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PROBABILITY LIKCT mOi?,EXS ASSWG CNLY RIE FIRST MO&XT I 

BY 

IL L, CBUNG and P. ER& 

In this paper we consider sums of mutually independent, identically dis- 

tributed random variables. An essential feature is that we assume only that the first 

moment is zero, or that both its positive and negative parts diverge. Part I here 

deals with lattice distributions. Perhaps the main results are Theorem 3.1 and 

Theorem 8. We hope to take up other cases later. 

1. Let X be a random variable which assumes only integer values 

P(X = k) = pk 

p,LO &=I" 1 

A number is said to be a fpossibler value of an integer-vaued random variable if its 

probability is positive. The possible values of X will be denoted by ui,i=l)2,..,; 

!! 
they may be finite or infinite in number. As usual S, = k& 5 where the Xk are 

mutually independent, each having the same distribution as X. 

To avoid minor complications, we shall assume that every integer c is a 

possible values of Sn if n is sufficiently large: n2 no(c). A set of necessary 

and sufficient conditions for this is the following: 

(1) The ui are not all of the same sign; 

(2) The greatest common divisor of the set of differences 

%-II 
j 

,i,j=1,2 ,... is equal to 1. 

We shall call the following two sets of assumptions (0) and (00) re- 

spectively: 

(01 E[lXi, = ~bdPk < Q,, E(X) = >zkp, = 0 

$E(IXI+X) = kc kpk = OD, &E([Xj-X) = -? 
k=-oo 

kpk = 03. 

Thus under (0) or (0~) (1) is always satisfied except in the trivial case X E 0, which we 

exclude, If (2) is not satisfied, there are two possibilities: either all possible 
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*In an unspecified summation the index runs from -cn to +oo, 
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values of Sn are multiples of an integer > 1; or there exists an integer m > 1 and a 

complete residue class mod. m, r 1' . . ..rm such that for a fixed j, all possible values of 

%mj~ n=1,2,***, belong to the same residue class rj(mod m). It is not difficult to 

see how OU* statements and proofs should be modified for these cases. 

In the following the letters a, at denote arbitrary integers, A,A',B 

positive constants; C, ;cl arbitrarily smsll constants, 

2. In this section we give some simple theorems on the bounds of P(Sn=a). 

It is well known that under mOre restrictive assumptions more precise results can be ob- 

tained (see Gnedenko [I], van Kampen and Wintrier [2], Esseen [3]). 

lT-lEmml. Under no assumptions about moments whatsoever, 

P(Sn=a) 2 An"12 

where A does not depend on n " a. IfE(X2)= - 00, then 

(2) lim n1i2P(S,=a) = 0. 
nw . . 

Proof. The c.f.* of the 

f(x) = 

The c.f. of S, if (f(x))", and we have 

u 

P(S, = a) = ?;F- 
I 
-‘I 

Suppose first that n is even: n52m. 

n I 

We have 

tt 

I 1 (f(x)) 2me-iax dx i I J ( I fbd 12)mdx. 

d.f. t of X is 

skeikx . 

(f(x))” emiaxdx. 

-u -‘I 

Now If( is the c.f. of a symmetrical d.f ., namely that of X + X* where X,X' are 

mutually independent and Xt has the same distribution as -X. Hence we may write 

If(x) I2 = ? rk co8 kx, 
00 

k=O 
2 rk=l 

k=O 

Wharacteristic function or Fourier-Stieltjes transform. 

# Distribution function. 
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L l- 2 kzo rk sin2 +. 

ONLY n-[E FIRSTMOMEX'T I 

Suppose rp > 0. If x2 et-', 

If( < 1 - Ai?-. 

Hence 

n a%-' 

j 
If(xl12"dx < 

! 
(1-A 3)%x + 

I 
If(x)12mdx. 

4' -t -la lIlr'<lxl 2 II 

It is known that if q< 1x1 ITI, then If(x)1 < 1 -t(q). Therefore we have 

a nP -1 

I 
IWP dx L 

I 

-A a& 
e dx + O((lc)m). 

-? +I -IclP 

(f) follows for even n. Noticing that [f(x)l” 5 If(x) we see that the same proof 

goes through for an odd n. 

To prove (2), notice that the assumption E(X2) = co implies that 

E((XX+X')~) q co. Hence 

$kGk = w, 
kzo 

ard the A' in the foregoing can be taken arbitrarily large. q.e.d. 

