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In 1914, Mazurkiewicz [5] showed that there exists a set of points,
in the plane, which intersects every straight line in the plane in precisely
two points. Recently, Bagemihl [1] proved a general intersection theo-
rem in the theory of sets, which, when applied to the plane, yields the
following generalization of Mazurkiewicz's result : With every straight
line s, associate a cardinal number q,>,2 so that the sum of fewer than
2"" of the numbers q, is always less than 2" 0 . Then there exists a set
of points which intersects every straight line s in exactly qs points .

In the present paper, after extending the general intersection theo-
rem alluded to above, we obtain several theorems dealing with plane
point sets which intersect every straight line in a set of prescribed power,
order type, or measure . In particular, we show that the aforementioned
qs may be chosen arbitrarily in the range 2 < qs < 2" 0 . Free use is made
of the well-ordering theorem .

THEOREM 1 . Let a be an arbitrary, fixed ordinal number, and S be
a set with
(1)

	

S<Ka .

To every S E S let there correspond a set L s such that, for every S'C S-{s}
with S'< x.,
(2)

	

L s -

	

Ls,> K Q ,

S'ES'
and put P= 2:L, .

SES
Suppose that for every s E S there exists a cardinal number ls , with

1 < 1s < K a , such that the following holds : -If DC P, D < Ka , and SD is the
set o f elements s' E S for which t,, <,& and LS,D > ls , , then

(3)

	

SD<Ka .

With every s E S let there be associated in' an arbitrary manner a car-
dinal number qs satisfying

(4)

	

ls < qs< K.
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Then there exists a set P* C P (with P* < rta,) such that L, P* q s f or
every s e S .

We first prove

LEMMA 1. Let DCP, D<H a , and

(5)

	

LSD < q, for every s e S .

Suppose that for some element e e S,

(6 )

	

LeD < qe .

Denote by SD the set of elements s' e S for which LS'D= q,, <& . Then there
exists an a E LQ-(D+ f LS ') such that

S'ESD

(7)

for every s e S . (Such an a will be called an admissible element of Le
relative to D) .

Proof : It is easy to see from (4) and (3) that SD<SD<Ra. There-
fore, by (2), Le- f LS'>Ka,, so that L,-(D+ ' .LS') contains at least

S'ESD

	

S'ESD*

one element - call it a.
Now let s e S . Then s satisfies at least one of the following condi-

tions : 1. s E SD, 2. LSD<qs , 3. qs =aa . If 1, then (7) follows from the
fact that a non-E ' LS' ; if 2, then (7) is obvious ; if 3, then (7) follows

S'ESD

from (5) . This completes the proof of the lemma .
Proof of Theorem 1 . The case S=0 is trivial . We may therefore

assume that S>0 . Note (1) and (4), consider q3 replicas of every L,(8 E S),
well-order the resulting complex of

	

' q,< H=rta sets to form a se-a

quence

(8)

Ls (D+ {a})< qs

LO , Lj, . . .,Lg, . . .

	

(~<0,

where 1<2<w a , and denote by qz (~< Q) the respective cardinal num-
bers associated with the sets (8) according to (4) .

We define sets AeCP (e<Q), by induction on ~, as follows : Let A„
consist of a single element of Lo . Suppose that 0 <~ < o, and that for
every a <~ a set A,uCP, with A,< 1, has been defined so that LS A,< qs

for every s E S . Evidently f, A,, < ~ < bt.- If 4 ., Al, = q , let A~= 0 . If,
u«

	

1«
however, L~' A,a< q a , let Ae consist of a single admissible element of L~
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relative to ~' A, ; the existence of such an element is guaranteed by

Lemma 1 . The sets A~ (~<Q) thus defined are obviously mutually ex-
clusive .

