Intersections of prescribed power, type, or measure

by
F. Bagemihl (Princeton, N. 1.} and P. Erdis (Notre Dame, Ind.)

In 1914, Mazurkiewicz [5] showed that there exists a set of points
in the plane, which intersecets every straight line in the plane in precisely
two points, Recently, Bagemihl [1] proved a general intersection theo-
rem in the theory of ﬁatn';'whjuh, when applied to the plane, yields the
tollowing generalization of Mazurkiewiez's result: With every straight
line 8 associnte & Eard.mn.l fumber g, =2 so that the sum of fewer than
2% of the numbers g, 18 always less than 2" Then there exists a set
of points which interseets every straight line s in exactly g, points.

In the pm‘.i&uj; paper, after extending the general intersection theo-
ﬂjﬂ] aﬂu&gﬂ i;u above, we obtain several theorems dealing with plane
pqint, gits wﬁj;ah intersect every straicht line in a set of presceribed power,
arden t,y;;a, or measure. In particalar, we show that the aforementioned
q#.mu-.y bﬁ chogen arbitrarily in the range 2 = g, = 2™, Free nge is made
of tﬁn wa]l -ardering theorem,

ﬁﬂm 1. Let o be an arbilrary, [fived ordinal nwmber, and 8 be
o set with
{1 S<n,.

To every s e 8 et there correspond a set Ly suoh that, for every 8'C8—{s}
with 8'<x,.

{21 'i"l'__:z-:‘ L-r:-‘a H.u
Es
and put P= Y} L.
re 5

Suppose that for every sed theve eaists a cardinal pumber 1, with
1< L<w,, such that the following holds: If DCP, D<w,, and S, is the
set of elements &' ™ for which .=, and mf I,.' then
(3) Sp< e,

With every se8 let there be associated in an arbitrary manner a ear-
dinal nwnber op satisfying

(1) lsg._ s Ra-
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Then there exists a set P*CP (with P*<w,) swoh that L,P*=gq, for
toery e S,

We first prove

LEmMMA 1. Let DCP, D<= g, and

(5) L.D<aq, for every seh.
Suppose that for some elemend e e S,
(6) L.D<a,.

Denote by 8% the sel of elements ' e 8 for which Ly D — q0 =8, Then there
exists an aeL.—(D+ Y Ly) such that
Fe8h

(7) LD+ {a})< g,
for every se&. (Buch an a will be called an admissible element of L,
relative to 1)).

Proof: It is easy to see from (4) and (3) that 8% = Sp<R. There-
fore, by (2), L,— Z Lo=8,, 50 that L—{D+ 3 L, containz at least

Fesh esy

one element — call it a.

Now let #e 8. Then s satisfies at least one of the following condi-
tions: 1. s e 83, 2. L,D<q,, 3. qu=nr,. If 1, then (7) follows from the

faet that a non-e 3 Ly if 2, then (7) is obvious; if 3, then (7) follows
Le5h

from (5). This completes the proof of the lemmsa.

Proof of Theorem 1. The case N=0 is trivial. We may therefore
assume that 8§ =0. Note (1) and (4), consider g, replicas of every L,{s < 8),
well-order the resulting complex of Eﬁ = Ma—R, sels to form a se-

dE

quence
(8) Ly T Waan (F<el,

where 1= p<m,, and denote by g (§<p) the respective eardinal num-
bers associated with the sets (8) according to (4).

We define sets A.CP (£<p), by induction on £, as follows: Let A4,
congist of a gingle element of L, Buppose that 0<f<g, and that for

every p<£& a set 4,CP, with 4,<1, has been defined so that L, 3 4,< q,
for every se 8. Evidently } 4, <E<wn,. If L, > A, =10z let 4,—0. If,
pd Rk

however, L: } A_,.c:: gy let Ay consist of a single admissible element of L
pE
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relative to X A,; the exigtence of such an element is guaranteed by
fLi 4
Lemma 1. The setd Ay (£=p) thus defined are obviously mutually ex-
clusive. 1 igas).
Put P*=}'4,, Then P*CP and P*<p<n,.
fe
Now let &« 8. It is clear from the definition of the sets 4, (£<p)
that L, EAH-,,, q, tor every &£=—p. If LEAP =q, for every E£<g, then
e
,HA,;{ 0. There are g, values of 5= fﬂ_l which I,=ZL:, and for every
g

sneh & Lyd:=1, so that E_ZT} q¢- Hence L-ﬁ"‘=q,. If, however,
)
for some £'<p, . 2, AP— ., then q,= & 1<x,, and, from the defini-

tion of an admmsuhle elernent, it follows that L, 2, A,=0, 5o that in
— £"<._E{_e

this case too L, P*— q,. Thit completes the proof of Theorem 1.

