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1. Let there be given a triangular matrix

X
X2 X

(1.1 A

x] 13 x-',ln LIER ] x.-ul

where for n=1,2,... we have
(1.2) lE %52 E—

Then, as it is well known, for given values y,, there is exactly one polyno-
mial g(x) of degree = n—1 such that

(X)) = Vo (=", 2 )

If the values y,, are the values f(x,,) of a function f(x) defined in [—1, - 1],
then we call the corresponding g(x) polynomial “the n™ interpolatory poly-
nomial of f(x) belonging to A” and denote it by L,(f, A) or — if misunder-
standing cannot arise — by L,(f). The abscissae x,, are called the n" fun-
damental points of the matrix A and are sometimes denoted also by x,. It
is well known that L.(f, A) can be written in the form

(1.3) L.(f, A)— § F) o (%, A,
where the polynomials /,.(x, A), the so-called fundamental-functions belonging

1 A part of the results (assertions a) and b) of this paper) was the subject of a
lecture made by one of us at a colloquium for the constructive function-theory in Eger
(Hungary), 29 Nov. 1933; they were found twenty years ago. The new results showing they
are best possibles were a subiect of another lecture in Pécs (Hungary), 18 Sept. 1954.
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to A, depend only upon A and have the representation
w,(x, A)

L b A) =G, &) —50)
where
(1.5) w,(x, A)= ]_—[1 (x—x,u ).

As easy to verify, we have

(1.6) L Ay=1
=1
and if h(x) denotes an arbitrary polynomial of degree =n—1, then
(1.7) L.(h, A)= h(x).
From (1.3) it follows that for an f(x) bounded in [—1, +1] we have for
—1=x=+1

(1.8) LU= (2 A swp 17

2. One would be inclined to think that if A is such that for an arbit-
rarily small ¢ >0
(2. 1) Xvu_xt“rl_. n g"‘y Xonw — — XatlL w =1 ('V:O; 1! ey N > nu(é")),
then the sequence L.(f, A) converges uniformly in [—1, 1] to f(x) when-
ever’ f(x) ¢ C. It was a great surprise at the end of the last century when
RunGe and BOREL discovered that the sequence L.(f, B), belonging to the
“most classical” matrix B defined by
27
n-1
can diverge in a whole subinterval of [—1, <-1] for such a simple function

Ton==1 r=12..., 05 8=1,2 ..}

as f(x)= ]—_:_? This would leave open the possibility, the situation can

be saved by choosing another “better’” A matrix. But G. FABER" discovered
in 1910 the shaking fact that no matrix A can assure the uniform conver-
gence of the polynomials L,(f, A) for every f€ C. His proof showed that it is
essential for this phenomenon a property of the quantity

(2.2) M. (A= max Ai(x, )= max > |L.(x,A)|
12 s ] 1= S 4l p=]
namely that for ell A-matrices we have
(2.3) Tim M.(A)= + .
2 C denotes, as usual, the class of functions continuous for — 1= x = + L.

4 (5. Faser, Uber die interpolatorische Darstellung stetiger Funktionen, fahresber. der
Deutsch. Math. Ver., 23 (1914), pp. 190—210.
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We call the quantity 4.(x, A) the n™ Lebesgue function, the quantity M,(A)
the n'* Lebesgue constant belonging to the matrix A. Moreover, S. BERNSTEIN'
proved the still more surprising fact that to every matrix A there belongs an
X, in —1=x,=-+1 and an f, € C with

(2. 4) Tim |La(fyy A)lomzy= + 00

what roots in the relation

(2.5) lim Z,(x,, A) =+ o<.

3. These facts show that for the divergence theory of the Lagrange in-
terpolation the functions Z,(x, A) are essential. But it was observed by FEJER®
that these Lebesgue functions Z,(x, A) play also a role in the convergence
theory. His simple reasoning reproduced for the sake of completeness in 9
gives the following theorem:

If the quantities M, (A) of (2.2) satisfy the inequality

(3.1) M.(A) < ¢;nf

with a fixed 0 < #< 1 and numerical® ¢,, then the polynomials L.(f, A) con-
verge for —1 = x =1 uniformly to f(x) if’ f€Lipy, y>2.

