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1 . Let there be given a triangular matrix

x„
x,,, x ;_

(1 . 1)

	

A .-
xl n, x.,,r . . . X1111

where for n - 1, 2 . . . . we have

(1 .2)

	

1 fix,,,>xz„> . . .>x,,,,

Then, as it is well known, for given values y,,,, there is exactly one polyno-
mial g(x) of degree ~ a- I such that

g(x, •„)(r'- 1, 2, . . ., n) .

If the values y, ., . are the values f(x,,,,) of a function f(x) defined in [-1, 1],
then we call the corresponding g(x) polynomial "the nr'l interpolatory poly-
nomial of f(x) belonging to A" and denote it by L,(f, A) or -if misunder-
standing cannot arise - by L,,(f) . The abscissae x,.,, are called the n ut fun-
damental points of the matrix A and are sometimes denoted also by .x,, . It
is well known that L ;, (f, A) can be written in the form

(1 . 3)

	

L,,(f, A)	 "ff(x,,,,)1;,,,(x, A),

where the polynomials 1,,,,(x, A), the so-called fundamental-functions belonging

1 A part of the results (assertions a) and b) of this paper) was the subject of a
lecture made by one of us at a colloquium for the constructive function-theory in Eger
(Hungary), 29 Nov. 1953 ; they were found twenty years ago. The new results showing they
are best possibles were a subject of another lecture in Pécs (Hungary), 18 Sept . 1954.
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to A, depend only upon A and have the representation

(1 .4)

	

1 (x, A)

	

(x, A)
A) (x-x, .,,)

where

(1 .5)

As easy to verify, we have

(1 .6)

and if h(x) denotes an arbitrary polynomial of degree - n-1, then
(1 .7)

	

L„ (h, A) - h (x) .

From (1 .3) it follows that for an f(x) bounded in [-1, + 1] we have for
-1 -x-+1

,
( l . 8)

	

L„ (f, A)

	

(x, A) 1 sup +l f(X)1-

2.
One would be inclined to think that if A is such that for an arbit-

rarily small i:>0

(2 .1)

	

X -X,.+l,,, ct, xo,

	

- X.,+1, J,

	

0, 1, . . ., n ; n > n, (F)),

then the sequence L„(f, A) converges uniformly in [-1, + 1] to f(x) when-
ever' f(x) E C. It was a great surprise at the end of the last century when
RUNGE and BOREL discovered that the sequence L„(f, B), belonging to the
"most classical" matrix B defined by
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(D„ (x, A) = rI (x - x,,,, ) .
3-1

~~ 1,, .,, (x, A) =1

2''
X,_ _= I -

n + 1

	

6-=1,2, . . .,n ; n-1,2, . . .), .

can diverge in a whole subinterval of [-1,

	

1] for such a simple function

as f(x) = 1	
+x'

. This would leave open the possibility, the situation can

be saved by choosing another "better" A matrix . But G. FABER' discovered
in 1910 the shaking fact that no matrix A can assure the uniform conver-
gence of the polynomials L,, (f, A) for every f E C . His proof showed that it is .
essential for this phenomenon a property of the quantity

(2.2)

	

Ill;, (A)

	

max 2.,, (x, A) 	max 5 11, .,, (x, A) I,
namely that for all A-matrices we have

(2.3)

	

lim M,,(A) = + .
- CO

2 C denotes, as usual, the class of functions continuous for - l -_ x - 4- 1 .

3 G. FABER, Über die interpolatorische Darstellung stetiger Funktionen, Jahresber. der
Deutsch . Math. Ver ., 23 (1914), pp . 190-210.
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We call the quantity ).,,(x, A) the n"' Lebesgue function, the quantity X(A)
the nt", Lebesgue constant belonging to the matrix A . Moreover, S . BERNSTEIN'
proved the still more surprising fact that to every matrix A there belongs an
x„ in -1 -x,,-+I and an f0 E C with

(2.4)

	

lim I La(fo, A)Is - + cc

what roots in the relation

(2.5)	lim 2.(x,, A)=+ ~ .

3. These facts show that for the divergence theory of the Lagrange in-
terpolation the functions ).,,(x, A) are essential . But it was observed by FEVER'

that these Lebesgue functions i,,(x, A) play also a role in the convergence
theory. His simple reasoning reproduced for the sake of completeness in 9
gives the following theorem :

if the quantities M,, (A) of (2.2) satisfy the inequality

(3. 1)

	

M,(A) < c, 0

with a fixed 0 <,6< 1 and numerical c,, then the polynomials L,,(f, A) con-
verge for -1 -_ x _- + I uniformly to f(x) if' f E Lip-,, y >

4. These results are responsible for the rather general opinion that the
convergence-divergence theory of the Lagrange interpolation is by and large
identical with the study of the Lebesgue constants M„(A) . We have set our-
selves the task to investigate to which extent this is true . We have found that
going a little beyond the mere continuity this fails to be true ; the result can
quite vaguely expressed saying that there is a "rough" and a "fine" conver-
gence-divergence theory for the Lagrange interpolation . To be more exact, let
us consider, if

(4.1)

	

0<J<1,

the class A(3) of all A-matrices for which with arbitrarily small positive r
we have

d S. BERNSTEIN, Sur la limitation des valeurs etc ., Bull. Acad. Se. De l' URSS, 8 (1931),
pp. 1025-1050 .

