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1. Introduction. We restrict our consideration to symmetric random

walk, defined in the following way. Consider the lattice formed by the points

. of d-dimensional Euclidean space whose coordinates are integers, and let a
point Si(n) perform a move randomly on this lattice according to the rules:
at time zero it is at the origin and if at any time n—1 (n=1,2,...) it is
at some point § of the lattice, then at time n it will be at one of the 24
lattice points nearest S, the probability of it being at any specified ofe of

these being % :

In the present note we examine in some detail the structure of the path
formed by the points Si(0), Si(1), ..., Sa(r), ... . We will sometimes be inter-
ested in the first n points of the path, and at others in some property of
the infinite path obtained as n— oc. Our results will depend to a large
extent on those obtained in [2]; for convenience we shall use a notation which
is consistent with that paper. In Section 2 we summarise the notations used
and obtain some preliminary results which will be needed in the sequel.

The paper of DvoreTzky and ErpoOs [2] was only incidentally interested
in the returns to the origin of a random walk, that is, the values of the
integer n for which Si(n)=0. We study these in defail in Sections 3 and 4.
Since PoLva showed [8] as long ago as 1921 that a symmetric random walk
will, with probability 1, return infinitely often to the origin if d=1, 2, while
if d = 2, it will wander off to infinity with probability 1, the study of returns
f& the origin is only interesting for d =1 or 2. In the case of plane random
walk we obtain the asymptotic distribution of the number of returns to the
gin in n steps and use these to deduce strong laws analogous to the law
the iterated logarithm. The corresponding results for the case d—1 were
ously obtained by CounG and Hunt [1]. In Section 4 we examine some
perties of the cequence of successive returns to the origin.

In Section 5 we consider two problems related to the behaviour of
the distance from the origin of S(n). When o = 3, the result of PoLya
5 that o:(n) — > as n— ~ and DvoreTzky and ErpOS obfained lower
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bounds for the rate at which ry(n) increases. Our first problem concerns the
average rate of increase: this is of interest for any value of ¢ and we obtain
different results for the cases d=1, d=2, and o = 3. The second problem
concerns a modified form of the law of the iterated logarithm for « = 3.

Finally, in Section 6, we consider briefly the multiplicity of points on
the path. We are mainly interested in two questions: firstly, how many
puints of the path are entered a specified finite number of times; and se-
condly, how large is the maximum multiplicity occurring in a path of n steps.

We hope in a subsequent paper [5] to examine in detail the intersec-
tion properties of random walk paths,

2. Notation and preliminary results. For any fixed number of di-
mensions ¢=1,2,... we will be considering the space £2; of infinite random
walks in d-space with a probability measure P(E) defined for measurable
sets in £2; by extending the elementary definition of probabilities of single
steps. (The measure can be defined by mapping the space of paths onto a
g-adic (g = 2d) represenfation of the real interval 0 =x =1, and using Le-
besgue measure. Since measurability problems will not be important, we do
not need to go into this.) P{.} will denote the probability that a path w in

£2, satisfies the condilion within the braces. i E,, E., ..., Et,... is a se-
guence of sets, then we will write
P{E, 1.0}
for the probability that a path w is in infinitely many of the sets E,.
€1y Cay « -y O Will denote finite positive real constants. [x] will denote

tl}e largest integer not greater than the real number x.

L(x)=log.x, L{x)=log...logx (k=1,2,...),

where the logarithm is iterated k times.

¢ will always denote a positive number.

If X is-a wector in d-space, |X| denotes the distance from X to the
origin.