4. These results are responsible for the rather general opinion that the
convergence-divergence theory of the Lagrange interpolation is by and large
identical with the study of the Lebesgue constants M,(A). We have set our-
selves the task to investigate to which extent this is true. We have found that
going a little beyond the mere continuity this fails to be true; the resultcan
quite vaguely expressed saying that there is a “rough” and a “fine” conver-
gence-divergence theory for the Lagrange inferpolation. To be more exact, let
us consider, if

4.1 0<8<1,

the class A(¢) of all A-matrices for which with arbitrarily small positive «
we have

(4.2 lim M, (A)nF- < eu(@),
(4.3) Tim M. (A)n5+ > ¢, (e),

+ S, Beensten, Sur la limitation des valeurs elc., Bull. Acad. Sc. De 'URSS, 8 (1931),
pp. 1025—1050.

o L. Fejew, Lagrangesche Interpolation und die zugehdrigen konjugierten Punkte, Math.
Ann., 106 (1932), pp. 1—55.

" Later on ¢, ¢3,... denote generally also numerical constants. If some ¢, depends
upon some parameters, the dependence will be explicitely stated.

© As usual, the class Lipy denotes the totality of those functions which satisfy
uniformly a Lipschitz-condition with the exponent » in —1 = x =<+ 1.

4 Acta Mathematica V-2
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i.e. for our matrices the Lebesgue constants M,(A) increase roughly speaking
like n?. We call for a fixed 8 with (4. 1) the Lip y class of functions

) “a good class of functions f(x) if for all A€ A(8) and f€ Lip y 2
I for A(3)", L. (f, Aytend uniformly in[—1,--1]
to f(x) for n— e, s

respectively

y “a bad class of functions f(x) for if for all A€ A(8) there is an ?
A", fi(x) €Lip y such that L.(f;, A)is i
unbounded in[—1, 4 1] for n—»c0.

If a Lipy class is a good or a bad one, then its convergence-divergence
behaviour is by and large determined by the numbers M.(A); one would be
inclined to think that all Lip y classes with y < # are bad and all with y > ¢
are good classes and thus the finer structure of the matrix A cannot essen-
tially influence the convergence-divergence behaviour for the respective Lip y
class. A closer investigation showed, howewer, that this is not the case, there
are values y depending only upon @ for which the Lip y classes are neither
good nor bad ones. This means that the convergence-divergence behaviour
is certainly not determined for the respective Lip y class alone by the Lebes-
gue constants M,(A): hence the convergence-divergence behaviour for the
respective Lip y class depends upon the finer structure of A and thus the
determination of the convergence-divergence behaviour belongs to a “finer”
theory. Thus even the existence of this “finer” theory is somewhat surprising;
moreover we shall see that for fixed 0 <3< 1 all Lipy classes with

are bad classes, all Lip y classes with

(4.5) y> 0

are good ones and the Lip y classes with

Frz<r<t

form the exact domain of the finer convergence-divergence theory.

Similar questions arise in connection with orthogonal expansions, sin-
gular integrals, mechanical quadrature and generally with linear operations.
Also other scales than the Lip-classes can be used. Further, the convergence
behaviour can instead of uniform convergence refer e. g.to pointwise conver-
gence. Finally, perhaps the matrix-class A(f) can be defined more suitably
than in (4. 2)—(4. 3).

5. Our result is given under (4. 4), (4.5) and (4.6). In order to prove it
we brake the assertion into four parts. @ is fixed with

(5.1) O0<pg<l.

(4.6)
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B
a) If v< 12

sequence L.(f., A) is unbounded for —1=x =1, i. e. the class Lip y is bad
in this case.

b) If >4 and A € A(), then the sequence L, (f, A) converges uniformly
in [—1, 4-1] to f(x) whenever f€Lipy, i. e. the class Lipy is good in
this case.

o
g) i o 5°

and A € A(9), then there is an f, € Lipy such that the

T then there is a matrix A, € A(%) such that the sequerice

L.(f, A) converges uniformly in [—I, 1] to f(x) whenever feLipy, i.e.
the class Lip ;7 is certainly not a bad class.

d) If » < 3, then there is a matrix A, € A(#) and f, € Lip y such that the
sequence L.(f,, A,) is unbounded for —1 = x = +1, i. e. the class Lipy is
cerfainly not a good one.

6. To prove the assertion a) we need the simple
LEMMA [ If A€ A(p), then we have for v=1,2,...,(n—1)

(6. 1) X — Xt n > Co(E) P22,
For the proof we consider the quantity
71 %
Xpn—Xpot, 0

Owing to the definition of the fundamental functions and the mean-value
theorem

6.2) 1 bl A=l s &)

Xow—Xp<t,n x'rf-a- == x;;..L "

L.(E, A),

where

X, w = o= X

But using Markov’'s well-known theorem we have
La(©)] = (n—1) max  L.(x, A)|,
i. e. a fortiori R
(6.3) | (S, A)| < n* M, (A).
From (4.2} we have M, (A) = c.(s)nf, i e. (6.2) and (6. 3) give

——— 1 () | A
x:’lr_xl'+1.?! ( )

which proves (6. 1)

% By modifications of the construction we could prove that in cases c¢) and d) also
n

" * = W .f -
a matrix with ¢,n® = max  D'|1, (x)| = c;n” could have been constructed with the
— e

-l=3=+1 5

other required properties. Also the investigation of the limiting cases is of interest.