A lower bound for P(Sn=a), under the assumption (0) or (a~), will be 

given in lheorem 2.2; we shall also show that our estimate is close to the best possible 

by exhibiting an example in Theorem 2.3. In one special case, however, we can prove 

a much stronger result, and this is Theorem 2.1. 

mEoRE 2.1. If the d.fr OfX is symmetrical, &$()x1) < co, e 

(3) linl 

n+w 
n P(Sn=a) = co. 

Proof. Since pk=pBk,f(x) is real. Since f(0) = 1 and f(x) is con- 

tinuous, there etists a & > 0 such that if 1x1 < 6 , f(x) > 0. We have 

n 

P(Sn=a) = -&- 
I 

(f(x))" cos axdx, 

-n 
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ifs<+. As in the proof of Theorem 1, we can write 

l-f(x) =? 2r sin2 kx 
k=G k 

-T' 

s 
Since > krk<m, 

k:O 

lim - Yr 
x-$0 ,i, k:O k 

2 kx sin 2=0. 

Hence given t > 0, if 1x1 < so(a) < b ,1 - f(x) 5 tlxl. Now 

5 JO 

I 
wx))n~ 1 (l-clxl)ndx = **(I- Ld+' * 

4 
I (n+l)c 

-A 

Since c is arbitrary (3) follows. 

ZHEoRm 2.2. m (0) z (co) we have for every c > 0 

(4) P(S,=a) 2 (l-C)n 

ifn2n (c,a). 

Proof, If the possible values of X are bounded, then X$3 < co. In 

this case it is well known and also easy to show that 

l/2 
lim n 

n--300 
P(Sn=a) = A < CO. 

This is a much sharper result than (4). Hence we may assume that there are possible 

values of arbitrarily large magnitude. 

Given c > 0, there exist arbitrarily large z, and z2 such that 

"2 
2 q,>i-c 

-z 1 

and if k > z2,pk < c. Non choose ht so large that 

this is possible under (0) or (co). Also there is a unique h such that 
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h-l 
5 kpk < 1 : 

-h' 
kPkl 5 ? kpk* 

0 

Then h > 5 and 

4 
hp >> kpk = CLO. 

h --1;1 

Define p'k = pk if k # h, but 

P'h = ph - Ch-' 10. 

Then 

!! 
b=L p*k>1-C-Ph>1-2C 

-h’ 

!! 
2, kp’ = o. 

- -h k 

Now define a random variable XI as follows: 

P(X* E k) = p’b-’ if -h' 5 k 5 h 
k 

=o otherwise. 

Let Sgn =? Xtk tierethe Xt 
kzl k 

are mutually independent and each has the same distribu- 

tion as X*r SihCe pek 5 pk for all k 

P(S', = a) 2 b-"P(S,=aI - ht ( Xk 5 h for 1 ( k 5 II),* 

Hence 

P(S, = a) 2 P(Sn = a; - ht 2 Xk < h for 1 I, k s n) 

2 P(-h* 2 x 5 h)"P(S,=al - hf 5 Xk 5 h for 1 (k i n) 

>_(l-c)%%(S~n=a) 1 (lz)n(l&c)nAn-1~2 

where A depends on t by definition of Xl. This being true for all t is equivalent to 

(41. 

Tne idea of truncation in the preceding proof is due to Shizuo Kakutani. 

!K?eorem 2.2 was first proved under (0) by W. H. J. Fuchs using a result in Chung and 

Fuchs [4], namely 

*P(EIF) denotes the conditional probability of E under the hypothesis F. 
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(5) f p(Sn = a) = co.* 
n=l 

A similar proof using (5) was also given by Kakutani. We sketch the latter proof as 

follows. 

From (5) it follows by the Cauchy-Hadamard criterion 

is (P(Sn=o))'/n = 1. 
n- 

Hence given c > 0, there exists arbitrarily large m such that 

mm = 0) 2 (l-c)m. 

Consequently for aI integers k > 0, 

P(Skm = 0) 2 (l-c)k 

rile ten also choose the aforesaid m so large that 

min P(Sv=a) = At > 0. 
d-em 

Now fix m. If n=(k+l)m+r, k > 0, c < r < m, we have 

P(S,=a) >, P(Sm+r = a)P(Sti = 0) 

2 A'(%c)~~ Al(lz)-m(l-#, q.e.d. 

'EiFORFM 2.3. We can construct an example satisfying (0) and such that for 

every given Ii > 0 there exists a sequence {n,] for which 

P(S,v 2 0) = O(nv-D). 

