (ne). (9) 
Put 

s, = n+&B,= o(n), by (5). 
7 

We can assume that hm B,, = CQ (otherwise there is 
nothing to prove). Denote 

8, = yz I&J* 

First we assume that 

Choose n so that 

Q&l2 > 1 +c, (IQ 
without loss of generality we my assume that 1 B, 1 = E,,. 
For if not, we have for some m, n/z < m < n, I&,, I= Pn and 
clearly I&,&J, > ~),/~‘,~2 > I+C. Further we can assume 
without loss ofgenerality (as will be clear from our proof) 
that B, = ii,,. We have by (I rj and the definition of&, 
j&j2 for every k 

s,-k+k 2 n-k-B,+k = n-B, 
and for k > n/2 

(12) 

s,-g+k 2 n-k-Q2 +k > la-k- B,,/( 1-l-c) 4-k > n-B,+c 4. 
(13) 
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Thus from (2), (12) and (13) 

n2+ 0 (n) = C ak h-k+4 > C a,(n-B,)+c,B, i aR. 
k=l &=I k I n/2 

Now we have from (5) 

c ak = n tB,, c 
&=l 42 

ak = :+0(n) >i, 

Thus finally 
n2+O(n) > n2-Bi+c, B, n 

which is false since E,, (= B,)+m and B, =o(n). 

Thus we can assume that 
lim &j&j2 = I. 
n=cO (14) 

But then we immediately obtain by iterating (14) that 
B e = O(P), which proves (9). 

Now we are ready to prove (4). Assume that (4) 
does not hold. Then we cIearly can assume that 

7 
hm (B,-&J = CO. 

Choose n so that 2, - ii,/, > C. As before we can assume 
that ii, =B,. Asin (12) and (13) we have 
s,,-,-j-k > n - B, for all k ; s,,,+k > n - B,+C for k > n/z. 

Thus we have as before 

9+0(n) = f: ak Lk+k) > i ak (n-4) 

k=l k=l 

+C iak>n2-B:+in, 

1q2 

which is false since B, = o (ne) and C can be chosen as 
large as we please. This contradiction proves (4). 

Unfortunately it seems that one cannot get a stronger 
result by this method. 

Now we show that to prove Theorem 2 it will suffice 
to assume that for sufficiently large k, ak < 2-/-a, where Q is 
an arbitrarily small but fixed positive number. 
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Assume then that Theorem 2 is proved in the case 
aR < 2+c Then we handle the general case as follows : 
Let 1= t (6)’ be sufficiently large. Put 

kt 

It is easy to see that & < 2+e for sufficiently large k if 
t = t (c) was large enough, To show this, consider 

Skt-Sck-l) t = 2 k t2+t2+O(k t) 
> (k- I) t Cacb--l) t+l+a(k-l) t+2+ . - * +ak t) = (k-- I) t2 A,, 

or A, < 2+~ for t = t @) . Now we obtain from o < a, < c 
by a simple calculation 

n 

1 A, (b+&+ l . . +A,-,+k) 
k=l 

4 h+a2+ . . . +a,.-,+u)+O(n) 

u=1 

or 

i ( Ak A,+A,+ . ..+&.+k) = n’+O(n). 
k=l 

Thus since A, < 2+e for sufficiently large k, we obtain 
tl 

c A k = n+O (I), hence by the definition of the AR’s, 
k=l 

tt 

c 
ak = nfo( 1). 

kc1 

Thus it will suffice to prove Theorem 2 in case we 
have 

0 < ak < 2++ for sufficiently large k. (15) 
Define B,, Z’, as before. Without loss of generality 

we can again assume that B, = Z3, and that &+to, from 
this last assumption we will obtain a contradiction. 

We define the u and u numbers as follows : An 
integer is a u number if 

3, < v- B,+Iog B,. 
18 
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It is a u number if 
44 > w-& (log B+y. 

First we have to prove some lemmas about the u and ZJ 
numbers. Let s = s(E) be small but fixed, we have 

LEMMA I. Lety < x. The number U(x) of u nmbers 
not emxeding x satisjes the following inequality : 

W-~(Y) < (++(I (x-Yh-o(x)* 

It clearly suffices to prove the lemma if x is a u 
number, say u,. We evidently have 

UP 

u,2+O(qJ = c ( ak h+-k-/-k) 

k=l 

where the dash indicates that the summation is extended 
over the k for which q-k is a u number (for if q-k is a 
u number ~,++k > u,). From (16) we obtain 

z.$+O(u,) > t&-B;-- &% BJ2(%-BtJ+Bti C’ ah 
k <u, 

which implies [B, = o(u;) by (g)] 

(17) 
i<* 

But we have from (5) 

c ak = %-y+o(%>. 

k <I+-y 

Thus from (17) and (18) 

c ak = %-9to(u,). 

w-9 

(19) 
k <ur-y 

k + U+--Mi 

Hence finally from (19) and ak < 2+~ we obtain that the 

sum (19) contains at least summands, or 
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w4>4.39 =w>-U(y) < ($+a> (x-r)+o(x), 
which proves Lemma I. 