Put P*= A~ . Then P*CP and
~<e

Now let s ES. It is clear from the definition of the sets A~ (~<4o)

that LSZ A, ,< qS for every ~ < o . If LS G A,ti < q s for every e <Q, then

LSXA,- gS . There are qS values of $<O for which L, =L $ , and for every
µ<

such c,, LSA $ =1, so that L S ,' A,>-- qS . Hence LSP* = qS . If, however,
k<e

for some $'< Q, LS ,f A„= qS , then qS< ' -F-1 <,,4,, and, from the defini-

tion of an admissible element, it follows that LS 2: A $= 0, so that in
V<«<e

this case too LSP*= qS . This completes the proof of Theorem 1 .

The following theorem was presented by the authors (see [2]) to the American
Mathematical Society, May 28, 1952 :

A complex (9 of cardinal numbers is said to be strongly less than 1'a , if every sum
of fewer than ,4a terms belonging to C is less than Na . Let a be an arbitrary, fixed ordinal
number, S and P be sets, and to every s e S let there correspond a subset, L s , of P. Sup-
pose that the following conditions are satisfied :

(I) S< '4a -
(II) LS ~_> 4a for every s e ' .

_ (III) If s e S, there is a cardinal number n s> 1 such that, if s'E S and s' ,~ s, then
TX,<ns, and the complex of cardinal numbers us (cc S) is strongly less than ha .

(IV) There is a cardinal number m v 1 with the following properties : (a) b"`< a
for every b < Na ; ( b) if P' C P. P'- m, and mp, is the number o f elements c E S for which
P is a subset of Ls , then the complex of cardinal numbers mp , obtained by letting P' run
through all the subsets of P having m elements, is strongly less than Na .

Suppose that with every s e S there is associated in an arbitrary manner a cardinal
number qs such that

(V) m+ns -I <ga< xa •

Then there exists a subset P* of P (with P*< Na) such that LSP*=qs for every s e S .
We shall now show that this theorem, which is a generalization of one due to B a-

gemihl [1], is contained in Theorem 1, by proving that (I)-(V) imply (1)-(4) (that the
converse is not true will be evident from the proof) .

Condition (1) follows trivially from (I) . _
To prove (2), suppose that S'CS-(s} and S'<ka . If s' c S', then, according to (III),

L S'L5 < ns', and (III) also implies that

LS ' Ls, < I LS,LSC f ns, <
S'ES '

	

S'ES'

	

81 eS'
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According to (II), then,

Ls,-Ls I LS,=Ls- I Ls,, > SN'a ,

S' E S'

	

.S' E S'

which is (2) .
Now to prove (3), take every i s in Theorem 1 to be the m in (IV) . Let DcP,

D < $,, and SD be the set of elements s' c S for which Ls'D > (s ' (= m) . There are not
more than D"' subsets of D of m elements . By (a) of (IV), D'"<Na , and by (b) of
(IV), SD<s1'a , which proves (3) .

Finally, according to (V), (4) is certainly satisfied if IS=m .

The following examples show that if one of the hypotheses (1)-(4)
of Theorem 1 is not satisfied, then the conclusion of this theorem may
no longer be true :

(1), (2 ), (3), (4) : Let S= {,a}~~wa+~+wa, 1' = {(s~, rl)} <Wa+~, <aa~ L

{( ,~)}~\wa for every ~<coa+l, Lwa+ ~+~-{( ,~)} Lwa+~ for every 'q <0) ' .

Then 1,, = 1, and we take q,,=1, for every a e S .

If LAP*=l for every ~<wa+1 , thenL.,+1+,,P*-Ya+i for some ai<wa ,,

contradicting q.a+i+,, =1 .

(1), (2), (3), (4) : Let S=

	

P=

	

L1= {~} for every

~ «~a, Lwa+1 = {" <-a . Then 1,,,=1, and we take q =1, for every ,a c S .

We have Lw +i P*=Ha w +~a

	

q
a

(1), (2), (3), (4) : Let P be the set of points of a projective plane in
which every line contains Ka points, and let the sets L5 be the lines in
this plane. Take every 1s =1 ; then (3) is not satisfied . Take also every
q,= 1 .