Proof. Let AV,v=1,2,... be a sequence of positive integers increasing to 

oo so fast that for every t > 0, 

A, = O(A;+,)- 

Define 

I -1 with prob. 4 

A, with prob. 2+Av-l ~=2,3,... . 

Then E(X) = 0. If k is sufficiently large 

*However, the assumption (co) does not imply the truth of (5) (see [4]); thus the 
following proof does not hold under (co). 
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x* = 
XifXsAk 

OifX>Ak l 

I !  

s* ,  = 2 X*v where the X*v are mutually independent and each has the distribution of X*. 
V=l 

we have 

E(X*) = Z-(k+'), E(Xs) = C(Ak) 

P(S, 1 o)j Max Xv ( Ak, = PCS", 2 0) 
l<v<n -- 

5 P(Is+n - E(Ss,)I 1 b(sw,,I>~ 

Let m be an integer > 0, a routine computation shows that 

E(IS*n-E(S*n)12m < K ( ? 
In vq 

E(X*+2- (k+l >fy 

5 K*m g nm 

where Km,K', are two positive constants depending only on m. Hence 

Now choose 
& 

"kN Ak+t 

we have, by the property of the sequence A k' 

by choice of c and tn. 

Theorem 2.3 should be compared with a result due to Feller [5]. 

3. The theorems in 8 2 were proved by fairly standard analytical methods, 

We are unable to prove the theorems in this section by similar methcds, except in the 

case where the d.f. of X is symmetrical, i.e., the c.f. is a real-valued function. In 

this case we have as before 
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tP(Sn=a) - P(Sn=al)I 2 /I 00s ax-cos alx] If(x)/" dx+O((f-c)"). 

Choosing 6 so small that cos ax> 0, f&j > 0, and Ices ax-cos arxl < &* cos ax for 

1x1 I i , we have 

b 

IP(Sn=a) - P(Sn=a'j 1 2 et J co9 ax(f(x))" dx + O((1-c)“). 

-S 
On account of Theorem 2.2 it follows that 

P(Sn=a) - P(Sn=av) = 0 (P(Sn=a)) 

which is equivalent to Theorem 3.1 below. We have not been able to prove the theorem 

by this method when f(x) is not real-valued. Another relevant remark is the following: 

if instead of the individual probabilities P(Sn=a) we consider their sums, then it 

follows from a theorem due to Doeblin [71] on Markov chains that 

P P(Sk=a) 
1inI k=l 

n+m 
P P(Sk=a*) 

k2 

= 1, 

lmoFaa 3.1. pJ& (0) z (a) 

1ilQ 
P(Sn=a) 

= 1. 
n-em P(Sn=al) 

Proof. For some k,u,-uo,***,uk-uO have g.c.d. 1. Thus there exist in- 

tegers cl and ci such that 

!i k 
a*-a = 2 c;(ui-uo) = 2 ciui, 5 c=o . . 

i=l i=O iZ0 1 

Let P(X=ui) = qi. Corresponding to every representation of a in the form 

(1) 
n _n 

a=2 tlit$, 
i=O 

ni 1 0, > IliXl 
i=E 

there is a realization of the value a by X,+***+Xn with probability 

nt 
1 

n I*-*%’ 0 IT qi 

"i 
= 

when ni of the X's assume the value II.. 1 The total probability of a is ttus 
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II x nt - T qni 
n Sea-n ! 0 2 i=O 

where the s~rn runs over all representations (1). Now write this sum as 

(3) X=Q& 

where in 7 the conditions 

l%-qil < cn, 0citt 

are satisfied, while & is the rest. 

Consider the event X = ui with probability qi; ni is the number of its 

occurrences in n mutually independent, identical trials. It is well known that the 
probability that lhi-ql) > cn is 

O(e*t2n). 

Hence 

(4) 5 2 (P+l)o(e*f2n) = o(P(Sn=a)) 

by Theorem 2.2, for every t > 0. 