The following theorsm wis presented by the authors (see [2]) to the American
Mathematical Bociety, May 28, 1052:

A complex € of cardinal numbers iz said to be atrongly less than g, if every sum
of fewer than » terms belonging to € is less than 8 . Let a be an arlifrary, fived ordinal
nwmber, 8§ and P be sefs, and bo every se S [l there correspond a subsel, Ly, of P. Sup-
pose that the following conditions ave sabisfied:

(I S=un,.

(1T} I.-_;; 8, for every se 8.

(III) If sed, there iz a cardingl number n2= 1 sk that, if &'c 8§ and &' =35, then
Lo Lpng, and the complex of cardinal numbers ng (s 8) is shrongly less than 8.

(IV) There is o cardinal number m=1 with the following properties: (u) d™ <N,
for every b=p_; (b) if P'CP. P'—m, and mp, is the number of elements se 8 for which
Piv a subget of Ly, then e compler of cardingl numbers mp. oblained by leting P run
throwgh oll the subgete of I lioving m elements, 5 strongly Tess than .

Suppoke that with every s 8 there is assoviated in an arbitravy manner a cardingl
nivmber g sueh thet

(V) man—l=gq.=R8,.

Then there exists o subsel P* of P (with P*== ) such that L F¥=q_ for every se 5.

We shall now show that this theorem, which is a generalization of one doe to Ba-
gemihl [1], is contained in Theorem 1, by proving that (I)-(V}) imply {1}-(4) (that the
converse is not true will be evident from the proof).

Condition (1) follows trivially from (I}). _

To prove (2); suppose that 8°CS—{z} and & =R, Il #' ¢ &, then, according to (TEL}),

LiTy<tiy, snd (I11) also implies that

I XL r.r,,a;z‘ I gu My By e

1"(5* e
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Avcording to (11}, then,

L—Is Y L,=L— Y L,=n,,
eS8 e st

whieh is (2). )

_ Now te prove (3}, take every [y in Theorsm 1 to be the m in (IV). Let DcP,
D= . and 8, be the set of elements 4« 8§ for which L0 = Iy (=m). There are not
more than D™ subsets of D of m elements. By (a) of (IV), ﬁ"{&”. and by (b of
{IV), Sp<=g,, which proves (3).

Finally, aecording to (V), (4) iz certainly =atiefied if L=m.

The following examples show that if one of the hypotheses (1)-(4)
of Theorem 1 i85 not satizfied, then the conclusion of this theorem may
no longer be troe:

() (2) B) (4) Lot B={uh.. .5 P=UEm, e E
= “E:ﬂ'”".;'uﬂ for every f<a ., Lwn“_w—.{{f,}ﬂ}h e for every w<"t,.
Then I,=1, and we take q,=1, for every u e 8.

If L,P*=1 for every §<w_ , then L
contradieting | g =1.

L=

3% __ : P
mu-..:['i'r.'P _Ru+1 for some = EI'J‘:?,

b
(1), (2 3), () Let S={u} ., P=1{&), , Li=1{f} lor every
E g, 'Lw¢+1= £}, - Then I,=1, and we fake q,=1, for every ueS.

We have L P =R Qo +1-

(1}, (2), (3), (4): Let P be the set of points of a projective plane in
which every line contains s, points, and let the sets L, be the lines in
this plane. Take every L=1; then (3) iz not satisfied. Take also every
Pt

If we congider any two points of P*, these fwo pointz determine
a line L,, and thus fﬁ'}i:}q,.

(1), (2), (3), (4): In the preceding example, take every [=2.

If we take every qu=1 or =#,, then it iz obvious that P* does not
exist.

Theorem 1 can be applied, e g., to the points and straight lines of
a Buclidean plane, In this ease we inferpret 8 as a set of indices for the
set of straight lines in the plane and L, as the set of points which con-
stitute the straight line s ¢ 8, P as the set of points in the plane, and
8, —2%, Conditions (1) and (2) are evidently satisfied, and (3) clearly
holds if we take every L=2. Thus we obtain

COROLLARY 1. Witk every stroight line & in a Euclidean plane assoviafe
a cardinal number q, such that 2 < q,=<2%. Then there exists a set of points
which intersects every straight line s in precisely o, points.
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This result was obtained by Mazurkiewicz [5] for the case q,— 2
for every s; by Bagemihl [1] for the case q,= 2 for every &, the com-
plex of cardinal numbers g, being strongly less than 2*: and in the
above form, independently and practically simultaneously (early in 1952),
by Sierpingki [8] and by the present authors.