LEMMAP. 

U(n) > (iNon. 
Denote by m the greatest u number not exceeding n. 

First we show that m = n+o(n). For, if not, then no integer 
in the interval [( - ) , ] I E n n would be a u number. But then 

s, = n2+0(n) = c ( a, 
k=l k=l 

x 2 ak =n2-l?;+vz log B,+o(n log B&J, 
k(cn 

which is 
proved. 

clearly false (& = o(@)). Thus m = n+o (n) is 
Now we have S, = m2+O(m) 

112 m 

k=l 

where in 2” the summation is 
which m-k is not a u number. 

A=1 

-(log i&)2 2 ak, 

extended over the k’s for 
ThUS 

m2+ 0 (m) < ( m-tBfi) (m-Bn+log &) - (log &) 2 I"& 

which implies 
k<m 

c ak=o(m). (18’) 
m-k nob tl 

nt 

But since C ak = nz+o(m) and ak <2+e, the sum (18') 
k=l 

can contain at most 

m- &+o[m) 

~summands, which means that m-k is a u number for at 

least 5 +o (m) vaIues of k, or 
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U(n) = U(m) > n (&A) 
which proves the lemma. 

Let zr, z2, l .  .  ,  be any sequence of integers. The num- 
ber of c’s not exceeding n we denote by C(n). The 
Schnirelmann density of the 1~‘s is defined as the lower 
bound of C(n)/n, If the L’S are all less than or equal to 
m, then we take the lower bound only in the interval 
I <n < m and we then call it the Schnirelmann density 
Up to m. 

LEMMA 3. Let I < Ul <u, < .** .g u, < n satisfy x > 
Cl n. Then there exists a flk so that the sequence &+I -Us, 

I < ti; < uk has Schnirelmann density 2, c Up t0 uk. 
REMARK. We assumed u, > I, since otherwise the 

lemma is trivial, we can choose uk = u1 = f. 

Suppose the lemma is false. Then we can clearly 
cover the interval from I to U, by intervals of the form 
(uX, u,,,+I), (uyl, u,,+I), . . , (uYk, I) so that in each ofthese 

intervals the number of u’s is less than 

cl (u,~--u,~+~), i=o, I, ,.. k (X=Yo, o=yk+i)- (19’) 

Adding the inequalities (rg) we obtain 

C(n) = C(G) < cl u,, 
an evident contradiction, which proves the lemma. 

We definenowthe u’ numbers as follows : An integer 
t < tt is a U’ number if there exists a u number u, so that 
[t-u, [ < log B,. Let u’~ < ~4’~ < . . . < u’, g n be the sequ- 
ence of consecutive u’ numbers. It is easy to see that the 
U’ numbers satisfy Lemmas I and 2. For Lemma 2 this is 
obvious. It is almost obvious for Lemma T too. Because 
Of 0 Q ak < c we evidently have 

s,’ > u’fB,- (log B,J2-c log B, > u’+B,-2 (log B,JZ 
and Lemma I can clearly be proved with s,’ > u’+B, 
-2 (log B,J2 instead of s, > u+B,- (log B,)2. 

The main advantage of the u’numbers is that they, 
cannot occur in isolation but always occur in bunches 
of length not less than 2 log B, (B,-+ w ) . From 
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L1> &+&-2 (log &J2 
we obtain by (5) that zJI > I (in fact u’~ = u’~ (n)+ ~0)~ 
Thus Lemma 3 can be applied and we deduce the 
existence of a u’, so that the sequence 

U’,+ I -U’j> j < y 

has Schnirelmann density > 5-s up to u’~, also we can 
assume that u Y is the largest element of its bunch, thus 
we immediately obtain that the sequence 

U’y-U*j, j < .Y 
has Schnirelmann density B-2 6 up to u’,,. 