Now consider a representation (1) with I%-n%l < cn for 0 5 i Id, If 

t is sufficiently small and n sufficiently large, we have % > n(qi'c) > u1 > lcil, 

Corresponding to every representation of a in the form (1) there is a representation 

a' in the form 
of 

(5) 

where jn;-nqil < 2cn. The ratio of two such corresponding probabilities is 

n S***n 1 
o k 6-O E 

n*I*m.r$l 90 . ..c& 73 . 

0 
If IU~ > m, lm-nql < cn, lml - nql < 2cn, we have 

ml -9 
m,-m (sn)t4n)b**(m) m-ml n 

m'l ml(mf-l)**~(m+l) 

g qn (q~~)n )ml-n+.p-mf q (*) ml-mnm*l 
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ml ill’, ml-m 
-9 1 (-) ,n-< 

ml! 1+2c 

4 n 
Since 2 n; = 

i-0 
2 ni it follows that 

i=O 

(l-c') 
C 

< x < (1+c*f 
c 

- - 

where C = ~ ICil. 
iz 

Since t* is arbitrarily small we have lim x =l. 
n- 

Let us write the corresponding formulas (1) and (2) for a': 

9 
2 n;=O 

i=O 

where in 2, the condition ]ni - nqil < 2&n are satisfied find 0 ( i 2 &. We have just 

proved that 

Using (4) we conclude that 

7 P(Sn=a) 

nzco P(Sn=al) 
I 1. 

Since a and a# are interchangeable we obtain Theorem 3. 

lmom 3.2. For those values of n for which 

(7) P(Sn=a) 2 n-* 

for some fixed B > 0, we have for eveq L > 0 

(81 IP(Sn=a) - P(S,=a')l s P(Sn-a)An-'/2+c 

where A may depend on a, at but not on n. 

Proof. In (3) we re-define & to be the sum of those terms for which 

Ini-nqil < n 
1/2+c 

9 Olill. 
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i/2+c 
As before, let (5) correspond to (l), but now we assume n so large that n 'I'il, So 

that 

Inl-nsil < 
i 

'de m-define >" in (6) to 
-1 

1/2+c 
2n . 

be the sum of those terms for tiich this is true. By well known 

estimtes on the binomial distribution we have 

(9) 
-AS -Ant 

5 = O(e ), $ = O(e ). 

Now consider the difference of two corresponding probabilities (1) and (6) 

d= nl "o... "!I 
n l--an I % CQ (1-X). 

0 I 

If m=hq+r, mt=nq+rl where jr-r*1 ( C and Ir1 s hi/*+', Irt 1 5 2lJ/*+c , an easy application 

of Stirling~s fomula yields 

%q m'~=nr-r'(,+o(n'1/2+3t)), A Pl+o(kn-v*+~). 

k 
Since 3 (ri-r;) = 0 we have 

i=tl 

-l/2+34 
IdI < A qOno...qxn'O(n . 

- n Ia-•n I 
0 a 

Hence 
-1/2+3c 

jP(Su=a)-P(S,=al)l s O(&.n ) +&+$. 

The first term on the right is G(P(S,=a).n '1/2tx), end the other two terms by ('7) and 

(9) are of smaller order of magnitude. Thus (8) follows. 

mEoRB 4. w (0) or (co) 

lim 
P(S,=a) 

= 1. 
n-0 P(Su+,=a@) 

Proof. For every representation of a in the form (l), there is a repre- 

sentation of atuo in the following form 
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n 
a+uo=(no+l)uo + 2 nillie 

i=l 

The corresponding probability is 

The ratio of this to (2) is (no+l)/(n+l)qo. If In,-nqoI < cn, this ratio is between 

1*/q and "t/q0 as nj co. The range at values of no such that In,-nq,I > &n can bs 

neglected as before. It follows exactly as in the proof of Theorem 3 that 

F P(Sn=a) 

nlz P(Sn+l=a+uo) 
5 1. 

By virtue of Theorem 3 this gives 

lim 
P(Sn=a) 

na P(Sn+l=al 
5 1. 

Considering a-u0 instead of a+uo in the above in a similar manner we arrive at 

lim 
P(Sn=a) 

n--Soo P(Sn,l=a) 
2 1. 

These last two relations combined are equivalent to Theorem 4. 

We remark that Theorem 4 can be proved in the same way as sketched above 

for Theorem 3.1, when f(x) is real-valued. It would also seem that we might be able to 

deduce Theoren 4 directly from Theorem 3.1, but a trivial argument gives only the follow- 

ug;* Since 

‘(‘n*l =a)= p P(Sn=a') P(X=a-a') 
a r-03 

A 
> 5 
- aT=,A 

P(Sn=a')P(X=a-a'). 

