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Let f be a complex-valued function defined in the upper half-plane H. 
The cluuster set C(f, x) at a point x on the real axis is defined as the set of 
all values w (including possibly w = m) for which there exists a sequence 
{xJ = (x~ + i Y,J such that x, + x, yn 4 0, and f (2,) -+ WI, We use the term 
restricted cluster set generically: the word “restricted” indicates either that 
the sequence {z+J occurring in the definition above is subject to special 
conditions (for exampk, that it lie on a line segment), or that the cluster 
set C(f, x, *) is defined in terms of unions or intersections of certain “pri- 
mitive” cluster sets. 

1. An extension of a theorem of Collingwood 

By a STOLZ angle at the origin we mean a triangular domain with one 
vertex at the origin a.nd the ot’her two vertices on a common horizontal 
line in H. Corresponding to each STOLZ angle d at the origin and each 
real number X, we denote by d, the image of d under the translation that 
carries the origin to the point x. By 15’(f, x, d) we denote the set of values w 
for which there exists a sequence (.z,J in d, such that z, + x and f (2,) + w. 
For each function f and each real number X, we use the symbol C(f, x, 6) 
for the intersection of all sets C(f, x, A). 

COLLINGWOOD [2, Theorem 21, has proved that if f is continuous in H, 
then C(f, x, 6) = C(f, x), except, for a set of values x which is of first 
category. (The proposition is actually announced for meromorphic functions ; 
but the proof uses only continuity.) We shall now show that the hypothesis 
of continuity can be dropped from COLLINGWOOD'S theorem. 

Theorem 1. If f is a complex-valued function in H, there exists a residual 
set of values x for which C(f, x, 6) = C(f, x) . 

(Added January 4,196O) : We have just learned that E. F. COLLINGWOOD 
gave a proof of this theorem, in W. H-4YMAK'S seminar, on December 10. 
1958.) 

For the sake of notational convenience, we assume, throughout’ the 
proof, that f is bounded; the proof becomes valid for the general case 
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provided the metric of the plane is replaced by the metric of the R,IENANN 
sphere. 

Let E > 0; let ‘wO denote a fixed complex number, and A a fixed STOLZ 
angle at the origin. We denote by E (f, A, wO, E) the set of values x for 
which the disk / w - wO [ < e meets the set C(f, X) while the closed disk 
lw-wolis does not meet the set C(f,z,d). 

Lemma. E (f, A, wO, E) is of first cntegory. 
Suppose that the lemma is false. Then there exists a positive number 

h and a subset E, of E (f, A, wO, E) which is dense in some interval I and 
satisfies the following condition: if x E Eh, x E A,, and 3 x < k, then 

If(x) - WC! >E. Since the union of the domains A, (X e Eh) is a trapezoid 
with the base I, t’he disk j w - wO j < E can not meet the set C (f, X) . This 
in turn implies that. E (f,d , wO, E) does not meet the interior of the inter- 
val I, and therefore the lemma is true. 

Let (w,} be a set of N numbers such that for each x in H the distance 
between f(z) and the set {zu,J is less tha.n e/2. By t,he lemma, the union 
of the N sets E (f, d, w,, E) is of first category. This implies that the set 
of points x for which C(f, x) contains a point at a distance greater than 
2~ from C(f, x, d) is of first category. 

Next we assign to E successively the values 1, I/2, 1/4, . . . , and we 
see that’ C(f, X, d) = C(f, x), except on a residual set. Finally, we can 
select a sequence {d’“‘) of STOLZ angles at the origin such that. each STOLZ 
angle at the origin contains one of the A(“), and the proof of the theorem 
is complete. 

Let I denote a JORDAN arc which lies in H except for one endpoint 
at the origin ; let 1, denote the image of 1 under the translation that carries 
the origin to X; and let C(f, x, i) denote the cluster set of f at x along 1,. 
COLLINGWOOD [2, Theorem l] proved that if f is continuous in H, then 

c(f,x,a=c(f,x) f or all x in some residual set. We point out that t,his 
result can be obtained by a, slight modification of our proof: since f is uni- 
formly continuous, in each compact subset of H! there exists a domain A* 
that contains all points of 3, except the origin, and such that, with obvious 
notation, C(f, 2, de) = C(f, 2, I) for each II: (in cases where the continuity 
of f deteriorates rapidly near the x-axis: the domain A* is very narrow 
near the origin). If the role of the fixed STOLZ angle d chosen at the beginn- 
ing of the proof of Theorem 1 is assigned Do d”, the proof can be ca.rried 
out as before. 

Our next result shows that in the conclusion of Theorem 1, no assertion 
concerning the exceptional set can be made, except that it is of first 
category. Notation : C(f, x, 8) is the union of all sets C(j, 2, A). 