For paths in £2,, we denote by y;(n) the probability that in the first
n—1 sieps, the path does not return to the origin. Clearly

(2. 1) 1=y} = 7@ = -+ =y} = ++- > 0.
In [1] it is proved that, for d = 3,
{2.2) pali) — w4 >0

as n—» =, and
(2.3) ' o< yaln) <ya+ On-"");
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for d =2, y4(n)—+0 and the estimate found is

logl
(2.49) o) — mgﬂ +a[%].
Let us first see that (2.4) can be improved slightly to

1

(2 5} }’;{ﬂ] IOE " -4 ((Iﬂg‘—ﬂ}!]‘
Write t,(r) for the probability that S,(r) = 0. Then for odd integers r, w.(ry=0,
while
(2. 6) (2r) — %*G[IF] as s,

Counting the last return to the origin, we have

1
(2.7) gﬂ 7i(n—28)u.(2k) =

In._ .
By (2. 1) this gives ?.{n}guﬁ{m% 1, which with (2.6) gives

- 1
(2.8) i) = log e,n +o( (log n)* J

Now if 1<k <hk<[n2] (2.1) and (2.7) give

& a
n1—2k) 3w @h)+nn—2k) 3, n(@h)+ '}: w2 =1.

Now take k1=[%]. k,=~[ l and apply (2. 6) and (2. 8) to obtain

2 logn

1 2
A= - —of ).
Replacing n by 2n gives

T |
nim = log n _G[[og nJ
W hich, together with (2. 8) completes the proof of (2. 5).
Now suppose that P is a lattice point in the plane whose distance from
the origin is ¢. Let u.(P, n) be the probability that S.(n)= P. According to
fhe position of P, it can only be reached in either an even number of steps
o an odd number of steps. If it can be reached in an even number of
steps and
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(1) &= ¢, then

. £ o A0
(2.9) w(P, 2Ky = —+ 0 .G[F].
(ii) while if k< ¢, then
(2. 10) (P, 2K) = LI"E +o [LHEL

The formulae (2.9) and (2. 10) can be obtained by counting the number of
paths (out of 4*) which end at P and using Stirling’s formula, or by using
the central limit theorem. \

Now let (P, n) be the probability that in the first n steps the path
does not pass through P. Again assuming that P can be reached in an eveén
number of steps we have

(2.11) Yil(P "H'E (P, 2k} ys(n—2k) =1
on considering the last return fo P,
Subtracting (2. 7) from (2. 10) gives
(2.12) 1Py ) — ) = lﬁ? {(2R)—a (P, 2K) ) yra(n—2k).
Now suppose that i
(2.13) 0<p= ",
We have, for 1<k, < R <[n/2],

g

1 ky.
(P, ) —ya(n) = ;@(n——k.}; ita(2Kk) + ;@{rr—.{'g}k_;” (28 —u (P, 28) ) +

=i :'_JJ W2k —u (P, 2k)}.

Put ki=0* k=n"" and use (2, 1), (2.3), {2.6) and (2. 10) to give

J R (1 ] {loge*+O(1)} T

oar
(2.14) v el ) —rln) =
Similarly, for 1< ks <[n/2],
51‘
vl Py m)— () = ya(m) 2 {m(2h)— (P, 20)}.

log ¢*+ O(1)
log n '




‘SOME PROBLEMS CONCERNING THE STRUCTURE OF RARDOM WALK, PATHS 141

On taking & =+"logloge this gives

(2.15) (P m)y— () = ],ffé iJ iﬁ;"}”

The results (2.5), (2. 14) and (2. 15) together show that under the conditions
of (2. 13)

(P, my— 2loge o)
{2. ]ﬁ) J':{P:ﬂ}_ ]-Dgn lI+D( "I|{-,'o}_ =
It is trivial to show that if o = 20,

; . R [ ]
(2.17) va(P, n) = D[—mgﬂ )

Each of the results (2. 16) and (2. 17) can also be proved for points P
which can only be reached in an odd number of steps from the origin: only
obvious modifications to the proof are needed.

