Some remarks on Euler’s ¢ function
by

P. ErDOs (Budapest)

Recently Schinzel [9] proved the following theorem:
Let ay, @y, ..., a; be any finite sequence of non-negative integers or infin-
ity. Then there exists an infinite sequence of integers n, << n, < ... such that

‘P('ﬂ»z‘_:_"i)

i ——— —=ga; for 1<<i<k.
Lseo @ (41 —1)

(1)

He also shows that the same result holds for o(n), the sum of divisors
of n.

By combining the method of Brun with that of Schinzel T can prove
that (1) holds for all multiplicative funetions »%f(n) which satisfy

(a) f(p*) =1 a8 p*— oo,

(b) N j(pik)—1] = o< for a certain sequence > 1
oy
where p runs through the sequence of primes.

T omit the proof, which is not difficult. One can now ask the question
whether the conditions (a) and (b) are necessary that (1) should hold.
Clearly (b) cannot be dispensed with, since if (b) does not hold then
f(n~+1)[f(n) i8 bounded, but it is not clear to what extent (a) is essential,
¢. g., T cannot decide whether (1) holds for d(n) (the number of divisors
of »). In fact 1 cannot prove the existence of an infinite sequence n;. sa-
tisfying '

d(m+1)[d(ng) — 1(Y).

(1) In faet one can eonjecture that the quotient dn-+-1)/d(n) (1 < 0 < o0)
is everywhere dense on the positive real axis. 1 ean prove by Brun's method that
d{n-+-1)/d(n) is dense in a eertain interval. The idea of the proof is as follows: Denote
by d’(n) the number of divisors of n composed entively of prime factors = nl/l10
T easily follows by Brun's method that d{n+1}/d’(n) is denze in (0, oo). Clearly

din-++1) fd'(n+1)
d(n) d’(n)

can tako only a bounded number of possible values, Thus our assertion follows by
a mimple argument.
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Using Brun’s method I can prove (1) for »(n), where »(n) denotes
the number of prime factors of =.
Let y denote Euler’s constant, e* = [](1—1/p)~"” where p runs
p

through all primes. A simple computation shows that « << y; logyn
denotes the logarithm iterated k-times. Now we prove

THEOREM 1. Let f(n) tend to infinity so that

f(n) < logsn[logsn+(a—y+o(1))logyn/(logsn)’.
Then
lim ( max qs(n-i—t)/ min ¢(n+j)) = 1.

n—soe l=ti=f(n) 1=f=f(n)

Next we show that Theorem 1 is the best possible. In fact we prove
THEOREM 2. Pul

f(n) = logsn logen -+ (c+a—y)logyn/(logsn)* (¢ = 0).
Then
lim ( max ¢ fn—l—'e)/ mm g(n+j)) = é.

n—roa l=i=f{n) =f(n)

By similar methods I can prove

THEOREM 3(%). Let limg(n)/logsn = 0. Then there exists an infinite
sequence ny, such that for all 1 < i < g(ny)

(2) 1—g < - (p(ﬂﬂha) < 1-+¢, where e —-0 a8 k- oo,
@ (ne+ 1,—1)

Theorem 3 is the best possible, since it can be shown that if
limg(n)/logsn > 0 then (2) does not hold, and also if limg(n)/logsn = oo
then
(3) lim max ¢(r+i)lp(nt+i—1) = oo and

oo l=i<o{n)
lim min g(n+)/pnt+i—1) = 0.
-0 l=izg(n)

We omit the proof of all these results. It would not be difficult to
formulate and prove the analogue of Theorem 2. All these results hold
with minor modifications also for o(n).

Denote by 4 (n) the number of solutions of ¢(I) = n. Several decades
ago Carmichael conjectured that there exist no integers with 4 (n) = 1.
This conjecture is still unproved and seems very deep. I have corresponded
with Kanold and Sierpiniski about finding infinitely many integers for
which A(n) = k. T prove the following

(2) I stated Theorem 3 incorreetly in my paper [5].
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TuBOREM 4(*). If there exists an integer n with A(n) = k then there
ewist infinitely many such integers.

Sierpinski conjectures that for every &k > 1 there are integers for
which A (n) = k, and that for every & > 0 there are such integers that
a(x) = n has & solutions.

Pillai (see P. Erdos [1]) was the first to prove that lim4(n) = oo,
and that for almost all integers 4 (n) = 0. Heilbronn observed (in a letter
to Davenport) that

l .
A (k) = oco.
> awr -

k=1

I have proved ([1]) that tor a certain ¢ >~ 0 there exists an infinite sequence
ny;. 80 that A (ng) > ny and I have conjectured that the same holds for
avery ¢ < 1( ).