Theorem 2. If E is a set of first category on the red axis, there exists 
a function f in H such that C (f, x, 1.5’) = (0) for each point x in E, while 
C(f, x) is the extended plane, for each real x. 
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If E is of first category, it is contained in the union of disjoint closed 
sets Fj, each nowhere dense [5]. Let d, denote a t’riangular region, 

symmetric with respect t’o the y-axis, and wit)h an angle jz - 1 at, the 
origin ; and let’ 

WhenD,,D,, . . ., D,- 1 have been defined, we choose a triangular region 4, , 
symmetric with respect Do the y-axis, and with an angle ;z - l/n at t,he 
origin. Clearly, if A, is small enough, t,hen the set 

meets none of t,he sets D, ? D, : . . . , D+ 1. If f (z) = 0 in each of the sets 
D,, then C(f: x, S) = (01 for each x in E. Since the complement of the 
union of the sets D, meets every neighborhood of each real point 2, the 
function f can be defined so that C(f, ) z is the extended plane, for each 

real x. 
We point, out further that in COLLINCWOOD'S theorem on cluster sets 

along families of congruent JORDAN arcs, the hypothesis of cont,inuity can 
not be omitted. Indeed, let (zn} be a sequence in fl which does not contain 
any three collinear points but has each point of the real axis as a limit point. 
Iff(z)=o h w en x G {zA} , and if the sequence {f (z,J) is appropriately 
chosen, then every “segmental” cluster set consists of the origin, while 
each of the sets C(f, X) consists of the extended plane. 

2. Intersections of segmental cluster sets 

Corresponding to each line segment L lying in H and terminating at, x, 
let C(f, x, L) denote the set of values w for which there exists a sequence 
(zn> such that z, E L, x, + x, and f (2,) --f w . There exists a function f in H 
with the property that each real point z is the endpoint of three segments 
Lj such that the set 

n C(f, x2 Lj) 
i=1,2,3 

is empty [ 11. We shall extend this result. 

Theorem 3. There exists a function f in H such that each point x on the 
real axis is the common endpoint of a family (L), of rectilinear segments in H 
with the following properties: 

(0 ILL contains 2% elements, and the set of their directions is a set of 
second category; 

(ii) the. intersection of the cluster sets of f on any three segments in (L>z 
is empty. 

To prove this theorem, we shall first construct the families {Ljz in 
such a way that no point of H lies on three of the line segments; the 
construction of the function f will then be trivial. 
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Let (Lb} (0 < cc < Q,; here .52, denotes the first ordinal of cardinal&y 
2x0) be a transfinite sequence of the nonhorizontal lines in the z-plane; 
let (n/r,) (0 < M < SL,) be a transfinite sequence of the point sets of type F, 
and of first category in the interval (0, E); and let {xx.} (0 < K < J&) be 
a transfinite sequence (of real numbers) in which each real number occurs 
2*0 times. 

Corresponding to the ordinal /l = 1, we choose the first line in {L,) 
that passes through the point x1 and whose angle with the positive real 
axis does not lie in the set M,; and we denote it by L1. Suppose that fl 
has been chosen for all ,!l in 0 < fi < y . From (LB) (0 < /3 < y) we extract 
the transfinite subsequence of lines that pass through the point x7, and 
we denote by 6 the order-type of this subsequence. From (LJ we 
select as Ly the first line that passes through x7, does not occur in the 
set {LB> (0 < ,8 < y), does not pass through the point of intersection of 
any two lines LB and LB, (0 < p < ,Y < y), and whose angle with the 
positive real axis does not lie in 1M,. The selection is always possible, since 
the complement of M, contains 2% elements. We see at once that for each 
real x, the set of lines LB through the point x has the power 2%. Also, 
since the set of angles that these lines make with the real axis is not 
contained in any set of first category, it is of second category. 

If z lies on none of the lines L” (O< M. < Q,), let f(z) = 0. To define 
the function f on the lines L”, we establish a one-to-one correspondence 
between the family of lines L” and the set of lines in the w-plane that have 
positive slope and are tangent from above to the circle /w [ = 1. Then, 
if z lies on two lines L" and LB, we define f(z) as the value w that lies on 
the two corresponding lines in the w-plane ; if z lies on precisely one of 
the lines L”, we define f(z) as the coordinate of the real point that lies 
on the corresponding line in the w-plane. 

If L is a line through X, and if L E {La), then the cluster set C(f, X, L) 
lies on the corresponding line in the w-plane. Since no point w lies on three 
lines tangent to the unit circle, no three of the segmental cluster sets 
C(f, x, L”) have a common point, and Theorem 3 is proved. 

It remains an open question whether the families {LIZ can be chosen 
so that, for each X, the family (LIZ contains aII nonhorizontal lines through 2, 
or at least a residual set of lines through x. 
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