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FROBABILITY LIMIT THEOHEMS ASSUMING CNLY THE FIRST MOMENT I

By
K. L. CHUNG and P. ERDOS

In this paper we consider sums of mutuslly independent, identically dis-
tributed random variables. An essential feature is that we assume only that the first
moment is zero, or that both its positive and negative parts diverge, Part I here
deals with lattice distributions. Perhaps the main results are Theorem 3.1 and

Theorem 8. We hope to take up other cases later.
1. Let X be a random variable which assumes only integer values

P(X = k) = p,
p, 20 3p =1° .

A number is said to be a 'possible! value of an integer-valued random variable if its

probability is positive. The possible values of X will be denoted by ui,i=1,2,...;
n
they may be finite or infinite in number. 4s usual S = > Xk where the X.k are
B ket

mutually independent, each having the same distribution as X,
To avoid minor complications, we shall assume that every integer ¢ is a
possible values of Sn if n 1is suffliciently large: n > no(c). A set of necessary

and sufficient conditions for this is the following:
(1) The u; are not all of the same sign;

(2) The greatest common divisor of the set of differences
ui-uj,i,:]=1,2,... is equal to 1.

We shall eall the following two sets of assumptions (0) and (co) re-

spectively:
(0) E{lx]) = 3lklp, < @, E@) = Zkp =0
oo o}
() 1 B(|x|+x) - kgo kp, = @, 3 E(}x|X) = ;‘E_m kp, = @.

Thus under (0) or () (1) is always satisfied except in the trivial case X = O, which we
exclude, If (2} is not satisfied, there are two possibilities: either all possible
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values of Sn are multiples of an integer > 1; or there exists an integer m > 1 and a

complete residue class med. m, TysseesTh such that for a fixed j, all possible values of

Snmj’ n=1,2,***, belong to the same residue class rj(mod m), It is not difficult to

see how ou¥ statements and proofs should be modified for these cases,

In the following the letters a, a! denote arbitrary integers, 4,A',B
positive constants; £, £! arbitrarily small constants.

2. In this section we give some simple theorems on the bounds of P(S =a).
It is well lnown that under more restrictive assumptions more precise results can be ob-
tained (see Gnedenko [1], van Kampen and Wintner [2], Esseen [3]).

THECREM 1. Under no assumptions about moments whatsoever,

(1) P(s =a) < an~1/2

where A does not depend on n or a. If E(xe) = oo, then

(2) lim n'/2p(s -a) = 0.
n—>®
Proof. The c.f.™ of the d.f. $orxis

£(x) = 3p etx .

The c.f. of 8 if (£(x))™, and we have

w
P(S_ = a) = —l— I (£(x))" o~ %%ax,
n 2n

-n

Suppose first that n is even: n=2m, We have

"
Je.m
< I (l£(x)]") ax.

-

n
I S (£(x))%e~18%4x
-

Now |£(x)|2 is the c.f. of a symmetrical d.f., namely that of X + X' where X,X! are
mutually independent and X' has the same distribution as -X. Hence we may write

' '2 o &x
f(x)] = > rpcoskxr >0, > r =1
K=o ’(k "koo K )

#Characteristic function or Fourier-Stieltjes transform.

} Distribution function,
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@
5 2
1 =2 > rksin __%‘

k=0

Suppose T, > 0. If x< nf-1,

VI8

2 2
25 r, sin? B 2( 2 ()2 2L 3 r 2> 0

k=0 k=0 w2 k=0
|£(x)]2 < 1 - A L.

Hence

n N

S [£(x) | Pax < S (1-A x2)%dx + 5 | £(x)| % Rax.

o ! g x| < w
It is known that if 11( |x] < w, then |£(x)] <1 - a('l]). Therefore we have

n wi -

g Ir(x)[alll dx < J eq& dx + o((1-)™).

- - =l

(1) follows for even n. Noticing that [£(x)|™ < If(x}[n'1 we see that the same proof
goes through for an odd n.

To prove (2), notice that the assumption E(X2) = oo implies that
E((XeX? )2} = co. Hence

[oe]
akerk = o,
k=g

and the A' in the foregoing can be taken arbitrarily large. gq.e.d.

A lower bound for P(Sn=a), under the assumption {0) or (), will be
given in Theorem 2.2; we shall alsc show that our estimate is close to the best possible
by exhibiting an example in Theorem 2.3. In one special case, however, we can prove
a much sironger result, and this is Theorem 2.1.