4
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7. Now we turn to the proof of the assertion a). Let
2 (L (x, A))
r=l]

maximal in [—1, 4 1] for x=£,. With the convention
Xon = _x:r+l. o — ], l’im(x; A)E llw(x, A), 11;-{-]_, an (x, A) — f-,m (x, A)

we consider the function ¢,(x) defined by the broken line with the vertices

at the points
P, = (x,., sign 1,,.(S., A)) (r=0,1,...,n,n+1).

Then we have obviously

(1.1) LA@”AL;E=£§HHGMA)==M4A)
According to the Lemma I all slopes of ¢.(x) are absolutely
(7. 2) < G5 (&) nfH3te,

and for —1 =x= +1

(?. 3) _lﬁﬂn(xn E: ‘I.

Now we can construct fi(x) in a way which is a suitably modified

form of the resonance principle of LEBESGUE. Since y < "«}%’ we may
f
choose & so small that

]
(1.4) 0<e< 15
and
8—2¢ -
g Frase 0

we fix & According to (4. 3) there is an infinite sequence
3 ’::: !I; i ﬂ: o S
such that for »r=1, 2,...

ez i r Cs (‘?) f-e
(7 6) M”f'(A) = ,"”1-(""“1" A)> 2 nf' '

Now we select a suitable sub-sequence of the n,’s which we shall denote
by r,’s. Let
n=m
and we suppose
FisTay enny Iy

are already defined. We distingish two cases.

Case 1. Denoting
-1
<.
Foet®) = X )

s J

4
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the sequence
Llu(Fr—ly-A) (.'“zl} 2!"')

is unbounded. In this case for
—l=x<x+h=1
we have

iF:«-l(erk)—Fy-x(X)i'é; e |9 xR — g ()

i. e. using (7. 2) i
\Fpr(X ) —Fpi(%)| = Cﬁ(s)hz e cy(a)h,
i. e. F,.1(x) belongs even to Lip 1.

Case II. The sequence L,(F,1,A) is bounded, i.e. for [—I, -+ 1] and
u=1,2,...

(7.7) | Lo (Fya, A)| = G

Then let r, be the smallest integer satisfying the conditions

(7. 8) Iy > 4 (i. e. also >2r, ),
(1.9) 7o iy

We may suppose that we have for all »’s the Case [l and we assert that in
this case we may choose as f,(x) of assertion a)

@x

(1. 10) £ =2 ()

a=1

In order to show that f,(x)¢€Lipy we write for an x and h satisfying

-—léxn:x-l—lz*::—l-l O<h< 100

Flx ) —fu(x) = + ZH e (B —g,(x)

1

where the index p is defined umquely by

1
-t

< r;’.l}-l-

1
(7.11) y <5 [?

Using for » = p (7.2) and for » = p+1 (7. 3), we get
LD =A@ = a@h 2 ‘ *39+2Z i

J=p+1 '

e £-2¢
ol $ (5]

;,,_1 J=p+1 r,' /

i.e. using (7.8)

(7.12) fi(x + M) —fi(x)] = ci(e, 8) : hpretde rﬁl _ % _

Pl
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(7.8) gives r, >2"'r,= 2", i. e. p<2logr,; hence from this and (7.11)

B2 __IH—EE
9430 pde N B2 - a2
hpratie < e (e hrite < (e} fse TR h BtEe,
p—1

i.e. (7.12) and (7.5) give at once

g-2¢
|folx ) —fo(x), = cale, B)R P2 < cu(e, B)R
Thus our fi(x) belongs to the class Lip y as stated.

8. We have also to show that the polynomials L.(f,, A) are unbounded
in [—1, +1]. Let s =2 and write

(8.1) fo(x)=F () + r% v, (X) -+ Di(x)

with

(50

1
d)s(x) — 'ZI W %-_.,-(x)‘

J= st

(7.7) gives for —1 =x=+1

(8 2) |L,r‘lk,(Fv—|? A). 2 Cf;_1.
From (7. 1) and (4. 3) we have
(8.3) 1P Ly (Pr Ao, > Cl)T.