If we consider any two points of P*, these two points determine
a line LS , and thus L, P* >, 2 > q s .

(1), (2), (3), (4) : In the preceding example, take every 1,= 2 .
If we take .every q s =1 or >Ka , then it is obvious that P* does not

exist .
Theorem 1 can be applied, e . g ., to the points and straight lines of

a Euclidean plane . In this case we interpret S as a set of indices for the
set of straight lines in the plane and LS as the set of points which con-
stitute the straight line s E S, P as the set of points in the plane, and
Ka =2"0. Conditions (1) and (2) are evidently satisfied, and (3) clearly
holds if we take every 1s = 2 . Thus we obtain

COROLLARY 1 . With every straight line s in a Euclidean plane associate
a cardinal number qs such that 2 < qs< 2"0 . Then there exists a set o f points
which intersects every straight line s in precisely q, points .
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This result was obtained by Mazurkiewicz [5] for the case qs= 2
for every s ; by E Bagemihl [1] for the case qs> 2 for every s, the com-
plex of cardinal numbers qs being strongly less than 2"0 ; and in the
above form, independently and practically simultaneously (early in 1952),
by S i e rp i n s ki [8] and by the present authors .

As is easily seen, condition (3) is also satisfied under the weaker
assumptions of

COROLLARY 2 . With every point p o f the set, P, o f points o f a Eucli-
dean plane associate a set, S p , of fp straight lines in this plane, each of which
contains the point p, and let the complex of cardinal numbers fp (p E P) be
strongly less than 2"0 . Let S'= f Sp . With every s ES' associate a cardinal

'5 P
number qs such that 1 < q,<_ 2"°, and with every s non-ES' associate a car-
dinal number qs such that 2,<q,-<_2"1 . Then there exists a set of points
which intersects every straight line s in the plane in precisely qs points .

Let the word curve mean any set of points (x,y) satisfying an equa-
tion of the form y= f(x) where f is a single-valued function of a real
variable (cf. p . 11 of [9]) . Take S' in Corollary 2 to be the set of all
straight lines parallel to the y-axis, and )et qs=1 for every s E S',
2<_ q,<2"' for every s non-E S' . Then fp =1 for every p E P, and Corol-
lary 2 yields

COROLLARY 3 . With every straight line s (in a Euclidean plane) which
is not parallel to the y-axis associate a cardinal number q,, such that
2-<_q,-<_2"0 . Then there exists a curve which intersects every straight line s
which is not parallel to the y-axis in precisely qs points .

Corollary 2 suggests the following problems dealing with the Encli-
dean plane :

What is a necessary and sufficient condition on a set, S*, of straight
lines so that, if with every s E S* there is associated in an arbitrary man-
ner a cardinal number gs in the range 1<_ q,<20, and if with every
s non-c S* there is associated in an arbitrary manner a cardinal nurm
ber q, in the range 2 < qs< 2" 0 , there exists a set of points which inter-
sects every straight line s in precisely q, points?

What is the answer if qs= 1 (s E S*) instead of qs being chosen ar-
bitrarily in the range 1.< qs< 2""?

We have been able to solve the following problem :
What is a necessary and sufficient condition on a set, S*, of straight

lines so that, if with every s E S* there is associated in an arbitrary man-
ner a cardinal number qs in the range 2< qs< 2" 0 , there exists a set of
points, P*, which intersects every straight line s E S* in precisely q s
points and every straight line s non-E S* in less than 2 points?



62 F . Bagemihl and 1' . Erd®s

The answer is : S* is the set of straight lines joining all pairs of points
of a point set M having the property that if a straight line contains at least 2
points of M, it contains 2` 0 points of M .

To see that the condition is necessary, take q,=2,0 (s E S*) ; then
P* is such a set M. To show that the condition is sufficient, in Theo-
rem 1 take K a- 2 s0 , S-S*, P=M, LS- the subset of Jf which is con-
tained in the straight line s E S*, 1,=2 (s E S*) ; the set P* of Theorem I
is then obviously one that has the properties required of the set P* in
the problem .