Ag iz easily seen, eondition (3) 2 also satisfied oander the weaker
assumptions of

ComoLrary 2. With every point p of the set, P, of points of a Bueli-
dean plane associate a set, 8,, of B, straight lines in this plane, each of which
containg the point p, and let the complex of cardinal nuwmbers T, (p e P) be

strongly less than 2%, Let 8'= Y Sy, With every s e 8" associate a cardinal
rEPR

number q, such that 1< q,<2%, and with every s non-e 8 associate a ecar-
diveal number o, such that 2= q,= 9% Then there enists o set af points
which intersects every straight line s in the plane in precisely q, points.

Liet the word ewrve mean any set of points (a,y) satisfying an equa-
tion of the form y=jflx) where [ is a single-valued function of a real
variable (¢f. p. 11 of [8]). Take & in Corollary 2 to be the set of all
straight lines parallel to the y-axis, and let g.=1 for every se N,
2= g, = 2" for every snon-e 8. Then f,=1 for every pe P, and Corol-
lary 2 yields

CoroLrary 3. With every straight line & (in a Ewclidean plane ) which
iz wot parallel lo the y-ariz associate a cardinal nwumber q, such that
2< q,=2%, Then there exists a eurve which filersects every straight line «
which is not parellel to the y-axis in precisely g, points,

Corollary 2 sugeests the following problems dealing with the Eucli-
dean plane:

What is a necessary and sufficient condition on a set, 8%, of straight
lines 8o that, if with every = ¢ 8% there is associated in an arbitrary man-
nﬁit. “Mlﬁﬂﬂl number g, in the range 1< g,= 2, and if with every
g non-e 8* there iz associated in an arbitrary manner a cardinal nnrm
ber g, in the range 2= q,=2% there exists a set of points which inter-
gects every straight line s in precisely g, points?

What ig the answer if =1 (s e &%) ingtead of g, being chosen ar-
bitrarily in the range 1= q,<2%1!

We have been able to solve the following problem:

What is & necessary amd sufficient condition on a set, 8%, of atraight
lines so that, if with every & e 8* there is associated in an arbitrary man-
ner @ cardinal number g, in the range 2< q,=2", there exists a set of
points, P*, which intersects every straight line se S* in precisely qg,
points and every straight line s non-e 8% in less than 2 points?
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The answer is: 8* is the set of straight lines joining all pairs of points
uf a point set M having the property that if a straight tine contains at least 2
points of M, it containg 2™ points of M.

To see that the condition is necessary, take g,—=2" (8¢ 8% then
FP* i5 such a set M. To show that the condition is sufficlent, in Theo-
rem 1 take x =2% S—=8* P—M, L—the subset of M which iz con-
fained in the utmighi line s 8%, 1, - {#:¢ 8%): the set P* of Theorem 1
iz then obvieusly one thai hasg 1.]114. properties required of the set P* i
the problem.

In what follows we still deal with the Euclidean plane, but when
we speak of a straight line we shall tacitly assume that one of the two
possible orientations has been assigned to it, and when we speak of a sub-
sef of a straight line we shall regard the subset as ordered by the orien-
tation of the line, go that the {order) type of such a subsel 5 well-defined.

TaeorEM 2. With every straight line s associale o an arbitvary man-
ner a findte or an enunserable ovder type 1,40, 1, Then theve exists o set
af potuts whose ftersection. with every stradight line & & o el of type 71,

Proof: Well-order the set of straight lines to form a sequence

Boy 8paave g Fgq oo et

where w, i the initial number of Z(2"), and let the sequence of asso-
ciated types be
ToaTagsvag Ty ea fEaf'r:r?}_

Let T, be a set of points on &, such that T —r,. Let 0 =% =w,, and
suppose that, for every u <32 a set, T,, of points on &, has been defined,
such that T,=r,, and so that at most 2 points of &, belong to Y T,—T:,

wiE
We have

; .E. |"'--".'.2 Tl:-\--T :-E“‘i

e g

|-|.‘

Consequently, there are fewer than 2% straight lines such that each
containg at least 2 points of the set 7';, Thervefore the set, V., of points
on & which are not on any of these lines different from 2, is everywhere
dense on #:, so that every interval of s: contains a subset of V, of any
given finite or enumerable type.