Finally, (1. 8) gives for —1 = x = 41
| L (s, A)| = M. (A) max |D.(x)];
’ Sl=a=gl

hence from (4.2) and (7. 3), by (7.8),

1 ; ;
= < Cu (é", ,0’)}'3"”*')5.

|Le( D, A) = cul®rts D —p

J=8+

From this, (8.2) and (8. 3) we obtained
|Lr_.'.(fu A) ez . = ﬂga(f‘)ri‘_ Cooi—0n (*: ﬁ)rh’?;—)s

?‘J’"

what proves the unboundedness, using also (7. 9).

9. Next we turn to the proof of the assertion b) in 5. This is based
on an idea of S. BERNSTEIN adapted to interpolation by L. FEJER;® as told,
we only reproduce it for the sake of completeness. Let P, (x) be the best-
approximating polynomial of (n—1)" degree of f(x) in [—1, 4 1] in CHEBY-
SEV's sense. If feLipy, then according to S. BERNSTEIN we have in [—1, - 1]
©.1) F)— Pua ()] = €.

Owing to (1.7) we have
L\J(Pn,—l; A)E P)t‘—l(x))

Lu(f, A)—f(x) = Lu(f—Pu-1, A)+ (Pua(x)—f (%))

i. e
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and thus

(9.2) |Lu(f, A)—f| = cun™+ | Li(f— Po-1, A) .
But using (1.3) and (9. 1) we obtain

(9.3) |L(f— P, A)| = cun-n}_.;u,.‘,(x, A)|.

Choosing in (4.2) ¢ so small that g+#< y—e and fixing it, we obtain

—
)

\JI [l (x, A)| = ;s()nPre < (&) n” "
and from (9. 3) )

| La(f—Pi-1, A)| = cu(e)n.
This and (9. 2) prove already the assertion b).

10. Next we turn to the proof of the assertion c) in 5. We shall show
that the matrix whose n'" row consists of

[ 3.1 1 2 :'_:—_1

(10 ]) X1, = COS "En- —'*n!—+ﬂ* s X3 = COS - T ST

(y=2,3,...,n)
belongs to A(S) and fulfils the requirements for A, of the assertion c). In
what follows, we shall speak about one line of the matrix so that instead of
Xy. and [,,(x, A;) we may write x, and I.(x, A,). We have obviously

(10.2) x,—x2=25ianin

S — | = S O,

2n7 "\ 20 T 2n'F 2

i. e. for n>n,
(10.3) X—X, < 2anfe,
Hence

nf=2 < 1 =_!:(ann)—!1(x2.An) _‘__L(xn Au)""h(x').!An) =

20 X—X Xi—X, - X;— Xy | =

| 1
= max |“L i A) <nt max |h(x A) = n*Md(A),
-1:_?_.«§+1| dx ! -l=z=1
using again MARKOV’s theorem. Hence
1
= B

(10.4) M(A) = 5 1.
If we show that
(]0 5) -M!r(A[]) g C]l'; nﬁ,

then A; belongs indeed to A(g).
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11. For the proof of (10.5) we need some lemmas. We shall denote
by 7 the matrix the n" row of which consists of the numbers
2v—1
2n ' (
and by /,(x, T) the fundamental functions belonging to 7. Then we need the

(1. 1) X ==cos

=1, 2, ...5 1)

Lemma II. We have for —1 =x=+1
?}: l(x, T)| = cs log n.
This lemma is well known.”vWe need further the
LEmmA 1L If n = 4, we have for —1 =x = -1
;‘ [L(x, Ay)| = ¢;; log n.

Proor. For » = 2 we have
L(x,A) _ x—x, x,—xi =(

(1 1 2 2) f,;(x T) X,-—X1 X—XT

Since for r =3, n =3

3a
cos —COS ——
xX—x 2 2n , 1 } 1
0 _.I 1 i i —-ﬁl—.-—__ — pp— i
= X1—X, o 3x i S5 ' 2668 2% 2LE) 2
Cos 2 3
we have
Li(x, Ay) = _J o Xi—Xi
(11.3) Tt {1—_2 1—3=
If —1 = x = x,, then owing to
0 <1— —% 8
XJ—X

we have from (11.3) for —1 =x=x,
L(x, A)| = 2!L,(x, T)|,
i.e. summing for »=3,4, ..., n and using Lemma Il we obtain

(11.4)

D h(x, A)| = 2¢y log n,

y=14

i.e. Lemma Il is proved for —1 = x = x,. To prove it also for x, =x =1
we write (11.3) in the form

().
| x—xt |

xxl

|L(x, [,)1<2‘ | (x, T)| = 2|x—x1|

b See S. N, Bernstey, Quelques remarques sur l'interpolation, Math. Ann., 79 (1918),
pp. 1—12
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Let us observe that for »r = 3 and x; = x = xI we have

{11. 5) sign ,(x, T)=(—1)"
and for x] = x =1
(11.6) sign 1(x, T)—(—1)"".