One can conjecture that for » = nyle)

N A (k) > nte,
k=1

but I cannot prove even that > 4 (k)* ~ n'**, though perhaps this is not
k=1

very difficult. All the results here stated hold also for a(n), and the same

unsolved problems remain.
[t is not difficult to prove that the inequalities

(4) lp(n+1)—g¢(n) <n», and |o(m+1)—a(m) < m"

both have infinitely many solutions for a certain ¢ < 1, but I cannot
prove that they have infinitely many solutions for every ¢ < 1.

The proof of Theorem 2 is similar to but slightly more complicated
than that of Theorem 1; thus for the sake of simplicity we prove only
Theorem 1. Denote by 2 = P, < P, < ... <~ P, the primes not exceeding
f(n), by ¢, <@, < ... < @ the primes of the interval (f(n), f:}lo;;;n},

and by R, < R, < ... the primes greater than }logn. Put 4, = []P,,
define i
4; < f(n) < 4y,-

(" Kanold and Sierpinski proved that .L(n) = 2 for infinitely many integers
and Sierpingki found integers w satisfying . (n) = & for many values of k; he did
bhe same for the equation a(y) = n. Schinzel [10] proved that A (n) == 3 for infinite-
ly wany integers .

() 1 ean prove that the number of solutions of g¢ix) = n is less than
nexp(— elognloggn logan) where expz = #® (see [4]).
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Now we show that for every & there exists an n, = i,(e), such that for
every n = m, there exist f(n) consecutive integers m-1,..., m-f(n)
satisfying (1 < ¢ < f(n))

1
5 <m<m,

(1—e¢) l’(l— ) .'7’{?:7-1:':‘] “{14-¢ I]

Clearly (5) will prove Theorem 1.
Define s, 8,, ..., 8my by

(5)

) ”(]_5)(1)”(] B -
T =)=t T 63 IT (- 4)

where the [[' indicates that P rans through the primes P << P;, P~ i.
It may happen that s; = s,_,. This will in fact be the case if and only if

(7) - @,,l (1 + 2)17(‘ 11))

14
(7) elearly implies

(7') 'r(,-ﬂ ’( Mt )1” P;)(l ; lrl)

But since M ijg(i) <~ ey, (7') and thervefore (7) is satisfied only for
t=1
o(f(n)) ’s.
First we have to show that the s; are all defined. Since (7) is satistied
only for o(f(n)) i’s, we have from (6)

—1

51 (n) im) i 1% ftn)
”(‘“Qh) ”*““”m’(”) ” P) ”(pm

Now by a theorem of Mertens(*)

”(1-- —) = (1+0o(1))e ?/log.f(n) = {1-1—0(1)]3“"/10gsn

1
(") The theorem of Mertens in question states thaot ” (1 -—) = (l+o(l))x
p<u P
xe~?/logy (6. g. see [6]. p. 351).
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and
fn)

Y — [H{n)/P
(1= [l 3" = g
PPy P

Thus by a simple calculation
Bf(n)

[] (1-—~ —-—) 1#0(1)]!(:@] (1+ )f(n] (l:g-—; )f[n}e""(“)

L
= (1-%0(1}]””}(1—1— 2) ! logyn.

Now, again by the theorem of Mertens(’) and the definition of the @’s,

1
, \ £ \Hm) /
” (1-— Qi) = (1-+0(1)) log,n/logsn < (1+o(1))™ (1 * 5 ) | logyn
! h

o=l

or ann) < }logn, whence the s;, 1 <i < f(n), are all defined. Put

8 l
Bi= [[] @ B= ][] @ (it s =s., then B, =1).

g_1+1 i 31[-n}+1

Let m satisfy

®) nf2 <m<mn, m=0(mod(4;B),

m-+i=0(modB;), 1<i<f(n).