_ If & contains no point of 7%, let T. be any subset of V; such that
Ti=1;. If % has precisely one point, p, in common with 7Y, write
Te=0:+1+4p;, and let 7 consist of the points of a subset, of type oz, of
Ve preceding p, p itself, and the pointg of & subset, of type g:, of V: suc-
ceeding p. Finally, if s; has two points, p, p’, in common with T!, write
=0+ 14+ peb-14-C;, and defime T: in the obvious manner. Denote
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by T the union of the sets T (§<w,) thus defined. Evidently T inter-
sects every & in a set of type 7., and the proof of the theorem is complete.

Call an order type v a sublype of the continuwum, if the linear conti-
nunm eontaing an ordered subset of type 1. We shall prove

TrHROREM 3. With every straight line s ussociate in an arbitvary man-
ner @ sublype, 1,0, 1, of the m‘.ﬁ:wm Then, if 2% =x,, there erists
w seb of points whose wm:rm with every straight line s is a set of type 1,
il mexsure (0,

10 Lﬁ*l Tis f»ﬁmg mw v maly
' whoss

ﬂnnﬂd&r the set of all straight lines each
and is determined by a point of B, and

A ﬂf :El d-mi Eﬁ Wiﬂ ﬂa_ﬂﬂd denaote h}r {E_l ,E‘g;ﬂ'g]-
, be three straight lines and Dy, Dy be sparse per-
eliy, Then

meas (D, 0y 85)= 0.

ke by g, pa the points of intersection (if nonexistent,
rded in what follows) of ¢ and s, s, and &, respectively.
@ an arbitrary, but fixed, point, €' be a circle with radius
Py and Oy and Oy be circles of radins & and with the re-
enters g, Pu. Choose & s0 small that €y, and ('y lie in the in-
hold ¢ fixed for the time being. Denote by R, the region
‘«ﬂnﬂ outside 0,3 and Cuy and let Di=D, R,, Dy=D,R,. Suppose
1: 4 signity the parts in B, of any two intervals of the n-th stage
dyadic schemata representing D, Dy, respectively, Then it is not
ult to see that

meas (K, - (11, I3 ;)| <e. (meas 17 + meas I3)= e, 0(47"),

is o constant depending only on s Bince at most 4" pairs of
8 of the n-th stage come into question,

meas (R, (D, Dy; %)) <476, 0(47"),.
nd letting n->co we see that

meas (K, - (D5, D55 9,)) =0,
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Now let {g} be a sequence ol sulficiently small positive numbers
tending monotonically to 0, Then

a0 ; o
0= > meas |:I¢,k (DY, Dy 8,)) = meas ¥ (£ - (DI*, DE; s,}}
h=1 k=1
=meas{ly, D), . & d,

Proof of Theorem 3. Well-order the set of straight lines to form
a seguence
BBy g eei g Bl g (E=Tuy ),
awd let the sequence of associated types be
TosTraeens Tgyess (E<y).
Let D, be a sparse perfect set on g, Since D, is perfect, it containg
# subset T, of type 1, and sinee B is of measnre (h, 80 i5 Ty Let 0%y,
and suppose that, for every p <&, asparse perfect set D, and aset ,CD,,
with 7', =1,, have been defined on s, in such a manner that at most
2 points of ¢ belong to Y T,=Ti. According to Lemma 2,
T
O0=meas (D, I}; 8:)=meas B (T, T,
R et L
becanse the sum contains at most g, terms (this is where we make use
of the assumption 2™—x,). Henee, the point set

l'{.-: Bg— ZE{ T,, ¥ T.-; KE}

is of positive measure in every interval of &, Consequéntly, every interval
of & contains a perfect subset of 1y, and therefore also contains a sparse
perfect subset of Ve, which in turn eontains a subset having as its type
any given subtype of the continunm. The rest of the prool is verbally
identical with the last paragraph of the proof of Theorem 2. It is merely
necessary to note that, if D, D', D' are sparse perfect setz on some
straight line, and every point of D precedes every point of IV, and every
point of D' precedes every point of D', then the union D+D'+D" is
alao a sparse perfect set.

It would be interesting to know whether or not the assumption
=K, is necessary in Theorem 3.

THEOREM 4, With every straight line & associale in an avbilrarvy manner
a number my; such that 0==wm,=co. Then, if 2"=x,, there exvists a s¢t of
points whose intersection with every straight line s iz a st of measure m,.