In what follows we still deal with the Euclidean plane, but when
we speak of a straight line we shall tacitly assume that one of the two
possible orientations has been assigned to it, and when we speak of a sub-
set of a straight line we shall regard the subset as ordered by the orien-
tation of the line, so that the (order) type of such a subset is well-defined .
THEOREM 2 . With every straight line s associate in an arbitrary wan-
ner a finite or an enumerable order type i t -A0, 1 . Then there exists a set
o f points whose intersection with every straight line s is a set of type T, .

Proof: Well-order the set of straight lines to form a sequence

,so ,sr, . . .,s~, . . .

where w,, is the initial number of Z(2s 0 ), and let the sequence of asso-
ciated types be

i'o,zi, . . .,i,, . . .

	

(~<(;) ) .

Let T o be a set of points on s o such that T o=r o . Let 0 <)" o y , and
suppose that, for every ,a mss, a set, T,, of points on s, has been defined,
such that T, =T and so that at most 2 points of s, belong to

	

I'm= T,, .
u -~

We have

µ« u«

Consequently, there are fewer than 2" 0 straight lines such that each
contains at least 2 points of the set T~ . Therefore the set, V,, of points
on s, which are not on any of these lines different from s ; is everywhere
dense on s,, so that every interval of s, contains a subset of V, of any
given finite or enumerable type.

If s, contains no point of T', let T, be any subset of V, such that
T,= T, . If s, has precisely one point, p, in common with T~, write
a,=6,+1+ g,, and let T, consist of the points of a subset, of type a,, of
V, preceding p, p itself, and the points of a subset, of type o,, of V, suc-
ceeding p. Finally, if s, has two points, p, p', in common with T5 7 write
a, - a,+1+ o, F 1+~,, and define T, in the obvious manner . Denote

(~ .wv)r
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by T the union of the sets T~ (~<w,,) thus defined . Evidently T inter-
sects every s in a set of type T,, and the proof of the theorem is complete .

Call an order type r a subtype of the continuum, if the linear conti-
nuum contains an ordered subset of type r . We shall prove

THEOREM 3. With every straight line s associate in an arbitrary man-
ner a subtype, zs~ 0, 1, o f the continuum . Then, i f 2' 0 -,,;,, there exists
a set of points whose intersection with every straight line s is a set of type r
and measure 0 .

Let us term a linear perfect set sparse, if it is a dyadic discontinuum
(ef . [3], p. 134), D, whose dyadic schema at the n-th stage consists of 2"
mutually exclusive closed intervals, the length of the largest of which
is o(4-") .

Suppose that s„ s 2 , s3 are three straight lines and E 1 , E2 are sets of
points on. 81, 82, respectively . Consider the set of all straight lines each
of which is different from s 3 and is determined by a point of E1 and
a point of E2 . This set of lines intersects 83 in a set of points which we
shall call the mutual projection of El and E2 on 83 and denote by (E17 E2 ; s3 ) .
LEMMA 2. Let 811 8 27 s3 be three straight lines and, D17 D 2 be sparse per-
fect sets on 8 1 , 8 21 respectively . Then

meas (Dl , D2 ; s 3 )= 0 .

Proof: Denote by p13, P23 the points of intersection (if nonexistent,
to be disregarded in what follows) of s 1 and s37 s 2 and s 3 , respectively .
Let e > 0, p be an arbitrary, but fixed, point, C be a circle with radius
r-1 and center p, and C13 and C23 be circles of radius e and with the re-
spective centers p13, p23 . Choose e so small that C13 and C23 lie in the in-
terior of C, and hold e fixed for the time being . Denote by R, the region
inside C and outside C13 and C23f and let DI=D1R,, D2=D 2 RE . Suppose
that Ki , I2 signify the parts in R, of any two intervals of the n-th stage
of the dyadic schemata representing D1 7D2j respectively . Then it is not
difficult to see that

meas (RE (h , IW ; s 3 )) <c, - (meas I1"+ meas 12)= ce • o

where c, is a constant depending only on e . Since at most 4' pairs of
intervals of the n-th stage come into question,

meas (RE - (Di , D2 ; s3)) < 4" is - o (4-" ),

and letting n-co we see that

Meas (R,.(D1, D2	0.
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Now let {Ek} be a sequence of sufficiently small positive numbers
tending monotonically to 0 . Then