We have by (17) 

fa+,~j = 0 (UJ . (4 
Now we need the following 

LEMMA 4. Let zi < z2 < , . . < z,. < fl be a sequence whose 
Schnirelmann density z+ to n, c, satisjes + < c2 < j$, and for any 
m Q N the number C(m) of 2’s not exceeding m satisfy(s) 

C(m) & m+o(Jv). (21) 
Denote further byyl, y2, . . . yN-, the positive integers Q N which 
are not L’S. Then there exists a z, say zip so that the sequence 
~j-zi contains more that N/24oy’s. 

Denote by D(Jv) the number of solutions of 

Zj-U=yi,O < U< JV* 

Clearly to each yj there are exactly zj-j U’S SO that 

J)(N) = 1 (Zj-j) ) i (4/r. j-j&r. O(Jv) 
j=l j=l 

since from (20) zj > *j-o (Jv) and r > + A’. Thus there 
exists an integer U, so that the sequence ZIj- U, contains 
more than NJ60 y’s. 

Next we prove that every integer < .IV is the sum of 4 
or less 2’s. By a well-known theorem of Schnirelmann- 
Landau@) the S h c nirelmaan density up to Jv af the 
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integers of the form xi, ljt+cjz is> 20-52 > + - + > & Thus 

clearly every number < .Nis the sum of 4 or less L’S (since 
if we have more than n2/2 a’s not exceeding m, then na is 
the sum of two a’s). Write 

u. = Zjj+Zj~ +&,+Zi.j 

(where some of the c’s may be 0). Denote by & 
the number ofy’s in zj- 27, and by E,,r=I,2,3,4 the 
number of y’s in zj-~~~, r = I, a,~, 4. 

We now prove that 

-E, <EE,+E,+E,+EP (22) 
WC prove (22) as follows : The sequence Zj-Zil-Zi2 

cannot contain more than E,+,?$ y’s for zi-zjl contains 

E1 y’s and from these we obtain not more than E, y’s of 
the form Zj-Zfl-Zi2- If on the other hand Zj-Zizi, is a Z, 

we can get from them at most .E2 y’s of ,the form e-+- 

zi2’ (since <;-z~, contains E2 J’S). Similarly <j-~il-~~-~~3 

contains not more than El $- Ez +E3 t’s and zj-zzl-ziz- 

6, - + = zj- UO contains not more than E,+E,+E, +I$ 
Y’S, which proves (22). 

Now E, > N/So, hence from (22) we obtain that for 
some r<4 

J$ > a/240 
which proves Lemma 4. 

Consider now the sequence U’,-dj. From Lemmas 
I, 2 and 3 it follows that Lemma 4 can be applied to it. 
Thus there exists an u’~ so that the numbers 

WY-- U’j)-(U’y-U’,+)=U’k-U’j (j < k) 

contain more than u’,,/240 positive integers which are not 
of the form u’,-U’j. BY w we get 

c &&‘pd’. I = o(u’J = o(dJ. (23) 
j<k 

Adding (20) and (23) we have 
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c a,;-,~j+ 1 a,‘,,,;. = u(u’,J. 
i-=Y j<k 

The sum (24) contains more than 

(24) 

(idas) U’~+U’y/240 > ($+go ) u’,, (8 small) (25) 

summands. From (5) we have 

c a, = a’y-tu(u’J. (26) 

From (25) and (26) we obtain 

z a,= u’y+Wy), (27) 
where in (27) r runs through the integers not occurring 

in (24). BY (25) we see that the sum (27) contains less 

than ( $-Fko) u’, summands. Thus clearly the equation 

would have infinitely many solutions. This is false for 
6 < I/IOOO. This contradiction establishes Theorem 2, 

and thus the proof of Theorem I is complete. 

The question can be raised whether a weaker error 
term than O(x) in I’ suffices to deduce that lim 8(x)/x= I. 
I can prove that if the error-term is o(x.log log x), $(x)/x+ I 
can indeed be deduced. I do not know what the 
best possible result is in this direction and indeed it is 
possible that 0(x. log x) suffices for the deduction of 
lim 8(x)/x = I. 

By the methods of the proof of Theorem 2 we can 
prove the following more general 

THEOREM 2’. Let ak 2 o,f(n> > c,f(n>~n+o and 

i ( ak s,-i+k) =n2t o[nf@)lb 
k=l 

Then 
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It is possible that in Theorem 2 the condition ak ) 0 
can be replaced by aR >-c, clearly some condition for ak 
is needed. 
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paper Lf On the arithmetical density. . .” Acta Arithmetica Vol. I. 