THEOREM 2.1. If the d.f. of X is symmetrical, and E(]X|) < oo, then

(3) lim n P(5n=a.} = .
n—>

Proof. Since pk=p_k,f(x) is real. Since £(0) = 1 and f(x) is con-

tinuous, there exists a §> O such that if |x] < § , £(x) > 0. We have

o
P(3=a) = —;ﬁ— J (£(x))" cos axdx,
-1
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$
21— (20 ax - o((1-)"),
IR
-1
if §< -3—:— . As in the proof of Thecrem 1, we can write
@
1=-£(x) =z 2r, sin® 2%,
k0 X £
@
Since > kry < oo,
k=0
@O
1 = 2
lin > r, sin £ =0

=0 |x| k=0
Hence given £ > 0, if ]x| < so(c) <§,1-2(x)<elx|. Now

5 fs
Scf(xnnax > (1lx| o - 22012820
3 g (n+1)e

(o]
Since € is arbitrary (3) follows.
THEOREM 2.2. Under (0) or (o) we have for everyc > 0

) P(s =a) 2 (1-€)"

if n 2 n (g,a).
Proof. If the possible values of X are bounded, then E(X°) < w. In
this case it is well lmown and also easy to show that
1/2

lim n  P(S=a) =A< .,
n—> oo n

This is a much sharper result than (4}, Hence we may assume that there are possible
values of arbitrarily large magnitude.
Given £ > 0, there exist arbitrarily large 2y and 22 such that
e
2 D> 1€

and if k> Z55F) < £. Now choose h! so large that

o] e
S > 5
I_E'kpkl 2 kp,

this is possible under (0) or (o). Also there is a unique h such that
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het |
S kpy <
G k

LIvIo
3

kp, | < > kp, o
e KT 5k

'Ihenh>zaand

h
=C>OI
b, 22, Wy = O 2

Define pt, = p if k £ h, but
p'p =By - Ch71 2 0.
Then
h
- L] o s -
‘b_%‘pk>1 € ph>1 2e
h
gkp‘=0-
- -ht k

Now define a random variable X! as follows:

P(X! = k) = ptb™" if 4t <k<h
k
=0 otherwise,
1]
Let Sln =2 ]{lk where the x'k are mutually independent and each has the same distribu-
k=1

tion as X', S8ince p?y < P for all k
P(st =a)2 bP(S =a] - bt < X Chfor 1 < k< n)o*
Hence
P(Snza}ZP(Sn-a; - ht Sxk'_(_hi‘or1£kgn)
2 P(-h? < x < h)"P(Sp=a] ~ h! <X < hfor 1 < k< n)
g(1«;)"b"?(sln=a) > (1= )(1-2¢ )"4n=1/2
where A depends on £ by definition of X', This being true for all £ is equivalent to
(4)-
The idea of truncation in the preceding proof is due to Shizuo Kakutani.

Tascrem 2,2 was first proved under (O) by W. H. J. Fuchs using a result in Chung and
Fuchs [4], namely

#P(E|F) denotes the conditional probability of E under the hypothesis F.
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& *
(5) 2, P{Sn =a) =m.
n=1

A similar proof using (5) was also given by Kakutani, We sketch the latter proof as

follows.
From (5) it follows by the Cauchy-Hadamard criterion

T (p(s,=0))"™ = 1.
n=—3w

Hence given £ > 0, there exists arbitrarily large m such that
(s, = 0) 2 (1-e)™

Consequently for all integers k > 0,
P(S,, = 0) 2 (1-=e)km,

Ne can also choose the aforesaid m so large that
min P(Svsa) = AU > 0,
v<2m

Now fix m. If n=(k+1)mér, k > 0, £ < r < m, we have
P(Sn=a) > P(Smr = a)l’(sm1 =0)

> A1) > a1(1-e) ™1™ qeeads
THEOREM 2.3. We can construct an example satisfying (0O) and such that for

every given B > O there exists a sequence {%} for which

P(Sp, 2 0) = 0(n "),

Froof. Let A,,v=1,2,... be a sequence of positive integers increasing to
oo so fast that for every £ > 0,

£
Ay = 0Ag4)
Define
=1 with prob. é
=
A, with prob. 2Va 1 V2,3, .
Then E(X) = 0. If k is sufficiently large
e 1
P(MaxX >4 )<n 2 < B,
1<v<n vekse1 24 A
v k+1