L . FEJÉR, Lagrangesche Interpolation and die zugehörigen konjugierten Punkte, Math .
Ann ., 106 (1932), pp. 1-55.

` Later on c,, c,,. . . denote generally also numerical constants . If some c,, depends
upon some parameters, the dependence will be explicitely stated .

As usual, the class Lip y denotes the totality of those functions which satisfy
uniformly a Lipschitz-condition with the exponent y in -1

	

x ts~ T 1 .

4 Acta Mathematica V1 .1-2

(4.2) lim M,,,(A)n-f-t < c,(r),
- W

(4.3) lim M,, (A) n -fi- > c_; (e),
A_ W
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i . e. for our matrices the Lebesgue constants M„ (A) increase roughly speaking
like n 8 . We call for a fixed F3 with (4 . 1) the Lip y class of functions
S "a good class of functions f(x)

	

if for all A E A($) and f E Lip y
for A(3)",

	

L. (f,A)tenduniformly in[-1,-{-1]
to f(x) for n -. oo

respectively
"a bad class of functions f(x) for

	

if for all A E A(#) there is an
A()",

	

fi (x) E Lip y such that L;,(f,, A) is
unbounded in[-1, + 1] for n---oo .

If a Lip y class is a good or a bad one, then its convergence-divergence
behaviour is by and large determined by the numbers M„(A) ; one would be
inclined to think that all Lip ), classes with y < 13 are bad and all with y > 13
are good classes and thus the finer structure of the matrix A cannot essen-
tially influence the convergence-divergence behaviour for the respective Lip y
class. A closer investigation showed, howewer, that this is not the case, there
are values y depending only upon ,& for which the Lip classes are neither
good nor bad ones. This means that the convergence-divergence behaviour
is certainly not determined for the respective Lip ; class alone by the Lebes-
gue constants M„(.4) ; hence the convergence-divergence behaviour for the
respective Lip y class depends upon the finer structure of A and thus the
determination of the convergence-divergence behaviour belongs to a "finer"
theory. Thus even the existence of this "finer" theory is somewhat surprising ;
moreover we shall see that for fixed 0 < r~ < I all Lip y classes with

(4.4)

	

Y < <Y

	

2 -
are bad classes, all Lip y classes with
(4.5)

	

y >
are good ones and the Lip y classes with

(4.6)

	

'] + 2 <y<3

form the exact domain of the finer convergence-divergence theory .
Similar questions arise in connection with orthogonal expansions, sin-

gular integrals, mechanical quadrature and generally with linear operations .
Also other scales than the Lip-classes can be used . Further, the convergence
behaviour can instead of uniform convergence refer e . g. to pointwise conver-
gence. Finally, perhaps the matrix-class A(#) can be defined more suitably
than in (4.2)-(4.3) .

5. Our result is given under (4 . 4), (4. 5) and (4 . 6). In order to prove it
we brake the assertion into four parts . f is fixed with
(5.1)

	

0<$<1 .



a) If y < 13 2 and A E A(1J), then there is an f E Lip) , such that the
-F

sequence L,,.(f , A) is unbounded for -1 ~ x - 1, i . e. the class Lip ; is had
in this case .

b) If ; , >,3 and A E A (-3), then the sequence L,,,(f, A) converges uniformly
in [-1, +l] to f(x) whenever f E Lip y, i . e. the class Lip y is good in
this case .

c) If ; >	, then there is a matrix A, E A(Y) such that the sequence2
L„(f, A) converges uniformly in [-1, + 1) to f(x) whenever f E Lip ; , i . e .
the class Lip ; is certainly not a bad class .

d) If y <,J, then there is a matrix A, E A () and f, E Lip y such that the
sequence L;,(f, , A,) is unbounded for -1 - x + 1, i. e. the class Lip ;, is
certainly not a good one .'

6. To prove the assertion a) we need the simple

LEMMA I . If A E A(a), then we have for v= 1, 2, . . ., (n-1)
(6. 1)

	

x,,,,-x„+, .,, > c l (a)n - P - E .

For the proof we consider the quantity
I

x,,,,-x, .-1, :,
Owing to the definition of the fundamental functions and the mean-value
theorem

	 IY, ( , A),
x,--x- -I,,,

where
C C

X71-11i, - ~ - X111' .

But using MARKOV'S well-known theorem we have
1,:,, ( )

	

(n -1) 2 max

	

:1,.,,(x, A)

(6.2)

i . e. a fortiori
(6.3)

	

1;,f (~, A)

From (4. 2) we have M„(A) - c-,(F)nf £, i . e . (6 . 2) and (6. 3) give
	 1	< c,

x,,,, -x,,,-1, „

	

(".)

which proves (6. 1)

By modifications of the construction we could prove that in cases c) and d) also

a matrix with c, n~ < max

	

>~ h,,, (x) i

	

c, n,' could have been constructed with the
1-~ +I z-1

other required properties . Also the investigation of the limiting cases is of interest .

