
ON THE APPLICATION OF THE 
BOREL-CANTELLI LEMMA 

BY 

K. L. CHUNG(‘) AND P. ERD& 

Consider a probability space (0, C, P) and a sequence of events (C-meas- 
urablesetsin !J) (Ek), K=l, 2, a - . . The upper (or outer) limiting set of the 
sequence (Ek) is defined by 

We recall that the events EI, are said to be (mutually) independent (with re- 
spect to the probability measure P) if for any finite number of distinct sub- 
scripts kl, . * . , k, we have 

P(Ek, - - - Ek,) = I’(&,) . . v P(Ek,). 

The celebrated Borel-Cantelli lemma asserts that 
(A) If ~P(E,,) < 00, then P (lim sup Ek) =O; 
(B) If the events Es are independent and if xP(Ek) = m, then 

P(lim sup Eh) = 1. In intuitive language P(lim. sup &) is the probability 
that the events Eh occur “infinitely often” and will be denoted by P(Ek i.0.). 
This lemma is the basis of all theorems of the strong type in probability 
theory. Its application is made difficult by the assumption of independence 
in part (B). As Bore1 already noticed [l, p. 48 ff.], this assumption can be 
removed if we assume that(2) 

(0) c P(&. j E: . 1 EL-,) = z 

where P(FI E) denotes the conditional probability of Fon the hypothesis of E 
and E’ denotes the complement of E. Although Bore1 used the condition (0) 
successfully in his pioneering work on the metric theory of continued frac- 
tions, it is too stringent for many purposes. To overcome the difficulty one 
usually constructs a sequence of independent events out of the given se- 
quence and applies (B) to the new one. This is the device used for instance 
in the proof of the law of the iterated logarithm and similar theorems. There 
is however another group of strong theorems to which this method does not 
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(“) Clearly we may suppose that P(U:_~E,) < 1 ior every k so that the conditional prob- 

ability is defined. Added in proof. Conditions like (0) were used a great deal by Paul L&vy and 
other authors in generalizations to dependent variables; however, that is not what VT have in 
mind here. 
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seem to apply. The following theorem furnishes an alternative method which 
may be of fairly general applicability. On the other hand it does not seem to 
apply to the law of the iterated logarithm, etc. Two examples given below 
will serve as illustrations, of which the second concerns the arcsin law. 

THEOREM 1. Let ( Ek) b e 
(i) xP(Ek) = 00. 

a sequence of arents satisfying: 

(ii) For every pair of positive integers h, R with ?a 2 h there exist c(h) and 
H(n, h) > h such that foor every k 1 H(n, h) we have 

(1) P(En, 1 E: - - * EL) > cP(Ea). 

(iii) There exist two absolute constants cl and c2 with the following property : 
to each Ej there corresponds a set of events Ej,, * - . , EiS belonging to f Ea) 
such that 

2 P(EiEii) < c#(Ej) 
i=l 

and if k > j but E;I is not among the Eji (1 s;iss) then 

(3) JYEiEd < cd’(Ei)P(&). 

Then P(En Co.) = 1. 

A defense of the assumptions made seems in order. The conditions (i) and 
(ii) together resemble Borel’s condition (0) but actually they are very much 
weaker. The point is that the function H(S) is at our disposal and can be 
chosen of an infinitely greater order of magnitude then n. To put it in a 
picturesque way, (iii) requires on!y that the arbitrariy remote past should 
have no overwhelming effect on the present which is certainly a state of 
affairs to be hoped for in probability problems. As regards the additiona 
conditions in (iii), they involve only joint probabilities of pairs of events, or 
what is sometimes referred to as dependence to the second order; part (2) 
would usually deal with the dependence at close range while (3) deals with 
the general situation. 

Before proceeding to the proof we shall state a simple lemma. 

LEMMA. Let {Fk}, k=l, + - -, IV, be an urbitrary sequence of events in 
(Q, C, P). We have, if P(UlL,, R)>O, 

Proof. Define random variables X&), oEQ, as follows: 

0 
x,(u) = 

if w @ Fk, 

1 if w E Fk, 
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The following identity is evident: 

(5) 2 c P(FjFk) = E{ (Xl + * ’ - + xN)2] - E(X2 + * * - + XK). 
15 i<ksN 

Now by the Schwarz inequality we have 

(6) [I%+ . . . +XN)]2~P(Xl+“‘+XN>O)E~(Xl+“’ +&‘)2}. 

Since E(XJ =E(p,) =P(Fk), P(X,+ . . n +XN>O) =P(Uf=,F,) by defini- 
tion, (4) follows from (5) and (6). 

Proof of Theorem 1. Let 

Bh = i Ek. 
k=h 

Since (& i.o.) = limb,, P(Bh), it is sufficient to prove that P(Bh) = 1 for every 
h. Suppose that this is not true for a certain h; let P(Bh) = 1 - 6, b >O. Thus 

(7) =6>0. 