6. E. Landau, Ober einige neuere Fortschritte der Add&& 
<ahletheorie, Cambridge Tract No 35, p. 56. HenryMann’s proof 
of the a+P hypothesis in Annals of kfath. (rgqr) would enable 
us to deduce that every integer is the sum of 3 fs. 
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Theorem 2 of the above paper runs as follows : 
Let 

ak a O¶ c ( 
n ak s+hfk) = n2+O(n) (s, = i ak>. (I) 

k=l k=l 

Then s, = nfO( I). (4 

I dealt with this result in a lecture at the University 

of Illinois this summer and several remarks were made by 
the audience which I propose to discuss here. 

Reiner asked whether anything more can be deduced 
if in (I) we assume that the error term is o(n). If we put 

* 

a, = 3/2, azk+l = 2 for k > I, &k = 0, then c ( ak h-d-k) = 

n2+o(1), but s,+n+o (I). On the o6e: hand if we 
assume that there exists an E > o so that for k > k,, aR < 

24, then indeed i ak (L-k+k) = n2+0 (n) implies s, = 
k=l 

n+o( I). We do not give the proof since it follows that 
of the original theorem closely. 

Hua raised the following questions : What can be 
R 

deduced if we assume that ak > o and c ka, = $n2+ O(n), 
krl 

also ak > 0, and C ak (s,,)+k) = 4 n2+ o(n) ? 
A=1 

Here I prove 

THEORRM I. Leta,> oand c k.ak=&n2+0(n),the?t 
&=l 

% = n+O(log n). (3) 
and (3) is best possible. 

t-l 
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To prove (3) put s, =n+A,. Denote rs,“: [Ani 

= &. We can assume that ;;i,+ 00 (for otherwise (3) holds 
and there is nothing to prove). Since A,,+ CO we can 
choose arbitrarily large values of n so that 2, = [An\, and 
in fact it will be clear from the proof that without 
loss of generality we can assume 2% = A. We have 

R n-1 

c 
ka, = ns,- 

c 
Sk = R (n+;l,) 

k=l k=l 

- +f @+A,) > i!d+O(n>+ 5 (&,-&s/z) (4) 
h=l 

(if n/2 < k < n we replace AR by I&, if k < n/2 we replace 

AR by Zd. If (3) d oes not hold then clearly & 2,~~~~~ 
= 00, or for every C there exist infinitely many n so that 
2n-2n/z > C. But then from (4) II 

c k.ak > 9n”+ zn+O(n), 

k=l 

which contradicts the assumptions of Theorem I (since C 
can be chosen arbitrarily large), which proves (3). 

The fact that (3) cannot be improved is immediately 
clear by putting ak = 1+1/k. 

TI-IEOREM 2. Let ak > 0, i ak&-k = &n’+o(n). Then 

k=l 
s, = n+o (n) . (5) 

The error term cannot be o(nV2). 

To prove this it suffices to assume that uk > o 
n 

and 1 a&s,,k= * n2+o(n2), Put F(x) = i ak xk, F(x)’ 
k=1 A=1 

m 

=; 
c 

bk Xk. Clearly 
&al 
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Thus 
k=l k=l 

!i_n: (~-x)~F(x)~= 1 or FF1(r--X)F(x) = 1, 

Hence by the well-known Tauberian theorem of Hardy 
and Littlewood s, = n+o (n). 

By putting a (n !)” = n !, a, = o if (n !)” < m < (n !)2+n !, 
a,= I otherwise, we immediately obtain that the error 
term in (5) cannot be o(n112). 

Letf(x) be an-increasing function satisfying f(x) <x, 
Lzc~;:. f-‘(x) 1s defined by f [ f-‘(x)] = x. Then 

THEOREM 3. Let aR > o and 

%=i c ah Jr-‘rfw-f(M1f.f WI =fb>“+W w (6) 
&=l 

Then 

sti=f(n>-t-O(I>~ (7) 
REMARK : Iff (x) = x we obtain our original theorem 

that (I) implies (z), alsof(x) =x”, o < (Y < I,~(x) = logx 
satisfy the conditions of Theorem 3. 

PROOF OF THEOREM 3. Denote [f (n) J =,NJ, 

(i.e.f-l(N) = n-j-S,16 [ < I) C ak = A,. We have 
r<f w-K*+ 1 

from (6) 

+‘(N+w-~f-qN)= O(.N) > NAN or A, < C. 
Thus from (6) by a simple computation, we have 

i ( A, Al+ l .a+AN++k,) = N2-+ O(R) 
*=I 

which by our theorem clearly implies (7). 