4.,
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-1 -~ :~ = +1

< n2 M„(A) .
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7. Now we turn to the proof of the assertion a) . Let

1,,,, (x, A)
y-~

maximal in [-1, + 11 for x=

	

With the convention

xo,, _ - x„+, , .a = 1, 1j,, (x, A) =1, (x, A), 1„+,, (x, A) -- l,, (x, A )

we consider the function cf„(x) defined by the broken line with the vertices
at the points

P,•- (x,. ;,, sign 1,.,,(

	

A))

	

(1'=0, 1, . . ., n, n+ 1).
Then we have obviously

(7. 1)

	

L,i

	

A),(,,

	

A)'. = M, (A) .

According to the Lemma I all slopes of f`„(x) are absolutely

(7.2)

	

< c5 (F) nP+2+F

and for -1 = x - + 1

(7 .3)

	

I ~„ (x)

	

.1 .

Now we can construct f2(x) in a way which is a suitably modified

form of the resonance principle of LEBESGUE. Since ,,< d3 2 , we may

choose F so small that

(7.4)

	

0<F< 10

and
d-F

(7.5)

	

2 a { 2±2F > y'

we fix F. According to (4 . 3) there is an infinite sequence
2" - n, < na < . . .

such that for v = 1, 2, . . .

(7-6)

	

M,,,,(A)=~

	

A)> c3 (F)
2

Now we select a suitable sub-sequence of the n,,'s
by r, .'s . Let

r, =n1
and we suppose

r„
are already defined. We distingish two cases .

CASE 1. Denoting

F,._, (x)

F

which we shall denote
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the sequence
L,u(t'=•- ,, A)

	

1, 2,
is unbounded. In this case for

we have

(!~ -

	

. . .)

-1 ~ x< x+h ~ 1

F'-,,-,(x+h)-F,-I(x) :

	

r~l'E ~r1 (x h)-Trj(x) :,

i . e. using (7 . 2)
"-I

F,-I(x+h)-F,,-1(X) - c,(F)h j r'-'+3E < c,(F)h ,
j=1

i . e. F,._ I (x) belongs even to Lip 1 .

CASE II . The sequence L,,(F,,-,, A) is bounded, i . e . for [-1, + 1] and
{=1,2, . . .
(7.7)

	

L,u(F,-1, A) -- G-1 .
Then let r,, be the smallest integer satisfying the conditions
(7-8)

	

r„ > r1, ,

	

(i . e . also > 2r„ ,),

e7.9)

	

r,> C,.-I-

We may suppose that we have for all v's the Case II and we assert that in
this case we may choose as f(x) of assertion a)

(7. 10)

	

f (x)

	

1 , E

	

(x).
=I r~ --,

In order to show that f(x) E Lip we write for an x and h satisfying

-1-x<x+ham+1, 0<h<1 I

f (x+h)-f2(x) > +

	

(~FJ_ I r~-,z

	

,,,(x+h)-cp .r .(x))
1

where the index p is defined uniquely by
I

1 0+„E
(7. 11)

	

r,, = h ,

	

< rt,+, .

Using for v - p (7. 2) and for r ~ p + 1 (7 . 3), we get
P

	

OD

c ; (~) h ~ rj+3E + 2 ~ r:#+'E <
j=1

	

.i=T+1
If-(x + h)-f(x)

M

< 2 c, (E) h p r2+3E +		( r1
,, + E f

p

	

~ _ +
/

1
l

E~, ,7=p+1

	

rJ
i . e. using (7 . 8)

(7.12)

	

'f(x+h)-f(x)I - c, (F, ) I hpr +3E +- r~1 , E ~ .
p+1

1
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(7.8) gives r,, > 2'"- 'r, = 2'", i . e . p < 2 log r,, ; hence from this and (7. 11)

-P-2t

	

I	 fl Q,

h p rn+3s < c; (F')h r 4 < C7 (E)h P-~?+-'E '

	

e
< h ,B+?+2e ,

r ,6 -
P-1

i . e . (7 . 12) and (7. 5) give at once
	 r	

~f2(x+h)-f2(x)

	

c,,( ,, , t!)h e+2- 2
< c8(, ~)h'.

Thus our f,(x) belongs to the class Lip y as stated .

8. We have also to show that the polynomials L„(f,, A) are unbounded
in [-1, + 1]. Let s - 2 and write

(8.1)

with

A, (X) = F,, 1 (x) +

P . ERDÖS AND P. TURÁN

P6

	

(x)

	

(x)

ro

	

1
(x)

(7.7) gives for -1 -x--+l
(8.2)

	

L,.,,(F.-~, A)I i C,-~

From (7. 1) and (4. 3) we have

(8.3)

	

r-P-2c

	

A) -c,. 5 > c=(s)r. .

Finally, (1 . 8) gives for -1 = x = + I

L.s(0s, A) < M,-, (A) max ~P, (x) I ;
-1= :z ~+1

hence from (4. 2) and (7 . 3), by (7 . 8),

(,P5, A)' = c,,( )r +`

From this, (8 . 2) and (8. 3) we obtained

I L,.,.(f2, A)

	

> c,(F)r;-C,._,-c11(., 3)r, +21

what proves the unboundedness, using also (7 . 9) .