Given any c, 0 <~<l-6, we can find n such that P(Ui,h Ek) >l -a--~ so 

that if we write Dh .% = U,“=, Eh- U,“=, &, we have 

(8) P(Dh.n) < e. 

We have by (1) and (7), if k>H(n), 

(9) P(EkE:, * ’ . EL) > dP(Ek). 

Hence by (9, ~~*PB&‘(-&E~ h . . EA) = 0~. Therefore there exists an integer 
H’(n) >H(n) such that (H=H(n), H’=H’(n)) 

(10) 1 < 5 P(E&E: - - - E:) 6 2. 
k=H 

From (9) and (10) we obtain 

From (2), (3), and (11) we have 

(12) 

Ir6i~sa,P(EjEk) 6 Cl 2 P(Ed -I- c2 c P(Ej)P(Ek) 
i-H I?~i<k~H* 

2 

< = cm, 
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where ~$6) is a constant defined by the last equality. 
Now let Fk =&EL . . . Ed-, H s k s Hr. It is obvious that U,“l, Fk is a 

subset of Dh,*, hence by (8), 

(13) P 

From (10) and (11) we have 

(14) 1 < 5 P{Fk) 5 5 P(Eb) < ,“, . 
&If k=H 

Applying the lemma to { Fk 1, HS k $ H’, we obtain using (13) and (14) 

But (12) and (1.5) are incompatible for sufficiently small e. This contra- 
diction proves that 6 =O. Hence P(Bh) = 1. q.e.d. 

In the two applications given below we shall treat only the simplest 
Bernoullian case, since we are more interested in the principle involved than 
the technical difficulties. It is not hard to generalize Theorems 2 and 3 to 
fairly general lattice cases or even continuous cases. It will be seen from their 
proofs that only certain asymptotic formulas and a kind of boundedness of 
S,, with probability one or even in probability, are required. These are avail- 
able in more general cases, thanks to various modern limit theorems. 

THEOREM 2. Let { Xk}, k= 1, 2, s . . , be independent random variables and 
each XI, assume the vaiues +l and - 1 with probabilities l/2 and l/2. Let 
&=C~=, Xk.Let {nij,i=l, 2, . . . , be an increasz?zg sequence of even integers 
such that there e&sts an absolute constant A with the property thut 

(16) 

Then 

i 

0 
P(&< = 0 i.0.) = 

.l 

according as 

REMARK. The theorem in the divergence case is not true without some 
such condition as (16). Example: Take {n;) to be the sequence of even 
integers in the intervals [k8, k8+k5], k = 1, 2, v . . . For an alternative condi- 
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tion and proof see [3, p. 10091. 
Proof. The convergence case follows directly from part (A) of the Borel- 

Cantelli lemma without the condition (16). 
Next, let Et denote the event &=O. We know that 

P(E;) = P(s,i = 0) - (2/m;)““. 

Hence condition (i) in Theorem 1 is satisfied. 
To verify the condition (ii) in Theorem 1 we notice that 1 S,,;I 5 ni, hence 

P(s,, = 0 j s,, z 0, . . - , s,, f 0) 

2 Min P(S,, = 
12l$n; 

O 1 s,i = ‘) = ~~. p(s,, - ‘~,i = - ~) 
% 

= Min P(S,k-n.i = - LX). 
/z/ 5ni 

Now we have, if x2=o(n), 

We choose N(i) sufficiently large so that if k >H(i), then nf = o(nk). Then we 
have for all 1x1 5n;. 

l/2 
. 

Therefore we have for all 12, i 2 h and k zH(i) and any fixed c < 1, if H(1) is 
sufficiently large, 

P(S,, = 0 j S,, $ 0, * * . ( 2%; f 0) > cP(S,, = 0). 

Thus condition (ii> in Theorem 1 is satisfied. 
To verify the condition (iii) in Theorem 1 we have 

P(EjEk) = P(S,tj = O)P(S,,-,, = 0) 

(17) N 
l/2 

If %k > PPZi, then 

(II0 
111; 

( ) 
l/Z -- < Z”2. 

nk - nj 
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We call the events Ek with ni<nkS 2nj the events Eji (1 Sils) associated 
with each I?,. We have as before 

(19) x'P(EjEk) - P(Ej) x’(nk - %! j)-l12 

where the summation extends to those K for which nj<nkS2nj. From (16) 
we deduce that if k>j (A1 denoting an absolute constant), 

?Zk - ni > A1(k2 - jz). 

Let N denote the number of k’s satisfying nj<tik$2nj. From the last in- 
equality we deduce that nj+A1(N2+2jN) 5 lZj+N 5 2nj. Hence we have 

I\‘ow using the Schwarz inequality, (16), and (20) we obtain 

fli)-112)2 $ NC’(,& - $$j)-l s 

(19) and (21) give (2) while (17) and (18) give (3). q.e.d. 