5
However, the assumption (oo ) does not imply the truth of (5) (see [4]); thus the
following proof does not hold under (m ).
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Let
Xif X <
X ‘{ = A‘k -
0if X> Ay
2 g
S%, = > X% where the x*v are mutually independent and each has the distribution of X%,
v=1
We have

(%) = 2701 5) - o(ay)
P(S > 0)] MaxX <A ) = P(S* 2 0)
7 g B .
< P(lsx - B(s%)| 2 [2(s* D).
Let m be an integer > 0, a routine computation shows that

E(|S*n—E(5*n)|2m S Km(é E(X*‘e-(kd»'l})a)m

m m
<K, Ag
where K ,K! are two positive constants depending only on m. Hence
P(Is%,-E(s% )| 2 [E(s%)]) < o(al 2(ken)Bmymmy,

How choose
[
Dy Ay
we have, by the property of the sequence Ak,
P(s, > 0) £ P( Max >A)+ P >0] Max X € 4)
e 1<% 7k T g YK
< 0(%'1/E+1_’ -Ill*'C) & O(Hk-a)
by chcige of € and m.
‘Theorem 2.3 should be compared with a result due to Feller [5].

3. The thecrems in § 2 were proved by fairly standard analytical methods.

We are unable to prove the theorems in this section by similar methods, except in the
case where the d.f. of X is symmetrical, i.e,, the c.f, is a real-valued function. In

this case we have as before
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§

IP(S =a) - P(S --a')l J |cos ax—cos a'x| |£(x)|™ dx+0((1-€)™).

Ghoosing § so small that cos ax > O, r(x) > 0, and [cos ax-cos a'x| < £ cos ax for

x| < §, we have

§

]P(Sn=a) - P(Snaa') | > e'I cos ax(f(x))™ dx + O((1-€)}?).

-5
On account of Theorem 2,2 it follows that

F(3,=a) - P(Sn=a') =0 (P(Sn=a))

which is equivalent to Theorem 3.1 below. We have not been able to prove the theorem

by this method when f(x) is not real-valued. Another relevant remark is the following:
if instead of the individual probabilities P(Sn-a] we consider their sums, then it

follows from a theorem due to Doeblin [11] on Markov chains that

13
Lim L;‘P(Skza) -
n—->wm n
Z P(3 =a?)
THECOREM 3.1. Under (0) or (o)
P(Sn-a)

=1.

n—p0  F(S =al!)

Proof. For some k,u1-u **,m U, have g.c.de 1.

0"
tegers c;_ and ¢; such that

k k
2 c.u 2 ¢,=0,
i=0

at-a = 2 ci(u -uo) = %40

Tius there exist in-

Let P(x=ui) =q;. Corresponding to every representation of a in the form

2 p s
(1) a=2 n n, >0 > ng=n
R 12™ 5t
there is a realization of the value a by x1+-u+xn with probability
f n,
(2} —l | I qi

noleeengl 1=0

when ny; of the X's assume the value u;.  The total probability of a is thus
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e L
- nyleeengl i=0 *

where the sum runs over all representations (1). Now write this sum as

Vi

Vi

) 3 =&
where in ; the conditions

|ni-nqi[ < en, 0£ig< 8k

are satisfied, while ge is the rest.

Consider the event X = ug with probability qi; ny is the number of its

occurrences in n mutually independent, identical trials. It is well known that the
probability that Inimqil > en is
2
D(e"'t n}o
Hence

(%) ;1 < (&+1)o(e-‘-'2n) = o(P(S,=a))

by Theorem 2.2, for every £ > O,
Now consider a representation (1) with Ini-nqi| <enfor0<igg., If

¢ is sufficiently small and n sufficiently large, we have n > n(qi-c} > en> |ci| .