9. Next we turn to the proof of the assertion b) in 5 . This is based

on an idea of S . BERNSTEIN adapted to interpolation by L . FEJÉR;5 as told,

we only reproduce it for the sake of completeness . Let P,,- I (x) be the best-

approximating polynomial of (n-1)th degree of f(x) in [-1, + 1] in CHEBY-

SEV'S sense. If fE Lip)/, then according to S. BERNSTEIN we have in [-1, + 1]'

(9.1)

	

lf(x)- P".1(x) l
-- c, 2 n- Y .

Owing to (1 . 7) we have

L„(P,,-1, A)-P,,-1(x),
i . e .

L,,(f, A)-f(x) =L„(f-P,,-1, A)+(P„-1(x)-f(x))

1
d)r . P+'f, . < c, (~, d)

	

.



and thus

(9.2)

But using (1 . 3) and (9. 1) we obtain

(9.3)

	

~L«(f-Px-~,A)~

	

c„n - l (x, A)

Choosing in (4.2) r so small that

	

and fixing it, we obtain

and from (9. 3)

This and (9 . 2) prove already the assertion b) .

10 . Next we turn to the proof of the assertion c) in 5 . We shall show
that the matrix whose nth row consists of

(10.1)

	

x,,,-cos(
2n

	

n11 # ~'

	

x,,,=cos 2 2 n 1 r

	

('-2, 3, . . ., n)

belongs to A(d) and fulfils the requirements for A, of the assertion c) . In
what follows, we shall speak about one line of the matrix so that instead of
x, .,, and 1,,,,(x, A„) we may write x,. and l„(x, A). We have obviously

1

	

3.-r _ 1

	

3
-~T

(10.2)

	

x,-x,=2sin 2 n1+'6	 sin ( 2n

	

2n 1- 0 )- 2	 n -~ - O(n -2-2,6 )'
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L0 (f, A)-f

2: 1,,,, (x, A )

L0(f-P:-1, A)1 .

c, :;(~)nP < c, (~,) n'- '

i . e . for n > n„

(10.3)

	

x,-x, < 2,,Tn- P-2 .

Hence

1, (x,, A1,)-1,(x,, A)

1 1,(x, A0) - n 2 M,, (A),

using again MARKOV'S theorem . Hence

(10.4)

	

M,, (A)

	

21T
nP .

If we show that

(10.5)

	

M„ (A)

	

c,;, n,6,

then Ad belongs indeed to A(#).

XI-x2

55

nfi 2 1 1,(x„ A„)-1,(x2 , A)
2,T x,-, x,-x2

max
I

dx 1, (x, A„) 1 < n2 max
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11 . For the proof of (10 . 5) we need some lemmas. We shall denote
by T the matrix the n"' row of which consists of the numbers

(11 . 1)

	

x* = cos 2v-12n .-r

	

(v 	1, 2, . . ., n)

and by 1,(x, T) the fundamental functions belonging to T. Then we need the

LEMMA 11 . We have for -1 -- x + I
11

1,, (x, T) j - c 16, log n .

This lemma is well known . We need further the

LEMMA III . If n - 4, we have for -1 - x ; 1
P

1„(x, A.) = c, 7 log n .
-s

PROOF . For v ? 2 we have

(1 l . 2)

	

1,, (x, A,) - x-x, x,,-xi - l 1- x'-X'
1,,(X, T)

	

x,.-x1 x-x*

	

4-

Since for v 3, n - 3
21

	

3c

0< 1+
x;-x,

< l

	

cos 2 n - cos
2/z

= 1

	

I

	

- 1 -f- 1 ,X,-X„

	

3,T

	

5 ;7

	

,z

	

1% 2cos
2n

	 -cos

2n

	

2 cosn
we have

l,, (x, A„)

	

x;-x,
(11 . 3)

	

1.,.(x, T) c

I

	

X*

If -1 - x x,, then owing to
0<1-Xi-x, <1

X I-X

we have from (11 .3) for -1 ' x - x,
1„(x, A) = 211,,(x, T) ,

i . e. summing for v = 3, 4, . . . , n and using Lemma 11 we obtain
I?

~~ 1, (x, A„)~ _ 2c,7 log n,

i . e. Lemma III is proved for -1

	

x- X, . To prove it also for x, - x = 1
we write (11 . 3) in the form

~ 1„(x, A.) I < 2 '
x-x

	

1
(x).

=

	

11,,(x, T)
x-X*

l „ , T

	

2 x-x i :I x-XI

(11 .4)

P . ERDÖS AND P. TURÁN

1 +
XI-XI
x,-x„

9 See S . N. BERNSTEIN, Quelques remarques sur l'interpolation, Math . Ann., 79 (1918),

pp. 1-12 .