Such an m exists, since the moduli are relatively prime and by a well
known result on primes (e. g. see [6], p. 341; see also [12], p.56) [[ p <47

P
thus the product of the moduli is less than 418" < 4 /2,
Evidently m--¢ can be divisible by at most 2logn/log,n R’s (since
R > %logn and m+i < 2n). Thus

1 ; 2\ 2lognfloggn
—=]>[1—— = Liady
(9) L:I(l R) a8 1°g“) R

From (8) it follows that for P < P and 1 < ¢ < f(n), Plm-+4 if and
only if PJi¢. Thus from (6), (8) and (9)

gplm+i) o) ( e\ TT(_ 1
Pt = o) IR (145) [T (1-5)

= (1+0(1)) (1"' %) /] (1_' %_)

Te=l



Some remarks on Fuler's unetion Ia
i

if ¢ does not satisfy (7). If ¢ satisfies (7), then from (6), (7), (8) and (9)
7
1 @ (m + @} & 1
[1»}—0(])}Q(1-—E) g < (o) (1 )][(1 )

Thus in any case (5) is satisfied, which proves Theorem 1.
Now we have to show that Theorem 1 iz the best possible. Let

1 ; 1
T R LR, AR .. i)
" loggn (logsn)*
for some ¢ > 0:; we shall show that
(10) lim( max ¢(n-+i)/ min g(n+4j) > 1

= lagi=f(n) Lzj=f(n)

At least one of the integers n—d, 1 << i < f(n) is divisible by 4;. Thus
if (10) were false, there would exist for every e > 0 arbitrarily large
integers n such that for all 1 < i < f(n)

P(n+1)
i
We have by (9)

(12) "-"%f“:’ (1+0(1)) [](1* —) ”(1_ _('5)

Pnlr Qn+i

(11) < (1+¢) ”(1* jt;) < (1+0(1))(1+e)e ™ [logsm

Pﬁp?' ¥

Clearly for each ); there can be at most one of the numbers n--1
n+2,...,n-+f(n) which are divisible by @; (§; > f(n)). Thus by (11)
(12) and the theorem of Mertens(*)

fin)

|1+O(1))J’(ﬂ-)(1_r_ .)f(ﬂ)e*:*f{ﬂ) [(log,n) f(ﬂ) % [E.(f:_f)
N1
{f{u)fP-i-lj 1
= (140(1))™ (1- — (1——)
1 11 2

= (14 0(1))/™e=“™ log,n,

which, as can be seen by a simple computation, is false for sufficiently
small e. This contradiction proves that Theorem 1 is the best possible.

Proof of Theorem 4. Let A(n) = k. We shall prove that for all
but o(xflogx) primes p < x A[(p—1)n] = k, and this will clearly prove
Theorem 4. If p > n+41 and ¢(l) = n then ¢(pl) = (p—1)n (since all
prime factors of [ are < m+1). Thus A[(p—1)n] = k. The solutions
y = pl of ¢(y) = (p—1)n may appropriately be called trivial solutions,
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Thus our proof will be complete il we suceeed in showing that for every «
and z = xzy(e), for all but exf/loge primes p <, p(y) = (p—1)n has
only trivial solutions. First of all we can assume that for (¢ sufficiently
large)

(13) k>t =te), p—1sz=0(modk?).

To see this we obgerve that it is well known and follows eagily from Brun’s
method (see [11]) that the number of primes p < @, p = 1(modl) is
less than e, /g (I)log(x/l). Thus the number of primes p <= x not satisfying
(13) is less than

20\ 1 \" (’l" —H) P
e o T T D T T
logx = ko (k) e K 2 logw

(we take first &% < 2'%, secondly k* = 2'* and unse the fact that the

number of integers = 1 (mod#%’)) and less than = iz - .n/kf; +1.

Now let @' < p <& and let p satisty (13). Let y be a non trivial
solution of ¢(y) = (p —1)n. If y has » distinet prime factors, then clearly
¢(y) = 0 (mod2™'), and thus p—1 is divisible by a square = 2"*/n,
Thus

Pt or r<tind-2,

Let y=g¢d...qF, gl<@R<..<gy, r<t+nt+2. 8Since y=p
> 2 we have ¢¥ > P+ gls0 a, < 2 since otherwise p—1
— @(y)/n would be divisible by a square greater than (1/n)a"M¢") ~ 4
for sufficiently large w, which contradicts (13). Thus there must exist
a prime ¢ > a°, § = 1(1+n-+2) satisfying

(14) &P <p<a, q>o, (p—1)n=0(mod(¢g—1)), p F#4¢.
To complete the proof of Theorem 4 we must show that the number of

primes p satisfying (14) is < (e/2)(x/logz). First we prove the following
LuEMMA. The number of solutions of

(15) (p—1)n =alg—1), p<w, a<a™, a#n
i8 less than
@ | 1
ty——s 1+ —)
a(loga)

pla(a—mn)

where ¢; = cy(n) depends only on n.
The proof follows easily from Brun’s method (e. g. see [2], p. 540)
and we only outline it. Denote by »,, 7,, ... the primes of the interval
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(n,a™) where 4, is sufficiently small. If ¢ > na™ satisfies (15) we must
have

(16) q=0(modr;), ¢q=1—n/a(modr;), ¢ < nxfail

((16) follows from the fact that both p and ¢ are primes and 2™ < p < ).
If r~a(a—n), then the two residues in (16) are different, and thus we ob-
tain the lemma by a simple application of Brun's method.