Corresponding to every representation of a in the form (1) there is a representation of
a' in the form

2
2 nlu

(5} = i=0 il

ngu; =
vhere Ini-nqi| < 2en. The ratio of two such corresponding probabilities is

nolse eyl ng-ng x Tk
2 L = a, ...qknk .

nél---n.‘ftl
If m* > m, |m-ng] < en, |m' - ng| < 2en, we have
ml qm'-m (gn)(qﬁ‘"(m:u) pm-m'
m'l m'(m'—1)+se(m+1)

S(-—.—qn_—.—-—)ml..mnﬂl-m' = (ds—) m'-m_n-m'
(a=2¢)n
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ol mt-m mt-m 1
2 (=) "
mt 1+2c
) &
Since > n! = > n, it follows that
i=0 1 ie0
(1= < A < (14e0)®
k
where C =2 Ici]. Since &*' is arbitrarily small we have lim ) =1.
i=0 n—>00

Let us write the corresponding formulas (1) and (2) for at:

a' = > nlu 2 n!'=0
fo 14 i=0 1
L R
(6) 2 -5+3

where in 21 the condition ln;_ - nqi[ < 2en are satisfied find 0 < 1 < &, We have just

proved that

— 2
2
N——300 2
Using (4) we conclude that
P(Sn=a)

n—>swo P(Sn-:a')

'1.

Since a and a' are interchangeable we obtain Theorem 3.

THECREM 3.2, For those values of n for which

) P(s,=a) > n”P

for some fixed B > 0, we have for every € > 0O

(8) [B(s=a) - P(sp=a')| < p(sn=s)m-1/2+g

where A may depend on a, a' but not on n.

Proof. In (3) we re-define 21 to be the sum of those terms for which

|ng-na, | < n'/2%%, 0gi1g k.
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1/2+¢
As before, let {5) correspond to (1), but now we assume n so large that n >|Ci[, s0

that
1/2+;
nt- < 2n .
! | n, |
We re-define E' in (6) to be the sum of those terms for which this is true. By well known
1

estimates on the binomial distribution we have
-Ant ~An€E

(9 2,=0e )y Zp=0le ).

Now consider the difference of two corresponding probabilities (1) and (6)

n n
de —nb 9 ootnq! 2(1-A)o
no‘QQOn!l

If m=nq+r, m'=nq+r' where ]r-r'] £ C and ]rl £ n1/2"'c, Ir‘| < 2n1/2":', an easy application

of Stirling's formula yields
E.}... qni-m=nn-r'(1+0(n-1/2+3£)), )\_1‘.0{@-1/24.35).

m i
k
Since 2 (ri-r;_) = 0 we have
i=0
n -1/2+3)
4] € —m—-—-qono...q 2o(n P
- n loo.n l l
0 p
Hence
_ =1/2+3% - 4
|P(s,=a)-P(Sy=a")| < 0(4n )+ 20 2,

The first term on the right is o{r(sn=a).n‘1/2*3°), and the other two terms by (7) and
(9) are of smaller order of magnitude. Thus (8) follows.
THEOREM 4. Under (0) or (o)
P(Sn=a.)

1im _—t.
n——00 P{Snﬂ:a')

Froof., For every representation of a in the form (1), there is a repre-

sentation of atu in the follewing form
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aru =(n_+1)u, + z nju, .
i=1
The corresponding probability is

__(nen)t HgY -
(ng#1)in e+ enyl %o 1 L

The ratio of this to (2) is (n+1)/(n+1)q . If Inc-nqoi < £n, this ratio is between

1-€/q and 1+l.‘./qa as n—>» @w. The range at values of n, such that Ino—nqol > &n can be

neglected as before., It follows exactly as in the proof of Thecrem 3 that

__ PB(sa)
Iim < 1.
n—-=3c0 P(Sn+1-a+u°)
By virtue of Theorem 3 this gives
. P(S =a)
S £1.

n—>co P(Snﬂ =a)
Considering a-u instead of asu in the above in a similar manner we arrive at

P( Sn=a}

n—->00 P(S, _4=a)

These last two relations combined are equivalent to Theorem 4.

We remark that Theorem 4 can be proved in the same way as sketched above
for Theorem 3.1, when f(x) is real-valued, It would also seem that we might be able to
deduce Theorem k4 directly from Theorem 3.1, but a trivial arpument gives only the follow-

ig. Since
oy
P(S_ ,=a)=2 P(S _=at) P{X=a-a'
(3= 2 F(S,7a0) PlX-a-at)
A
2 2 P(Snsa')P(X=a.—a').
al==4

It follows easily, using Theorem 3.1, that

P(Sm1=a)

Lim
n—-3m P(Sn=a)

v
-
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But the other half of the result seems difficult.