Let us observe that for v > 3 and x, -- x - xi we have

(11 .5)
and for xi = x -- ~z I

{11 . 6)

Hence for x 1 x -- xt,

i . e .

and also

LEBESGUE FUNCTIONS IN THE THEORY OF THE LAGRANGE INTERPOLATION

1„ (x, A„)

A similar reasoning shows, (11 . 7) holds also for xt - x = 1, i. e . (11 . 7)
holds for x, - x - 1 . Applying the mean-value theorem to the expression

~, (-1)' 1,.(x, T)
- :3

we obtain from (11 . 7) for x, = x

	

1

1.,. (x, A,) < 2 10, max

sign 1,.(x, T) - (-1) ,.

sign l,(x, T)

v-3

1,,(x, A„)j < 2 x-x1

(-I ) ,-+ I .

x-x;

x-x1 ', < 1- cos
3 .r < 10-
2 n

	

n" '

Using again MARKOV'S theorem the right side is

200<	-(n-1) maxn-

(- )"1, .(x, T)
x-$

dx

Z (--1)' 1,. (x, T )
< 2 1 x-x,l	

x-x,

(- l 1"r=3
x, T )

( 1 ) " 1.,, (x, T) ' < 200 max ~~IiV 1„(x, T)

57

200 c 1, ; log n

by Lemma II . By this and (11 .4) Lemma III is proved .

12. It follows from Lemma III that (10 . 5) will be proved if we succeed
in showing that for -1 :2:-: x

	

+ I we have
(12.1)

	

1, (x, A 0 )

	

c, ns, 11,(x, A„) j

	

c10 n'".

This will follow as a byproduct from the following Lemma which we shall
need in 13 .

LEMMA IV . For -1 ~ x - ± I we have

1, (x, AI,) + 1., (x, A ,)) -- c11, .

PROOF . From (1 .4) we have

11 (x, A„)

	

X 1 -X., - T,,($) M x _x, T, (x.,)(12.2)

	

11 (x, T)

	

Ilx1-x;

	

(

	

1)
T" (X) .
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The factor in the bracket

T

	

--r
cos 	cosI 3 - I

	

n

	

I	
=-2- T ~1 -+-0~

I

	

2n -

	

12 n

	

n'

	

3,T

	

3,T

	

2 n a

	

l, 0 1

(12 .3)

	

sin 2n cos ( 2 -n -
a

n 1 1+0(, 0 1 5 3 r n' 1+0 ~, ~i , l n~ 1=0(~ i,~~ -

Taking in

(12.4)

account that

1, (x, A 0) _

thus from (12.4)

(12.6)

	

11 (x, A,) = -

Further we have

is

P . ERDÖS AND P . TURÁN

3 --t

	

,Tcos
2 - Cos	 2

	

T° ,ni

.. ~1 =O(n -~)}=
3

	

3

	

O(1),

3--r

	

3,,r

	

3,r
cos 2n -

cos 2n -n -1-~ 2 n - ' - # ,1 0Q-P)

21-r

	

2,T
nP'

this and (12 . 3) means that

X
(x -x,)

T"(x2)
-1 +0 0)T„ (x,)

	

x2-x,

and from (12. 2), using the explicit form of 1,(x, T),

T L (x)

	

1

	

x2-x,

	

0(1)x-xi T(x2)

	

x„-x,

x.,-x,=	L(X)	 T",(XI) I

x.,-x, (x-x;)T,(x :,) + 0(1)'1(x'
T) 7; (x2)

As well known' we have for -1 ~ x -:~ + 1

(12.5)

	

11., .(x, T) . -- b

	

0 ,

	

n),

i . e. the second term on the right of (12. 4) is

sin
3,T

0(1) T",x

	

s
1

	

(1)	2n

	

0(1) ;	 I-®

T, (x2) ,
sin

2n

x2 -xt T~(x)	1
+00) .x2-xl x-xl T,,.(x 2 )

I-) (x, A (,) x-x1 x2-XI
12(x, T)

	

x-x; x2-x1 '

10 The O-sign refers to n -> oo but always uniformly for -1 _ x - - - 1 .

32 fl+0(1) 1n
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i . e . using the explicit form of 12(x, T)

x •, -x, x-x,

	

Tn.(x

	

1
12(x, A) _

	

i
X2 - XI X-xl X-x2

From this and (12. 6)

{r (x A) +1 2 (x A,)	0(1) X"-X1 I T,(x)

	

1
* +

x-XI 1
X2 -xI T'(x 2 )

	

x-x, x-xI x-x2

(12.7)	O(1)+
X2-X;	 T, (x) x,-x2 -
x_-x1 , ,(x,) (x-x*) x-x2

Since

and
x2-xI 	O(nP),
x2-xI

the relation 1 1 (x, A 0)= O(nP) follows indeed. For 1,(x, A,) the assertion follows-
using Lemma IV. Thus our matrix belongs to A(#) indeed .