Now we split the number of solutions of (14) into three classes. In
the first class are the ¢'s greater than «'~™ where 7, is sufficiently small.
Formula (14) then becomes

(p—1)n =a(g-=1), p<z, 1<a<nz™,

Thus by our lemma the number of solutions of (14) of the first class is
(for sufficiently small #,) less than

an .22 V1 (1-} )<c o .
—s - e M= e
(logz) 1,;@*:“9:::@—»‘) p logw 4 loge
a=n

To prove (17) we observe that

> L1 6+ )< ST b5+ 103

a—nl pla(e—n) pla-n '
a#n

< z;’ L:[(l-}- ) +0Q1) < 2 : é] (1- ﬁ-) +0(1)
(‘Zs—d”[y] +f)(1)<y> e +0(1) < 6y,
d=1 1

and (17) follows by partial summation.

The solutions of (14) of the second class are the ¢’s for which
r(g—1) < logex (¢ < @'~™). It follows from Brun’s method (see [11])
that the number of primes p < x satisfying

p<ax, g¢q<a" p=1(mod(g—1)
is less than

G - cwlogy
logeg(g—1) qloga
since by a well known result of Landau ([7], p. 218)

(18)

CY
. log,y
Acte Arithmetica IV. ) 2

p(y) >
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Thus by (18) the number of solutions of the second class is less than

<:-,:J:ltc)g2 \1' cq:clogz;u N ( z
loge < g (logw)l""‘ = logm)

(19)

where the ) indicates that ¢ > &, »(¢—1) < log,¢. Formula (19)
follows from the fact (see [1]) that if ¢, < ¢, < ... is the sequence of
primes satisfying »(g,—1) < {1og,g,, then g, > n(logn)'*".

“% For the solutions of the third class we have

(20) n(p—1) =a(g—1), p<z, 2<g<a'™, v(g—1)>4}logz.
We split the solutions of (20) into two subeclasses. In the first sub-
class are those for which »(a) > %log,x. Here we have
v(p—1) = v(a)+v(g—1)—»(n) > Flog,z—v(n) > 3log,.

It is known (see [1]) that the number of primes p < a satisfying
»(p—1) > (1+¢)log,x is o(x/logz); consequently the number of solutions
of the first subclass is o(w/logz). The number of solutions of the second
subelass is, by our lemma and the theorem of Mertens, less than

) oy X [] ) e<o B 5ol

pia(a—n)

(the )" indicates that a < # and »(a) < §log,), since
. 1(2/3)logz) 4 [(2/3)10gyz)
L Y .l - § W |
Nite N \ ) | B < /\ (log,a+e,,)* [k! < (logz)”™.

— (1 il dd D f dnd
. k=1 p< k=1

Thus from (17), (19) and (21) we finally find that the number of solutions
of (14) is less than $ex/loga, and thus Theorem 4 is proved.

By similar but more complicated arguments I can prove that if
there exists an integer n with 4 (n) = k, then the number of integers
n << @ satisfying A (n) = k is greater than cx/loga for every ¢ if @ > zy(¢).

By more complicated arguments I can prove that for every & there
exists an A = 4(¢) such that the number of primes p < x satisfying

p<w®, p=1(mod(g—1)), ¢>4

is less than ex/logz. Another theorem in this direction is the followi g:
Denote by »(k,n) the number of prime factors of n not exceedingnk;
then for every & there exists an 4 = A (g) such that the number of in-
tegers n < # for which

(1—e)logsk < v(k, n) < (1+4-¢)log,k
does not hold for some k& > A is less than ex. This result is known (gee [3]).
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Similarly the number of primes p < @ for which
(1—e¢)logek < v(k, p—1) < (1+e)log,k

does not hold for some k > A is less than ex/loga.

Finally I can prove that for every ¢ there exists an 4 = A (g) such
that the number of integers » < # for which » = 0(mod(p—1)) holds
for some p > A is less than ex. From this it is easy to deduce that the
density of the integers which can be written as the least common multiple
of integers of the form p*(p—1), 0 < a is 0.
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