Hence for x, =x=xi, r =3

bGs Al < 2ix—| D),
1. €. _
2 (—1)'L(x T)
(11.7) , ( (x, A))| < 2|x—x:| —

A similar reasoning shaws. (11.7) holds also for xi=x=1, i.e. (11.7)
holds for x, = x = 1. Applying the mean-value theorem to the expression

2,'_‘{ (—D ik T

xX—Xx]
and also

Xx—x,| < 1—cos —T <—F,
we obtain from (11.7) for x, = x =1

“S“‘_(x‘ A”)I<21_ng': max ‘ d ‘ (—l) £ (l T)!.
—1 1Se=s+1

Using again MARKOV’s theorem the right 51de is

-

max \ (—1) L(x, T) <200 max 4 |.’. xT)| =

=l1=r=+1 -l=gr=1 p=1

= 200¢, logn
by Lemma il. By this and (11.4) Lemma III is proved.

12. It follows from Lemma Iil that (10.5) will be proved if we succeed
in showing that for —1 =x = -1 we have
(12.1) h(x, A)| = e,  |L(x, A)| = ewnb,
This will follow as a byproduct from the following Lemma which we shall
need in 13.

Lemma IV. For —1 =x = +1 we have

(x, A) + Li(x, A) = ¢y

Proor. From (1. 4) we have
Ta(x)
Ta(x) V'

(12 2) fl(x! Anl o j] xT_xj - T,:(XT) (

Lx, T) = x—X;,  1i(x) (x—xi)
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The factor in the bracket is

Vo (3m { n 1 - a [
?LObEE cos 2n nlﬂqJ" T l3ﬂ' n =—2- 2H f] +O[ J‘
(12 3) o TRl l
1 |12 ,_,5 (14 #i 27 "
Taking in account that
3 R R
X—x} _ %% o "n____ s _*H*O’._FJ\ B
Xo— X, 3 3 ) | 32 - . o
€os &~ — Cos [T‘Z?-n ; 3’ — {1+ O(nF)}
__ 2z 2
L Sy e p
S 1P (140(n?)y == nf 4+ 0(1),
this and (12. 3) means that
(%) —X)

(n—x) F B =—3=2 4+ 00)

and from (12.2), using the explicit form of l,(x, T);

- Tux) 1) x—axf |
Il(x! Au)— X3 z T':(x‘—)) ’_' Xo— X, i O(]) H_
(12.4)
_ %=X Tx) i | T |
- 2=E ey OO | T
As well known,” we have for —1 =x= L1
(12.5) IL(x, T) =2 (y=1,...,n),
i. e. the second term on the right of (12.4) is
sin N
0| B& |~ o) —22 — oy;
X2) | .oa
sin =
thus from (12.4)
(12. 6) AN W W R

Xo—X1 X—Xx7 Ta(X%:
Further we have
b(x,A))  x—xi Xp—xi

b(x, T) X—xi X2—x’

10 The O-sign refers to n-oo but always uniformly for —1 = x = +1.
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i. e. using the explicit form of L(x, T)

_ Xa—X] X—X _ Tu(x) ) 1
.l’!.’.(x) An) T Xa— X1 2 x_xI X— X3 },.;[(x?‘) +
From this and (12.6)
| ds—at| | Tl | ] 1 P 1
1606 A+ (X, A“)|:O(])_'|xn—xi| | Ti((xo)) T x—xf + x—x% S|
G — *I| | — X |
- Xo—X1 | | T.(x) | Xi—Xe |
(12.7) = O(l)—i_‘x._,—x] .| TR = |
o 1 Tal%) ’ (11 T.(x)
— O+ x— =01 — £ 1
O+ %= 1zt [y = OO+ 0\ ) | ==
. 27
Since we have for —1 =x = cosT
‘ T.(x) ) 1
——— o | 5T ! = O(n’
r—xi)(x—x) | [ cos X — cos 2_”]((:05 3 cos _2_.I_J 2
| 2n n M 2n n
27T 5T
for cos — = x = cos —,
n n
T.(x) || 2 1 B Ta(x) i
(e e S L i
2n o

and similarly for cos% =x=-1, Lemma IV follows from (12.7) indeed.