00
0=

	

meas (REk - (D1k ,D2k ; s 3 )) meas Z (REk- ( Dl k , D 2k ; S3))
k=1

	

k=1
=mews (D1, D2 ; s3),

	

q. e . d .
Proof of Theorem 3 . Well-order the set of straight lines to form

a sequence
(11 ~LOl ) y

and let the sequence of associated types be
Z°7Zl) . . .,"C~, . . .

	

(~< Co ) .

Let D ° be a sparse perfect set on s ° . Since D ° is perfect, it contains
a subset T° of type -c°, and since D ° is of measure 0, so is T° . Let 0 C~-,ca 17
and suppose that, for every , t < l-' , a sparse perfect set D,,, and a set T CD.,
with T,,= ,r,, have been defined on s Y in such a manner that at most
2 points of s~ belong to

	

According to Lemma 2,

0=meas ~' (Dy, D,, ; se)=meas

	

(T,u , T v ; s s ),

because the sum contains at most a ° terms (this is where we make use
of the assumption 2"° = ,,~ 1 ) . Hence, the point set

V~=

	

(T,, Tv ; se)

is of positive measure in every interval of s~ . Consequently, every interval
of s~ contains a perfect subset of V~, and therefore also contains a sparse
perfect subset of V~, which in turn contains a subset having as its type
any given subtype of the continuum . The rest of the proof is verbally
identical with the last paragraph of the proof of Theorem 2. It is merely
necessary to note that, if D, D', D" are sparse perfect sets on some
straight line, and every point of D precedes every point of D', and every
point of D' precedes every point of D", then the union D+D'+D" is
also a sparse perfect set .

It would be interesting to know whether or not the assumption
2" 0=H1 is necessary in Theorem 3 .

THEOREM 4 . With every straight line s associate in an arbitrary manner
a number ms such that 0<m5 oo . Then, if 2`there exists a set of
points whose intersection with every straight line s is a set of measure m s .

Proof: Well-order the set of straight lines to form a sequence

8 0, 8 1 1 . . . , sg, . . .

	

(e < w1),

and let the sequence of associated measures be
m01m17 . . .,m~, . . . (, <c) 1 ) .
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Let M 0 be a point set, of measure in,, on s o . Let 0 < ~ < 0 17 and sup-
pose that, for every u <~, M,, is a point set, of measure in,, on s,, . Since

n o , the intersection of

	

M,, with s, is an at most enumerable set

of points, and is therefore of measure 0, so that it is possible to define
.M, as a subset, of measure m,, of s,-X J1 . Evidently the set

'<S

	

I<wi
intersects each s in a set of measure in,, q . e. d .

Instead of assuming that 2'0=~1 , it is sufficient to assume that every
linear set of power less than 2" 0 has measure 0 .

Added during printing . Following a kind suggestion of K . Gödel's, we
are able to show that the assumption 2"'_,4, is unnecessary in Theo-
rem 3 . Specifically, we shall prove

THEOREM 5. With every straight line s in the plane, associate in- ani
arbitrary manner a subtype, a s -t 0, 1, of the continuum. Then there exists
a set o f points whose intersection with every straight line s (assumed, for
simplicity, to be oriented in the positive sense relative to a set o f Cartesian
coordinate axes) is a set of type rs .