It follows easily, using Theorem 3.1, that 

Lila 
PCSn+l=a) 

n, P(Sn=a) 
2 1. 
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But the other half of the result seems difficult, 

4. In this section we study the number of a-values in the sequence S?,...,S n . 

A very special case has been treated more or less completely by Chung and Hunt [6]. 

More general cases, in which the existence of certain moments are assuned, have been con- 

sidered by Feller [7] and Chung [8] .* In this paper 5fe are considering a more general 

situation and precise results are not hoped for at this moment. However, we shall prove 

the relevant Theorem 8 Whose truth would perhaps be considered evident but hose proof, 

as far as we can make it, is by no means simple, Theorem 7 gives the true bounds within 

an c power. 

Define 

1 if Sk = a 
Yk = 

0 if Sk + a 

E(Yk) = P(Sk=a) = mk 

T, = ?- Yk 
k? 

E(T,) = yf = k& mk 

and similarly Ylk,m/,T(n,MA, for a'. 

THECSEM 5. - Under (01, for every t > 0, 

P(IT,-T',I > Mi'4*c i.o.*) = 0. 

Proof. By Theorem 3.1 and the fact that M,+ co as n--+ cc 

E(lTn-T;12) = E( xy'k + 2 Yt; + 7 Y.(Y -Y') + f Y'(Y;-Yk)) + 
j?k J k k jFk j 

<< Mn+Mn rlmk-m;l. 

*The results in [8] are stated for the number of crossings of the values a, but in the 

case of an integer-valued random variable they can be easily translated into the number 

of a-values. 9+ i.0, stands for 'infinitely often' orafor infinitely many values of the 

index.' 
4 Henceforth in an unspecified sununation the index runs from 1 to n,-&un i< vnmeans un*A 
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According to Theorem 3.2, the mk in the last sum can be divided into two classes: 

either "k I k-? the SLID over such k being O(l), or the estimate (8) holds. Hence 

E(lTn-T;12, I O(M,) + OOJ, &k 
-(14)/2 

1. 

ps H%derls inequality 

sp 
-(1-c)/2 2/(1+2c) l/2+& 

5 E% 1 

2/(1+2c) 1/2+t 
I A(& 

l/2+& 
1 ‘An, l 

By Chebychev inequality 

3/4+.c 4 
(10) P(IT,-T;I > s JIM, 9 

Since s/ 0 by Theorem 1, we can choose an increasing sequence "k such that 

(l+c)/E. 
ruk 

x 
. 

Now suppose that for some n,nk < n s nk+l we have 

(11) IT,-T$ > zZM~‘~+’ . 
n 

Let n be the smallest such integer, for which (11) is true, then either Yn or YA must be 

1, hence Sn=a or a'. We call this event En. According as Sn=a or a', Tn 
k+l 

-T, is the 

number of 01s or (a-a')'5 in the sequence of partial sums of Xn+,,**& 
k+l* 

Let the 

event 

I Tn 
3/4+c 

k+l 
-Th 

k+l 
4 T,-T;> 1 I Mnk+l 

be denoted by E 
","k+l 

. By (lo), if k is sufficiently large, 

P(E n,\+l IEn) 2 ’ - Mk 
k+l 

1 4 l 

Further it is clear that 

P@ b' . ..E. ,En)Q = 
n4r+l % 

P(E 
- n,nk+l'En") 

9 If E,F are two events,E' denotes the ne&ation of E,EF denotes the conjunction of E 
and F. 
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(this follows from the Msrkov property of the sequence Sn,) Now En 
'"k+l and 

. ..E' n-,En together imply 

3/4*c 

'Tnk+l-T'k+,' ' Mnk+, l 

"k+l 
>-J 2 P(E' 

-3/4x 

n=% % 
. ..E. 

- 
,Ed = 21 P( MZ.X 1 T,-T$$, > 2)s 

nk%nk+l 

Thus by (10) 

f" Hax 
*k 5 n 5 "k+l 

]Tn-T$Mn-3'45>2, 5 2 2 M;+, < 00. 

It follows from the BoreLCantelli lemma that 

P(ITn-$1 > 2M3'4+c i.o.) = 0. 
n 

This is equivalent to the statement of Theorem 5. 