= O(1)+' x2 - X *'.
1

T; (x2)1
	T„ (x)
(x-xt)(x-x2)

we have for -I ~ x ~ cos
`T

n

T, (x)
(x-x;)(x-x-)

.r
for cos

2 .-u

	

x

	

cos 'n

	

n

l
T

	

2T1(

	

3CT

	

2 ;T( cos 2 n -cos	
n l

cos Z n -cos n

T,, ; (x)

	

1

	

T„ (x). max
T

	

CT 1=x`+1 x-x2
cos 2n - cos n

(x-xt)(x-x-2)

Taking in account (12 . 5), further

sin

sin 2n

3r
2n = 0(1)

=0(1)+0 ( na

2n

T, (x)
(x-xi)(x-x2)

O (n ; )

= O (na)

59

and similarly for cos
:T

	

x + 1, Lemma IV follows from (12. 7) indeed_
n - -

In this proof is at the same time a proof for (12. 1) contained. We may
write namely (12. 6) in the form

3.rsin	
1,(x A,)_ _ x,-xI T,,(xi) 11 (x, T)+O(1)-

x2-xt

	

2n -1I (x, T)+ 0(l) .
x2 - x I T, (x2)

	

x2 - x 1

	

T
sin
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13. In order to finish the proof of the assertion c) in 5 we have to
show that the polynomials L,,.(f, A 0 ) converge uniformly in [-1, + 1] to f(x)

whenever f E Lip y, y >	;~ 2 . Let n be so small that
V

(13. 1)

	

y >	'~ 2

	

pl

and fixed. Let further

(13.2)

	

[loffn] =mb

and P,(x) should stand for the best-approximating polynomial of f(x) in
[-1, +11 in CHEBYSEV'S sense. Then we have again

L,, (P,,,, A) - Pr,, (x)

and proceeding exactly as in 9 we obtain, using the abbreviation

(13.3)

	

f(x„)-P,, (x.,,) --y",
that

(13 .4)

	

L,(f, A) -f- (P,-f) + Yv 1rr(x, A)

Using again S . BERNSTEIN'S theorem mentioned in 9 we have

(13 .5)

	

~f-P. -~c,,,m - Y < c0 , n-Y IogY n,

is e . from (13 . 4) we get

(13.6) L (f, A,) -fI - c2,
n-Y loge n -!-1 Y,1, (x, A0) -±212(x, A.)

	

y,. 1,.(x, A0,)! .
1-3

Taking in account (13. 5) and Lemma III the last sum is O(m_Y log n) --
- O (n - Y logy+' n) ; hence from (13.6) we have

~L,(f,A„)-fI
1, (x, A,,)+1._(x,A0)I +1 Y,- Y2II 1,(x, A, )

(13.7) C, n - ' Iog n+IY,

Taking in account Lemma IV and (12. 1), (13 . 7) gives

(13.8)

	

L,{f A,)-f~ -c2z {n-Y1ogY}'n+n~ly,-y .l} .

For the estimation of l y,-y2

(13.9)

	

y,-Y21

Since f ( Lip,, and

P. ERDÖS AND P. TURÁN

we write

f(x,)-f(x2)1 + I Pm (x)- P„, (x2) I-

3 ;u _ 1

	

3~i

	

100
(13 .10)

	

fix,-x 2 =COS
2n

	

nl+#) - cos 2n < nz+g ,

we have, using (13 . 1),
1~)v

	

(r~)	(
"
F~)

(13.11) f(x1)-f(x2)1 c23
n=+~

	

c, ,n

	

_Cull n -,P+21, -, .
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Further, using again MARKOV'S theorem and (13 . 10),

100

	

100m'=
~P, (x,)-P.(x-')

	

n„+s max P,,(x),---

	

2

	

max Pr,x)i<
L-a.-+1

	

n

	

1 _= +1

100
< np log n (1 +

I max 1 if(x)1) .

From this, (13 .8) and (13. 11) it follows that the polynomials L' , ( f, A,) con-
verge in [-1, + 1] uniformly to f(x), i . e . the proof of the assertion c) is
finished .

14. Finally we shall prove the assertion d) in 5. Since the proof follows
the line of that of a) we shall not go into all details . It is obviously sufficient
to define A1 only for even n2k. With our # we define

(14.1)

	

=

	

(log kg ,

and the 2ktb'. line of our matrix A, should be given by the zeros ,, . . ., ", ;,. of

(14.2) wk(x,A1)- (I) • (x)-7k(1 ,5~-(2 0x2) 0 (T0 (cos~)-cosk,9),
v-

i. e. with x,= cos
2

	

1
2 k	 'T

(14.3)

We have obviously

(14.4)

Since for 1 - ~v -k

Y

	

~1 + -x„
2+5

/1+9-x„
2 -I- ,'~

1 2+ 1~ <~,<Sz< . . .<~,<1 .

(v	 1,2, . . .,k),

(v

	

- 1, 2, . . . , k) .

d
Iw2k G") I -

	

2(2(2 +,,k) _n• _ ,

	

)

Tku) ;'

	

-	 k	2(2~
u=1+,~-('2+s)~2

	

V
1 -XI„

iz•

r
Sv

we get - denoting the fundamental functions by l-,(x, A,) (v = 1, 2, . . ., k) -

(14.5) 2 zk (x, A,) = S 1,(x, A,) =

	

1

	

2, V1 - xi1'1 1w2k(x)
I- ., ,,,-k

	

2(2--,9)k ,_I„ j,,

15. First we are going to show (by rough estimations)
k

(15.1)

	

2, 11, .(x, A,) j < c,,, (p') kfl l og k .
1r1=1

We may obviously suppose 0 - x ~ 1 . Since for all of our P's we have

G' 1-x„ _
j,,2 ~-,5" 1+ x''x1 < 2
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and

l i -F-- x,, < 10
k-v+ 1

k
	 ,

we have

.(15.2)

	

M2 k(A,) < k~

What can be said on (5,.1,-7,.)? For

k? ~v

we have from (14.3)
_ 1

	

x„-x„_ 1

	

k- wI + I
~'2+,y I 1

	

-x,,+l 1 { -x„+~ >

	

20k 2̀

k >

(15.3)

For

we have from (15. 3)

(15.4) wTt - 4„

P. ERDÖS AND P . TURÁN

2

k
2

>	 k

	

>cz7( ~)
,,

	

loge k

	

k log k
k2 + k2

Let first be
0-x~ 1 .