In this proof is at the same time a proof for (12. 1) contained. We may
write namely (12.6) in the form

L
§in ——
23— 1 T‘J: X 2 — X1 2n
Lix, Ay)=— H TE;)) Li(x, Y+ 0(1)= ;_xi e L(x, T)-+O(1).
- e : $in —
2n
Taking in account (12.5), further
sin ~3—1
__2n 0(1)
sin 8
2n

and

Xa—Xj _ "

o O
the relation £, (x, A;) = O(n*) follows indeed. For [,(x, A,) the assertion follows.
using Lemma IV. Thus our matrix belongs to A(S) indeed.
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13. In order to finish the proof of the assertion ¢) in 5 we have to
show that the polynomials L.(f, A;) converge uniformly in [—1, 4 1] to f(x)

ad

L 5+ Let 1 be so small that

whenever f¢ Lipy, y>-

13. 1 e 2
( ' ) l‘,' p)+2 +‘*J
and fixed. Let further

n

and P,(x) should stand for the best-approximating polynomial of f(x) in
[—1, +1] in CHEBYSEV’s sense. Then we have again

L]i(PJH\, A{})Epﬂl (x)
and proceeding exactly as in 9 we obtain, using the abbreviation

(I 3 3) f(xw)_Pm (xu') = Vi,

that

(13.4) L.(f, A)—f=(Pu—f) + ;: Podu( Ay).
Using again S. BERNSTEIN’s theorem mentioned in 9 we have
(13.5) f—P,| =cym™ <cynlogyn,

i.e. from (13.4) we get :
(13.6) L.(f, A)—f| = co n 7 log¥n-+ | ph(x, A)+1:L(x, Al _; V3] L%, Ao).
Taking in account (13.5) and Lemma Il the last sum is O(m™logn)—
— O(n 7 logv*' n); hence from (13.6) we have

|L'.n(f, An)‘__ﬂ =
= o rlogv a4k | |GG, A+ L(xX, A+ {1 — [ L(x, Ayl
Taking in account Lemma IV and (12. 1), (13.7) gives

(13.7)

(13.8) |Lo(f, A)—f| = en{n ¥ logr n4-nfly,—p}.
For the estimation of |y,—y.| we write
(13.9) =] = [F)—F(x)| ] P (X1)— P (1) |.

Since f¢€ Lipy and

37 1 ] .3 100
(13- ]0) |x1—xg|=COS(ﬂ——rm _L05ﬁ< ng+ﬁ ]

we have, using (13.1),
100 -p (525 +)

(13 1 1) |f(x1) _f(x1)| = CQE%[@) s Cayl

= (g1 B (P2
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Further, using again MARKOV’s theorem and (13. 10),

Pm (x‘l)_Pm, (xg)i = 1%.2 mdax |P:JI (x) = __1__9_?4—% max !Pm (x) i- &
Y 1=e= " 1=r=+
100
< Hlogn W+ T L@

From this, (13.8) and (13.11) it follows that the polynomials L.(f, A)) con-
verge in [—I, -1} uniformly to f(x), i.e. the proof of the assertion ¢) is
finished.

14. Finally we shall prove the assertion d) in 5. Since the proof follows
the line of that of a) we shall not go into all details. It is obviously sufficient
to define A, only for even n=—2k. With our 8 we define

w
=

5 (log k
(14. 1) $=5 (TJ

and the 2™ line of our matrix A, should be given by the zeros {,,..., Ly of
(14. 2) ox(x, A)=wu()=Ti(14+9— 2+ 9 x)=0 (Ti(cos $)=cosk?),

. . 2v—1
i. e. with x, = LOST&'—J
(14.3) ""1I-| 3

v / ~ —Xg

- ]f_ 2+19 (V—!,z,. ,k)
We have obviously
(14‘4) (li; “(.] ll,-"l %5_{;|{;2{"'<-;k< 1.
Since for 1 =|v| =k

dTy(u) - k -
o5 | = |42 20+ 9) & = —==22+ D5,
|10 =1+8- (L‘.—!—E}C:’ L 1 —xF”|

we get — denoting the fundamental functions by /l..(x,4) (v=1,2,...,k) —

; S I V1—x) |om ()]
AT talbdo S A= ST e BT b

=y

I

15. First we are going to show (by rough estimations)
X

(15.1) Z 1, (x, Ay)| < cu(8) kP log?k.
|+ =1
We may obviously suppose 0 = x = 1. Since for all of our #’s we have

— 259 { e RN

T —% 1—
14 %—x,

5
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and
T+ x,< 10 k_';{"[_—},
we have
~ k—|v|+1
(15. 2) M;,,(A)( By x’_,'g;'_—|w2k(x)I.