The next theorem is a new type of limit theoren. The sequence of random 

variables Y Y ,' 2"“ does not obey the usual law of large numbers in the sense that con- 

stants An do not exist so that with probability 1, 

lim 
Y,+..*+Yn 

I 1. 
n--S& An 

By analogy with the situation for sums of independent random variables with finite first 

momenta, we should expect to take An to be the Mn above. That this is not true is 

shown already in the simplest case of Bernoullian variables x1,X2,... where each 

Xk = + 1 eachtith probability ?/2. In this case ink&A k-1/2, Mnm2AAi2, but the 

sum Y + 1 . ..+Yn oscillates between A1n '12(10g n)-ls. and A" n'/2(loglog n) l/2 with 

probability 1 (see [6]). However we shall show in the next theorem that, in a certain 

sense, Yk does behave like its expectation mk, as follows. 
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mom 6. m (o), 

P(lim --J-A Yk - = 1) = 1. 
n- logYn kzl pik 

Notice that in this formula if we replace Yk by %, the limit relation holds without the 

intervention of probability, If we regard (Y,+ . ..+Y.)/M, as a sort of 'arithmetical 

average,' the quantity 

1 n 
2 

'k 

lw Mn k=1 Mk 

may be called a *logarithmic average.: Evidently the 

average implies the existence (and equality therewith) 

instance of considering such an average in probability 

Proof of Theorem 6. Ne have 

existence of the mathematicsl 

of the logarithmic. Tne first 

is due to P. Levy [9], p.270. 

a x 
*k 

x "k = log M, + G(1). 
I 

k 
Next 

=0(1)+2 > ".L$-, %-j 

j2 M 
j 

k=T+t Mk 

Hence 

0 sE(( 1 L)2) - E2( 2 *k -1 

% M 
k 

2 
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L wag NJ + 2 

By Chebychev inequality 

P(jX A- 
n k 

Choose an increasing 

M 2 

"k 
Nek . 

j=1 Mj kz? # 
k+J 

: "3 = O(log M,). 
jzl M 

j 

log KJ > t log MJ 2 o( - ). 
1% Mn 

sequence nk such that 

By the Borel-Cantelli lemma, 

nk 
P( lim 1 5 

k-+cu log W 
;; r= 

% 
iZ1 

1) = 1. 
i 

Nowif r+..nsnk+,, 

1 

log %+, 

‘k 
7 

k=l 

1 1! Y 
2 i 

log n I=1 % 

1 "k+l 7 Yi 
-. 

log M 
% 

iZ1 &$ 

Since log Mn /log H%-+ as k-+ co the extreme sides of these inequalities + 1 
k+l 

with probability 1, by what has just been proved, Theorem 6 follows. 

'RIEOREM7. __ Under (0), for m t > 0 - 

1-c l+.C 
P(M, < Tn< Mn for all sufficient&m n) = 1. 

Proof. This is equivalent to the following two statements: 

(1) 

(2) 

l+c 
P(T, > H n i.0.) = 0 

1-C 
P(Tn <H n i.0.) = 0. 
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The proof of (1) is similar to that of Theorem 5 and till be omitted, To prove (2), we 
choose v--v(n) such that MvwM 1-C. 

n * this is possible because #/ 0 and Mn?pc~. Prom 

Theorem 6 we have, with probability 1, 

lim-I--$ =k -=1-c 
n+ log Mn k:l "1, 

1 II 
lim 2 

'k 
- = t. 

n--ta, log M k=v+l 
n % 

Upon subtraction it follows that 

1 
T -T 

lim n v 
I& 

n-a log M n MV 

lim Tn 2 c. 
n-00 M, '-c log M, 

This is equivalent to (2). 

Remark. Part (2) of Theorem 7 would also have followed fran a general 

theorem of Feller (Theaem 2 in [lo]), but for the ccndition (13) there. To verify 

this condition (or rather a slightly weaker one) it would be sufficient to show that 

We are unable to prove or disprove this relation. 

P( lim 2 - 1) = 1. 
ne 

Proof. This is 

we have even, for every t > 0 

an immediate consequence of Theorems 5 and 7. Actually 

-(l+c)/4 
HI 

Tn-T' 
Ll> N 

Tn 
n i.0.) = 0. 

We are indebted to Dr. Miriam Lipschutz for several corrections on the MS. 

Cornell University 
University of Illinois 
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