Proof: Well-order the set of straight lines to form a sequence

i

FonBgpeenglizg e (<o),
and let the sequence of associated measures be

Ty Wy oy T s (& ="m).
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Let 3, be a point gel, of measure mg, on #g. Lot 0<& <o and sup-
that, for every pu—5 M, is a point set, of measure m,, on s,. Since
the intersection of Z M, with # i8 an at most enumerable set

_ e .
1 a, &ﬂﬂ i8 the-mfum uf mmlﬂ'ﬂ ﬂ: so that it is pnsmblﬂ to lif-hua

- in Theo-

hen there erists
i line 8 fassuwmed, for
 sonise relative to @ set of Cartesian

adtl '_'fr lines to form a BECTLELCE
g Fraeeafzaon (E<cany)s
nnmber of Z(2%), and let the sequence of asso-
T oy gy s (& <ty
~an equation either of the form
-I:ﬂ-. W=mgm—t+bs or (i) =iy,

gy ¢ are real numbers, the “constants belonging to s,

pie the system of algebraieally independent real numbers con-

. von Neumann [6]. The set M containg a perfect subset
iewiez and W. Sierpinski [7], p. 18). Every perfect set

* mutually exclusive perfect subsets (see, e. g., C. Kuratow-

d W. Bierpinski [4], p. 195).

Lysliy oo dusee (n=w) be the set of all nonempty open intervals

pational endpoints, and let By, B,,....B,,... (n<wm) be 8, mutunally

sive, bounded, perfect subsets of M. For every n <, there exists

p-one transformation t'=«, 1+ r,, where r,, », are rational numbers

0, under which the image of B, is a perfect subset, O, of I,.

tg €, (n<om) are mutnally exclugive, and ¥ ¢, is an algebraically

Hem
idamenta Mathematicae, . XL 5
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independent system of real numbers (ef. J. von Nenmann [6], p. 140).
Each ¢, eontains 2% mutually exelusive perfect subsets PS <)
For every &-—=w,; we define P,=XP,; then every nonempty open in-

[T
terval of real numbers contains a perfect subset of .

Dénote by R, a subset, of type w,, of Py, and let Ty be the set of
pointe on &, whose abscissas or ordinates form the set &, according as s,
is of the form (i) or (ii), Now snppose that 0=<£&<wm,, and that we have
defined, for every p—£, the set K,C P, and the set T, on &; in such
a mammer that the orthogonal projection of T, onto the &- or the y-axis
is K, according as &, is of the form (i) or (ii), that 'Tf,:'rp, and that at
most 2 points of s belong to Y 7,=7% Denote by K, the set of all

et
constants belonging to at least one &, (p<==£); obviously K.< afr. (Jon-
aequently, the cardinal number of the set, D, of elements of Pe which
are algebraically dependent on the system of real numbers R+ > i,

g
is less than 2% Hence, every nonempty open interval of real numbers
containg a perfect subset of Q,=P,—D.. Let Ve be the set of points
on & whose abscissas or ovdinates form the set Q. according as s is of
the form (i) or (i), No steaight line different from s and determined

T

by two points of T': can infersect s: in a point of V,, for otherwise the

syatem of real numbers Ky} 2 Ft, 46 would not be algebraically inde-
pE

pendent, contradicting the definition of €. The proof of our theorem
can now be completed in accordance with the last paragraph of the
proof of Theorem 2 above (if we define B: as the orthegonal projection
of ¥ onto the appropriate coordinate axig).

Added in proof. We are indebted to A, Rosenthal for calling our
attention to his papers Uber Gebilde mit einzigem Ordnungsinder, Si-
tenngsberichte der mathematisch-physikalischen Klagse der Bayerischen
Akademie der Wissenschaften zu Miinchen, 1922, p. 221-240, and ber
die Niehtexistenz von Nonlinuwen in gewizzen Mengen mil einziger -
dnungszakl, Sitzungsherichte der Heidelberger Akademie der Wissen-
sehalten, mathematisch-natnr-wissenschaftliche Klasse, 1934, p. 49-56,
the first of which contains, in addition to other results, a special case
of our Theorem 1. A paper by J. Moneta, Application du théoréme du
eonting, Cahiers Rhodaniens 4 (1652), p. 20-42 in which an unneecesgary
appeal is made to the (unproved) relation 2™—w,, contains a particular
case of eur Corollary 2.
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