What can be said on (&,.1—%,)? For

= K
we have from (14. 3)
- I x—p_xp...l k"—"|'r"|—|" ]
]5-3 by | T —— o Y/ —— o —————— A is
( ) |§ L I:, Vz—i_ |9' 1-'; 1 + !9'_"x1—+ 1!"1 + !9‘—x-p+-1 > 20k2
For
% > | ri=1
we have from (15. 3)
X
4 k*
15. 4 Lt — | > €s0(B) —ee > _Cn(F)
( ) R 1| (ﬁ)l ,,.i+ iﬂgk klogk
Let first be
U=x=4§.
Then we have from (15.2)
8 | 3 k—v31
(15.5) Zan(x, A) < 4z o (x)| ; e
Owing to (15.4) we have
L
zzkﬂ-v+4 < k N 1 -
r=1 sp—X ; e X
2=y Efﬂék
Sitoktk 3 - L < g eIk,
Sy . . w - e
a=r % (r—1)cx(9) Zlog k

i. e. from (15.5) for such values x

12y X r a9
‘(3:__.5;1) | + [wa(x)| log“kg.

- 2 . ; l
(15.6) Fan(x, A2) < enlB) |7
But for 0 = x =& owing to (14.1) we have for k> ¢,

(wu(x)| = T(1+9) <—;—{1 +(A+9+HIT+ =1 <
{15.7) ey
<(14+9+1294+9) < flodasliog) opum_op
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Further, taking in account that for 0 = x = &

d w3y (x) dT(u)|
______ 224 P x =
- dx =2@+3) || Cdu =@
k@+Dlxl | @Y= 14 =)+
\ [t —1
O (R
ft— 1V = 148 -2 9
— K2+ 9|} LtV —1)—_,_(“_';“'_])‘—2 =
| ut—1 ez (2
= a7
[ i 2 Sing— o T |9'
= k(24 9L, ; : . ok (E;Ff) ] S aw<i0w,
s T =1+ 1

we have for 0 = x =
1
k
(15.6), (15.7) and (15.8) give at once (15. Nfor0=x=§,. For , =x =1

the proof of (15.1) runs on similar lines and also a much better estimation of
Aufx, A;) could have been given; we omit the details. Thus (15. 1) is proved.

fu‘:rr(x) ‘ = — max |mu,(x)|< 104°.

X—& I=r=q

(15.8)

16. Next we show that
(16 1) 1‘12;,;(0, A|) }C::g(ﬁ))) kﬂ
Since for & > ¢y (3) ,
1

o) = Te(1+8) > 5 (1+9+VZF LT > L4,
we obtain from (14.5)
et EVi—x et Vi—x
Ao (O, A1)>4(2+3) =z >—4—i{v S = >Cn(}J’)kﬁ
i "—‘w

This and (15.1) show that our matrix A, belongs indeed to A(6).

17. What we actually proved, is a little more and this is what we shall
need. We showed
2 L0, A)| > cu (B,
1= =5k
i e. )
(7. 1) 2> |L(Ox, A)| = max 2 |L(x, A)|= cs(B) R

lélfli‘é?k -
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Having this, the construction of f,(x) runs as follows. Introducing the notation

‘ 8ign [,.20(@a, A) for 1= |v|
(]7' 2) J’:-_.l_m-=?

IM

=
2 ?
k

I1A

0 for -g— <|»|

we consider the function ,(x) defined by the broken line with the vertices
at the points

P;E(;‘.I’,.‘:F.s yt-.ii.') (1 = J]’ =k '
we use also here the convention of 7 to complete the graph of np-_w,.-(x) in the
whole interval [—1, --1] by affixing two horizontals at the ends. We have
obviously .
(17. 3) Loy(vrar, Ay) By E [ly2x O, A)| > C:e-.(r'?)ks-

[

vi=

1] =

According to (15.4) the slopes of wak(x) are absolutely
klog £k,

fr( %)
51 _ 51 _
fDr —_— W =X S W and k = Cy,(;e) we ha\-e

(17.4) () = 1

51 &
for " 100 = |x| =1 (xreal)

5 'llb‘g;,-(X)—— 0
and for —1=x<x+h= 41
(17.5) |2 (X + ) — (%) | = ca(B) Ak log k.

Now our function f;(x) will be of the form

fi(x)=2 ‘> _r_“{'_ Yo, (X)

with sufficiently quickly increasing r,-indices, as in 7. The proof of unbound-
edness of L,(f,, A) needs only slight changes compared to that of 8,so we
can omit the details. As to the Lipschitz exponent of f,(x) we have (p to be
disposed later)

G+ —h&)[=,

-

7

—).}—IU*:,; (x4 h)— 1, (x)| +

| ml\

5
-JJ[\/J

r,! (s (X ) + |1, (x)])
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or owing to (17.5) and (17.4) “essentially” (owing to the quick increase of
the r,’s)

-3+« 1 I
e B —A0| Seal@® | A5 .
Choosing p so that

1
= i <o,

everything follows since & is arbitrary smail. Hence assertion d) is also proved.