4, In this section we study the number of a-values in the sequence Sqreen ’Sn'
A very special case has been treated more or less completely by Chung and Hunt [6].
More general cases, in which the existence of certain moments are assumed, have been con-
sidered by Feller [7] and Chung [8].% 1In this paper we are considering a more general
situation and precise results are not hoped for at this moment. However, we shall prove
the relevant Theorem 8 whose truth would perhaps be considered evident but whose proof,
as far as we can meke it, is by no means simple., Theorem 7 gives the true bounds within

an € power.

Define

1if3k=8

(=]

ifSk;éa

E(Y,) = P(sk=a) = m

o
T => ¥
By B
( n
E(T ) =M = >
n/ =My k=1.k

and similarly Y4 ,mi, T ML, for a'.

THECREM 5. Under (0), for every £ > O,

3/hae
P( ITn—T'nI > M

. i - o,

Proof, By Theorem 3,1 and the fact that Hnﬁ‘\- 0 a5 n=——> oo
2 e ] = =
E(IT-111%) =5(S¥ +3v%+ 3 1 (r-v1)+35 w(w-y)) +
nn k k Jik 3k Tk e 3 kK

K Zmy m! + 3m, k%jlmj'k‘ms'kl + gm.tj %ﬂim}_k-mj"d -+

K ¥k 3 mk-m]::| %

*The results in [8] are stated for the number of crossings of the values a, but in the
case of an integer-valued random variable they can be easily translated intc the number
of a-values, ¥¥ i,o. stands for 'infinitely often! or%for infinitely many values of the
index.!

4. Henceforth in an unspecified summation the index runs from 1 to n. +un <K v,, means %‘Qﬁ
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According to Theorem 3.2, the mk in the last sum can be divided into two classes:

either m < k"e, the sum over such k being 0(1), or the estimate (8) holds., Hence

o _ -(1-e)/2
E(’Tn'T:';I ) SO(M )+ O, Smk Je

By Hglder's inequality
_ =(1=e)/2  _ 2/(1+2e) 1/24e _ -(1-€)/2 2/(1-2c) 1/2—¢
2m k < m ) (2(k ) )
_ 2/(1+2e) 1/2+¢ 1/2+c
< AGH, ) osa

By Chebychev  inequality

3/hse -
(10) P(I'rn-rl;l > M )M .
Since m,—> 0 by Theorem 1, we can choose an increasing seguence nk such that
(14e)/c
~k =

Now suppose that for some n,m < n < m 4 we have

3/lee
(1) [T > 24 ‘

Let n be the smallest such integer, for which (11) is true, then either Yn or I} must be

1, hence S =a or a'. We call this event En. According as Sn-a or a?, T, -Tn is the
Ie+1

number of O's or (a-a')'s in the sequence of partial sums of xm.l,--,xnk i Let the
+

event

3/b+e
T, -1y ~(T-~T)| <M
k+1 nk+1 T n nkﬂ

be dencted by E . By (10), if k is sufficiently large,
T3 My q

P(E E)>1-° 31,
n'nl(ﬂ F Mgy — 2

Further it is clear that

:
IE;‘k...E;l_,'En)* P(E ‘1|En}25

P(E
( DsMyesq n,n
# If E,F are two events,E' denctes the negation of E,EF denotes the conjunction of E




15 PROBABILITY LIMIT THEOREMS ASSUMING CNLY THE FIRST MCMENT I

(this follows from the Markov property of the sequence Sn.) Now E, n, and
e

El!lk.“E'n—TEII bogether i.r.‘llply

3/b+e

|T, -1 | >u .
nk+1 k+1 0y q

Hence

3/h+e nf“
P(ITnkq.'[-T;lkq.‘ll 2.9 }2 n>:nk P(E‘;k...EI;qEn)?(sn’ nkHlEt'lk"‘Eﬁ-dEn)
a1 -3/h-¢
23 n%nk P(E;}k...Ea_.tE’l -1 P(nkﬁgkﬂhn—wnn > 2).
Thus by (10)

S B( lomi S ce S ue <
SP( Max -1 »2)<2 S M 0.
X nkgngnlm% nMn k

It follows from the Borel-Cantelli lemma that

P(|Ty-ml > 2/ 1.0 .0
n

This is equivalent to the statement of Theorem 5.