Then we have from (15. 2)

(15.5)

	

)2k (x, A,) < 8
0J . (x)'I

2: k v
+

	 1 .

Owing to (15 . 4) we have

k - k-r+ 1

	

k

	

k

	

1
+k

	

1 <
X

	

~,-x

	

x

k

	

1

	

k<	x +c2H k2 +k

	

1 	<-r-
z T

c.,,,(d)k2 Iog2 k,
-1)c.'=(,~)

k log k

	

51-

i . e. from (15. 5) for such values x

(15.6)

	

;,.,k. (x, A) < c,, (3) +k
~X'A(X) + 0)2k(X) I log'ki .

But for 0 -- x --~, owing to (14 . 1) we have for k > c :.;,

w2k(x) --TA-(I+15')< 1 {1+(I+ -lk +Ir(I+1~)2-1)A}<

<(1+~+I,2,6~ +<e'(
& J ' 0l ` ~<2eA1`-5'=2 0.

~ 15 . 7)



Further, taking in account that for 0 x - ,

dw2 k (x)	2(2+ ~) xl dT,(u)I
d x

	

du

	

- f+a- (z+s) 3

k(2+,'~)jxj + (u+ Vu -1 )f-t l 1 +
VU

	

,-

	 u 	)+
1 .

J''u -1)'' .f ( 1

	

u	~r

=k(2-0- ) 1x

we have for 0 -x = ~,

(15.8)	 1
k

(15.6), (15 .7) and (15 . 8) give at once (15. 1) for 0 x < ~I . For ~, = x - 1
the proof of (15. 1) runs on similar lines and also a much better estimation of
2 (x, A) could have been given ; we omit the details . Thus (15. 1) is proved .
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Z k (0, A) > V-t
4(2 + ,`~} v=1

L+v- ( 2+'~')" ~

-1)''-(u-l a=-1)',
I

2 y i'2 sin"4k - k̀k
< (	)

	

2 LO < 10 ko'2
2

(1) 2k (x) ` 1
max

s

w k (x)j< 100 .
x - , - k n .r

	

,

16. Next we show that

(16. 1)

	

£2k(0, A) > c:,) (3) 0 .
Since for k > c33 (3)

OJ21 i

	

To (1 + ,v-) > 2 (1 + + V2 w + 512)' >
4

V,

we obtain from (14 . 5)

Z,

	

;11, (0, A,) I > C34(3) k1,
f

-x

	

ks- I

	

V1 1 -x> 4

	

Q

11
> C . (13) k1 .

~

	

k: =7,- ,3 ,..

10

This and (15 . 1) show that our matrix A, belongs indeed to A(13) .

17. What we actually proved, is a little more and this is what we shall
need . We showed

i . e .
(17. 1)

	

111.(E 21, A) I-

	

max

	

I l,(x,A) ~~c35(13)k" .
1_Ir ~)k-

	

1 mss= 1 1-11'1= l
k

- -4

	

a

~r		
,

63
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Having this, the construction of f (x) runs as follows . Introducing the notation

sign

	

(0 2A , A,) for 1
(17.2)

	

Yv.2k.

- i 0

	

for -2 <
we consider the function IP2,; (x) defined by the broken line with the vertices
at the points

CP;.	(x, ..21:, yz-,2 :)

	

(I = ' = k) ;
we use also here the convention of 7 to complete the graph of i2 ,;(x) in the
whole interval [-I, + 1] by affixing two horizontals at the ends . We have
obviously

(17.3)

	

12k-(V, A,).:-=o .,,, =

	

1=- .°k (9 21, , A,)I > c, (d) k' .

According to (15.4) the slopes of i'2,;(x) are absolutely

_ l
(Y")

k log k=
C27

51f 51or - 100 c x

	

100 and
k ~ c,,,( ;3) we have

( 17.4)

	

t '2 1 (x)

51for	
100 = x ~

	

I (x real)

'~b2l (x) = 0
and for -l .x<x+ham +1
(17.5)

	

~jP21(x+h)-w21(x)j - c37(r?)hklogk .

Now our function f(x) will be of the form
b

f (x) _ >,' ~ Vj->>,, (x)
T'=1 r. z.

with sufficiently quickly increasing r,.-indices, as in 7. The proof of unbound-
edness of L,,(f , A,) needs only slight changes compared to that of 8, so we
can omit the details . As to the Lipschitz exponent of f;(x) we have (p to be
disposed later)

f(x+h)-f.(x)

P. ERDÖS AND P. TURÁN

I

v

r-=p

1 ( Y)2,,.(x+h) + I q ! 2,,,(X) )

kC
2 '

-k

iP,,. (x + h) - ~'2 , . (x)
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or owing to (17. 5) and (17.4) "essentially" (owing to the quick increase of
the r„'s)

If,(x+h) f(x)I

	

c,,, (,3) ) krp +2e+	
r„+1

Choosing p so that
l

r,,

	

h <

everything follows since a is arbitrary small . Hence assertion d) is also proved .