Proof. Well-order the set of straight lines to form a sequence

S09817 . . .,s,, . . . (i<( ),

where o., is the initial number of Z(2 5°), and let the sequence of asso-
ciated types be

Every s, has an equation either of the form

(i)

	

y-a,x+ b,

	

or

	

(ii)

	

x- c,,

($<W ' )-

where a,, b,, c, are real numbers, the "constants belonging to s," .
Let M be the system of algebraically independent real numbers con-

structed by J. von Neumann [6] . The set M contains a perfect subset
(cf. S. Ruziewicz and W. Sierpinski [7], p . 18) . Every perfect set
contains 2"0 mutually exclusive perfect subsets (see, e . g., C . Kuratow- ski and W . Sierpinski [4], p. 195'x.

Let 10,I17 . . .,In, . . . (n<(o) be the set of all nonempty open intervals
with rational endpoints, and let B 0 7B19 . . . , Ian , . . . ( n < c)) be a,, mutually
exclusive, bounded, perfect subsets of M . For every n <o), there exists
a one-to-one transformation t' = r,, t -- r;,, where rn , r are rational numbers
and r,#0, under which the image of Bn is a perfect subset, Cn , of In .

The sets Cn (ii <a,)) are mutually exclusive, and

	

C„ is an algebraically
n w

Fundamenta Mathematicae . T. XLI.
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independent system of real numbers (cf . J . von Neumann [6], p . 140) .
Each C n contains 2" 0 mutually exclusive perfect subsets P„ (5 <w y ) .
For every <w y , we define P,=X P;~ ; then every nonempty open in-

n, w

terval of real numbers contains a perfect subset of P e .
Denote by R o a subset, of type r 0 , of P 0 , and let T ° be the set of

points on s,, whose abscissas or ordinates form the set Ra according as s,
is of the form (i) or (ii) . Now suppose that 0<1-"<o,),, and that we have
defined, for every I ~, the set R„ C P„ and the set T„ on s,,, in such
a manner that the orthogonal projection of T1, onto the x- or the g-axis
is Rµ according as s,, is of the form (i) or (ii), that TM= z,,,, and that at
most 2 points of s, belong to ~'T,,=T . Denote by K~ the set of all

constants belonging to at least one s, (y<-') ; obviously K~< 2'` 0 . Con-
sequently, the cardinal number of the set, D~, of elements of P, which
are algebraically dependent on the system of real numbers K ' + RA

,t
is less than 2" 0 . Hence, every nonempty open interval of real numbers
contains a perfect subset of Q~ =.P~-D~ . Let V, be the set of points
on s E whose abscissas or ordinates form the set Q~ according as s~ is of
the form (i) or (ii) . No straight line different from s q and determined
by two points of T' can intersect s, in a point of V,, for otherwise the
system of real numbers K Z~ R~ f Q~ would not be algebraically inde-

P«
pendent, contradicting the definition of Q~ . The proof of our theorem
can now be completed in accordance with the last paragraph of the
proof of Theorem 2 above (if we define R~ as the orthogonal projection
of T~ onto the appropriate coordinate axis) .

Added in proof . We are indebted to A. Rosenthal for calling our
attention to his papers Uber Gebilde mit einzigem Ordnungsindex, Si-
tzungsberichte der mathematisch-physikalischen Klasse der Bayerischen
Akademie der Wissenschaften zu München, 1922, p . 221-240, and fiber
die Nichtexistenz von Kontinuen in gewissen Mengen mit einziger Or-
dnungszahl, Sitzungsberichte der Heidelberger Akademie der Wissen-
schaften, mathematisch-natur-wissenschaftliche Klasse, 1934, p . 49-56,
the first of which contains, in addition to other results, a special case
of our Theorem 1 . A paper by J . Moneta, Application du theoreme du
continu, Cahiers Rhodaniens 4 (1.952), p. 29-42 in which an unnecessary
appeal is made to the (unproved) relation 2' 90 -- %,r , contains a particular
case of our Corollary 2 .
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