THEOREM 3. Let {X, ] b e as in Theorem 2 and let N,, denote the number of 
positive terms among &, . . - I S,. Let #(a) be an increasing function of n. Then 

(22) 

according as 

(23) 

( > 1 
0 

P iv, $ -5.0. = 
4(n) 1 

REMARK. This is the strong theorem corresponding to the now celebrated 
arcsin law. On grounds of symmetry we may replace the left side in (22) by 
P(N,Zn(l -l/~$(rz))i~o.). 

Proof. Standard arguments(a) show that we may suppose that 4(n) Sn* 
for some 0 <e < l/2. The convergence case follows easily from the arcsin law 
for Bernoullian variables (see [2, p. 2521; the convention made there regard- 
ing the “positiveness” of S, makes no difference in the asymptotic formula 
below), which asserts that 

To prove the theorem in the divergence case we note first that the di- 

p) Cf e.g. [3. p. lOlO]. 
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vergence of the series in (23) implies that of 

c l 
n MflT))1’2 

for any r>O (proof by the integral test). Let $(n2) =$(rt). Define Ek to be 
the event 

S2k = 0, Si < 0 for 2K < i 5 2&(k). 

Obviously El, implies that iVs,~k) 52k. Writing 2k$(k) =n, we have, since 
#(k) 5 k2’, k 2 n’ where n’ = (2-52) 1’(1+24. Hence N, 5 n/$(n’). For all suffi- 
ciently large n, $(n’) Z:(S). Hence in order to prove the second part in (22) 
it is sufficient to prove that .P(Ek i.o.) = 1. 

It is known that (see e.g. [2, p. 2521) P(Si<O for O<iS;:n)-b~~‘~ for 
some absolute constant b>O. Hence we have 

(24) 
P(Ek) = P(&x = O)P(S$ < 0 for 0 < i d 2k$(k) - 2k) 

- bk-1’2(k$(k))-1’2 = bk-‘(#(k))-“2. 

Hence condition (i) in Theorem 1 is satisfied. 
To verify condition (ii) in Theorem 1 we note that (without loss of gen- 

erality we may suppose n$(n) to be an integer for all n), if k >H(n), 

PUL 1 Sl = xl, . . . , SW(~) = y) 

= c p(& 1 Sa(n) = x)P(S~(nj = 2 1 S2n+(nj = y) 

= ;3P(E+ H(n) = Z)P(SH(n,--2n+(n) = x - y> 
z 

where xl, . * . , y, x are integers. Now ] y ] S 2nrl/(n), hence if we choose H(n) 
sufficiently large, P(SJT[~)-~~~(~) = x - y) - P(Sa(,j = x) as 12--t co, at least 
if x is within a certain range, say 1x1 SH(n)‘12+r, v > 0. (This is because of 
the limitations of the Gaussian approximation.) But the other range of x is 
negligible in the sense that 

c P(SIf(,)-W(,) = a - y) 
1 .I>H(np+‘l 

Hence we have 

Min P(Ek ) Sl = xl, * * ‘ , S2,,ticn) = y) 
111 SW(n) 

- c P(& 1 SIT(~) = X)P(SH,,, = x) = P(&). 
I 
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This implies condition (ii) in Theorem 1. 
TO verify condition (iii) in Theorem 1, letj<K. If ksti(j), then P(EjEb) 

= 0. If K>$c’J we have 

(25) 
P(E,+ [ EJ = P(Ss2k = 0 1 SZ~ = 0, Si < 0 for 2j < i 5 Zj#(j)). 

P(Si < 0 for 2k < i 5 Zk$(k) 1 Szk = 0) = PI.Pz. 

Now for every x we have 

P&n = 0 ( &j+(j) = x) = P(&h---2j$(j) = - x) 5 b(k - j$(j))-1’2. 

PI being a probability mean of such probabilities we have 

PI d b(k - j+(j))+. 

As for Pz we have as in (24), 

Pz - b(2k$(k) - 2k)-“2 - b(2k#(k))-“2. 

Therefore we obtain from (23, 

(26) P(EiE~) 5 b,P(Ei)(k - j$(j))-“‘(k$(k))-1’2, 

where bi (as 62, b, later) is an absolute constant. Now for every Ej we define 
Eii, 1 $ i 5 S, to be those El: with j;cl(j) <k S 2$(j). We have then by (26) 

g P(EjEfi) 5 blP(Ei)(k$(k))-I’” ‘2’ i-1’2 
i-1 

5 b&I&J. 

On the other hand if k > 2@(j), then k-$(j) > k/2, hence by (26) and (24) 

P(E&,,.) 5 b,P(EJP(Eb). 

Therefore condition (iii) in Theorem 1 is satisfied. q.e.d. 
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