The next theorem is a new type of limit theorem. The sequence of random

variables Y1 ,Ya,... does not cbey the usual law of large numbers in the sense that con-

stants Ay do not exist so that with probability 1,

Y.""qo .+Yn

lim = 1.

n—>3c0 An

By analogy with the situation for sums of independent random variables with finite first
moments, we should expect to take A, to be the Hn above. That this is not true is
shown already in the simplest case of Bernoullian variables IT’xE s+« where each

X =+ 1 each with probability 1/2. In this case m ~A x-1/2, Mn~za;'1f2, but the
sum Y1+...+1'n oscillates between A‘nT/a(log n)~1=€ and an n1/2(loglog n)‘t/2 with
probability 1 (see [6]). However we shall show in the next theorem that, in a certain

sense, Yk does behave like its expectation m, as follows.
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THECREM 6. Under (0),

n Y
P( lim 1. 5 E _-1=1
f———3-00 loan k=1 Hk

Notice that in this formula if we replzce Ik by s the limit relation helds without the

intervention of probability. If we regard (Y1+...+Yn)ﬂ{n as a sort of 'arithmetical

average,! the guantity

n p ¢
1 S k
log I-[n k=1 My

may be called a Ylogarithmic average.! Evidently the existence of the mathematical
average implies the existence (and equality therewith) of the logarithmic. The first

instance of considering such an average in probability is due to P. Levy [9], p.270.
Proof of Theorem 6. We have

Y m

B(3 —¥ )= 3 —k_ -1ogu_ +0(1).
M 3 "
Next
Y
E(( 3 —k 3% 5 B '}“"2 S e = N
" AR N
..0(1)+2§ - 1 § Deed |
3= Mj k=i M
Hence
Y
0<E((> —k—y%) -8 3 % 3
He e
2
Sotpo 3 Emyee s b b5 Tk,
- FOK kB M ke W
<Ologh) +2 5 :Q—{nf X .5 M }
=1 M, k=1 Bies k=j+1 W
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o m Al
<0(logM) +2 > —d— 3 T
3= nj k=1 B
n
< 0(log Hh} 2 > o O(log Mn).
=ou

By Chebychev ineguality

B(| S —k— - 1og K | >elog) g0 —l— ).
¥y n log M,

Cheoose an incressing sequence n, such that

2
M ~ ek,
T
By the Borel-Cantelli lemms,
Ek Y
P( lim 1 5 Mi =1) = 1,
k—c0 logl{nk i=1 1
Now if m < n <y 4,
1 nE b4 1 n b4
2 P— ¢ — 2 §—
log =1 i log n i=1 i
+1 ny
k+1 ¥
¢ —1 — 5> 4 .
log M.nk i=1 My

Since log M, /log an-—}‘l a8 k=—> oo the extreme sides of these inequalities —> 1
k+1

with probability 1, by what has just been proved. Theorem 6 follows.
THECREM 7. Under (0), for every € > O

1€ 1+
P(lln < T < Hn for all sufficiently large n) = 1.

Proof. This is equivalent to the following two statements:

1+

(1) P('I'n > ‘Mn i.0.) = 0
1-€

(2) P(Tn <M i.0.) = 0.
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The proof of (1) is similar to that of Theorem 5 and will be omitted, To prove (2), we
choose v=v(n)} such that HVNH;"’; this is possible because m;—> C and Hn'l‘w. From

Thecrem & we have, with probability 1,

r 1
1im @ —1—— 3 =1-c
n—> log M k=1 !k
o Y
Ya —1 3 -
n—a»m log M k=v+1 Hk
Upon subtraction it follows that
T -T
lim ) LY 5%
n—->a log Mn M,
or
T
1im _'I'-%__ 2 E,
n——-=> oo Hn log Mn

This is equivalent to (2).

Remark. FPart (2) of Theorem 7 would alsc have followed froam a general
theorem of Feller (Thearem 2 in [10]), but for the ccndition (13) there, To verify
this condition (or rather a slightly weaker one) it would be sufficient to show that

M, S .
We are unable to prove or disprove this relation.

THEOREM 8., Under (0)

P(1im  ~3- = 1) = 1.
N~——3m Tl’l

Prcof. This is an immediate consecquence of Thecrems 5 and 7. Actually
we have even, for every € > 0

T -T! -(1+e )/b
2t M * 1.0.) = O.

Tn

We are indebted to Dr. Miriam Lipschutz for several corrections on the MS,

Cornell University
University of Illinois
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