(Received 22 January 1955)

POJib ®YHKUWHA JEBECA B TEOPUKM MHTEPMOMAUKU JATPAHMKA
[1. Eppéwm (Mepycanus) n Il. Typan (Bypanewr)

(Peswme)

TnaBHBIM PE3ynLTATOM HACTOsSIMEH PpaboThl ABAAETCH [1OKA3ATENLCTBO TOTO, 4TO B
TEOPUH CXOAMMOCTH M PACXOIMMOCTH MHTEPNOasAuuH Jlarpawka Cieayer pasiuuath Mesmay
,TPYGOi“ u ,TOHKOH" Teopusimu. ,[pyGol® SIBISETCS HACTL TEOPHH, SABHCALIES TOABKO OT
OBLICTPOTHI BO3pACTAHNS ,IeGeroBbiX KOHCTAHT®

i
M= mix 2_1 1L,
rae A 03HAYACT OCHOBHYIO MATPULY HHTEPNOASAUMH, ,TOHKHE® K€ APYIHE pesybTaThbl.
Tnagnast 3agaua cOCTOSINA B OTHEJIEHMM 3THX ABYX Teopui. M3 pasnuuHelX BOSMOMHBLIX
TOYEK 3PEHHs] Mbl 3[€Ch OCTAHOBMMCS Ha TOH, TNPM KOTOPOW MaTpuubl A A7 NPOM3BONBHO
MaNoro MONOWHTENLHOTO 4ucna &, u ans gurcupopanHoro 0 < @ <{ 1 nmoguyuHeHs! yCAOBHSM

M, (4)
(1) lim — e <O (e) (< <),
w1
. M (A)
) im —— > &) (> 0),
ns+ao M

a ciefyet onpefensiTs Te Kaacchl qiyHkumn Lipe ® [—1, 1], gas xoTopeix npu moboit
marpuie yloBaeTropsiioiell ycnosuam (1) u (2) uHTEpNOASUMS TPUrOAHA, M TE€ KIACCHl, A
KOTOPLIX MHTEPNOASUASI NPH NIOGLIX TAKHX MaTpuuax venpuropHa. OxaselBanock, uTo eciam
HCXO[UTh M3 KAACCHI MATPHL yaosaeTropawiux (1) u (2), T0 ,TOHKAA" TEOPHT €CTh TEOpUS
CXOHMOCTH-PACXOAHMOCTH TeX kaacc Lip e, gns KOTOpHIX

a =
g
72 * 4
Boaee TOYHO, MMEET MECTO CHEAYHLIEE :
o
a) Ecn mns A cnpasenasest (1) u (2) n MMEET MECTO @ < ——, TO CYyWECTByeT

#+27
tyrrumnsa fi € Lip e, a19 koTopol B3AThE MO A MHTEPNOASUMOHHBIE NOAMHOMBL Jlarpaska
L (f, A) seorpanuuchsl va [—1, 4 1]. (MuTepnoasauusa Henpuroaua.)

o Acta Mathematiea VIII—2
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b) Ecan A ypoeneteopaer ycnosnam (1) u (2) u umeer MecTo « > F, To 44 moboi
fE€ Lip & narepnoaduuotusie nomuHome! Jlarpawka L, (f, A) cooTsercrsyiomne A crpemarca
K f pasHomepuo Ha [—1,-1]. (MeTepnonsiuust nparogua.)

c) Ecan a == TO ywe cywecteyer matpuua A,, yiosnersopawowas (1) u (2),

3
A8 KOTOPOH HHTEPNOIAUMOHEBE nomuHoMbl L (f, Ay) paBHOMEPHO CXOZATCH K f, €CM TONBLKO
SELipe.

d) Eciu @ < 8, To ywe cyuiecTtByioT marpuna A; yposmetsopswomas (1) u (2), n
dyurups f; € Lip @ Takue, uto uaTepnossiupontsie nonnHomel Jlarpanska L, (f;, A;) neorpasn-
yedbl B uHTepeane [—I, 4-1].

AHANOrMUHBIE BONMPOCH BOSHHUKAT TAIOGKE I8 PAsIOKEHHil B OPTOrOHaHAbHBIL psj,
10 MEXAaHWHECKHX KBajpatTyp M Iad APYruX JHHEHHBIX Omepauuii.
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