(Received 22 January 1955)

POJIb (DYHKUYIH JIEEEI'A B TEOPI]YI HHTEPIIOJ151UHM J1AI'PAH)KA

CI . E p A e m (llepycanuM) ii I] . T y p a H (BypanewT)

(P aN10Me)

i'naBHbIM pe3y,'IbTaTOM HaCTOSmjen pa60TbI ABnn1eTC51 AOKaaaTenhCTBO
TeopHH CXOAHMOCTIH H paCXOAHMOCTH HHTepnoiNuHH JlarpaHNCa c ieayeT pa3n11'iaTb MewAy
„rpy6oii" H ,TOHKOH" TeOpHSIMH . „1'py6ow' AB']NeTCN iaCTb TeOpIIH, 3aBHCNllAaN TOAbKO OT
6bICTpOTbI Bo3paCTaHHA „ae6er0BbIX ROHCTaHT"

,11,,(A)° mix

	

I11,(x)~
-1- :c-+1 v=1

rae A 03HagacT OCHOBHYIO MaTpngy HHTepno INUMH, „TOHKHe" we ApyrHe pe3ynbTaTbI .
ITnaBHaN 3agava COCTOAna B OTAe7eHHH 3THX ABYX TeopIiu. 143 pa3nHYHbIX BOEMOWHIIX
ToIeK 3peuMB MEI 3AeCb 0cTaHOBHMICH Ha TON, np11 KOTOpOH MaTpHgbI A Ana npOH3BOnbHÖ
Maaoro nOnOWIiTenbHOro 'nicna E, H AJSI 4JHI cHpoBaHHOro 0 < 1? < I nOAgHHeHbI yCJOBHHM

M,, (A)
(1)

	

lim	 ,6,e < c1 (E) (<~~ n
M,, (A)

(2)

	

lim	# _ E > c_(e) (> 0),
,z

	

n

a cJIeAyeT onpeAenATb Te Knacebl cjyHKaHii Lip a B [-I, ±1], AnN KoTOpbIx npH nlo6oii

MaTpnge yJOBneTBOpclIoLI eu ycnoBHNM (1) 11 (2) HHTepnonN[HSI npHroAHa, n Te Knaccbl, gim

KOTOpEIX IIHTepnoJlNunSI npH nio6bIX TaKHx MaTpngax HenpHrOAHa . OKaabIBanocb, 'ITO ecnn
HCXOAHTb H3 KnaCCbI MaTpHL yAOBneTBOpAiOH),HX (1) ii (2), TO ,ToHKaq" TeopHN eCTb TeopHH
CXOAHMOCTH-paCXOAHMOCTH Tex Kiacc Lip a, AnSI KOTOphiX

	 <a<~<
t 2

Bonee TO IHÖ, HMeeT McCTO cneAyioLI ee

a) Ecim Ansi A cnpaBerznHBbI (1) H (2) H HMeeT MCCTO a <	2 , TO CyIAeCTByeT

([IyHKLI,IIA fi E Lip a, RJIA KOTOpOn B3NTb1e no A HHTepnOnRIHOHHhIe nOJIHHOMbI JlarpaHSKa
L,(f1 i A) HeorpaHH'icHbl Ha [-1,+1] . (UHTepn0JI5IWIS1 HenplroiBa .)

3 Acta Mathematica V1 111-2

TOFO, '4TO B
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b) Ecan A wwoB.leTBopAeT VCJIOBHAM (1) n (2) n HMeeT McCTO a > F4, TO AJIN mo6oii
f E Lip a nHTepnomISIH,HOHHbIe nO7nHOMBI JlarpaHHCa L,, (f A) CooTBeTCTByIOI1 ne A CTpeMATCA

It f paBHoMepHO Ha [-1, +1] . (14HTepnoJiIuHA npnroLHa.)

c) Ec .RH a > 13	 +2 , TO ywe cyli>,ecTByeT MaTpnua A ID , yAoeneTBOpAiou~aA (1) H (2),

AJIA ICOTOpOH IIHTepHOJIAIJ,HOHHbIe fOJIHHOMbI L,,(f A0) paBHOMepHO CXOAATCA N f, eCJIH TOJIbNO

YE Lip a .

d) EcJIH a < 9, TO yxce cyal,eCTByIOT MaTpnua A1 yAoBneTBOpsiioiuao (1) H (2), n
4lyHICuI1Af, E Lip a Tarne, HTO HHTepnonluHOHnbIe nOJIHHOMbI JlarpaHxca L,, (f2 , A) HeorpanH-

genbI B HHTepBane [-1,+ 1] .
AHaJ1orH4HbIe Bonpocbl BoBHHICaIOT Taxxce AAA paanoNeHHii B OpTOrOHaAbHbrn pIA,

A.ni MexaHHgecmHx xBajpaTyp H AJIA ApyrHX AHHeniHbIx onepauHii .
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