A calculation similar to the one we have carried out will show that if

e=n'""y and 20<w<n'®
2l0gy

then !
| Ul L) J
g n

(2.18) 7Py =1—
We omit the proofs of (2. 17) and (2. 18) as these will not be needed in the
sequel.

d. The number of returns to the origin. In the case = 3, the
situation is very simple. Let 4 be the probability that the random walk
never returns fo the origin, By (2.2), 0 <y, 1, and if R is the total num-
ber of returns to the origin for an infinite path in d-space; the random
variable R must have the geometric distribution

(3.1) - P{R=k}=va(l—yy (k=0,1,2,...).

Let us now consider in detail the case d =2 of a random walk in the
plane. Let R, be the number of returns to the origin in the first n steps.
Let W, denote the suffix of the r'0 return to the origin. That is, there are
r—1 returns to O among Si(1), 8.(2), ..., S{n—1) and Si(n)=10 where
n= W,.. It is clear that

9:2) 7i(m)=P{W, = nj} —P{R..+=0}.

We shall see that R, has the order of magnitude log n, so let us define
a new random variable T, by

(3.3) oot g

log n
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Let x>0 be any real number; our aim now is to try to estimate P|T, < x}.
Define an integer g by

(3.4) =[x log nl - 1.
Then if Wy <n, we certainly have T, = x. That is, we have

—_ Hgel 5T P \ | \ nil'
P{T" :I} '=P{u".l":-n1|' _.!{P PW,—WH-J < ;‘Ill_-lpfwl{ q—”.

since the variables W,—W.. (s=1,2,...,) are independent and all have

the same distributions as W,. If p= [%J, it follows from (3.2) that

P{T. = x} = [1—yup)]".
log n_
(L(m)'™*
P{T.=x}=e™(1+0(1)) as n—»r oo,
Note further that we have ;
(3.5) P{T.=x} =e™ (1 +o((lognm) "))

uniformly in x for x < (log ).

We will later also need an estimate for P{T, = x} in the case x= klogn
where & is a constant. The method used above is nof completely accurate
in this case, but it is stll sufficient to give

Thus, provided x< , we have, on substituting the estimate (2. 5)

for y(p),

g Enlogn

(3.6) P:T,,‘;klngﬂlﬁﬂcm

for any positive number &

Let us now try to obtain an upper bound corresponding to the lower
bound (3.5). Let E, (k=1,2,...,¢) be the event that precisely & of the
variables W,—W,.; are greater than or equal to n, while §—#% of them are
less than n. Then clearly, since the events E, are mutually exclusive,

4,
(3.7) P{T.<x}= %’P(Er.-}.
By (3.2), we have that
Z, L : ;
= PE)—2, [i) fr@} (1 —n@) " =1—(1—r(@)"
Now, using the estimate (2. 5), it follows that, for x < (log n)**,

(3-8) P{T, <x} = 1—e (1 + Olog 1) ™)
uniformly in x for that range.
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Thus (3. 5) and (3.8) together show that
(3.9 P{T.=x)—e™[1+o(logn) '] as n-—s ==,
uniformly for x < (log n)*.
If x is restricted to a fixed range, say
0y < X< Gy,
then a better estimate can be obtained. We have, instead of (3. 8),

P{T.<x}=(1—e™} ll"i'oll_uér;)"

In this case the estimate (3.5) can be improved to

P{T.=x}=e™ ,t +a[%ﬂ]{.
Thus we have

(3. 10) P{T. = x} =g

uniformly for ¢ < x < ¢,

We need (3. 10) to allow us te obtain a satisfactory upper bound cor-
responding to (3. 6).

Put 5= [k(log ny], t=[klogn]. Then

olegse)

P{T.=klogn)=P{W,=n}=P ]"T_‘::’{Wn—%-... = nl‘ — [P W= njJiwe,

since W.— W,y are independent and all have the same distribution as W,.
Now P|W,=n}=P{R.<t]. Using the estimate (3.10), this shows
that there exists a constant c,, ’dtpending on k such that

(3.11) P{T, = klog n} = e-"*1oe(log n)"
for large enough values of n.

The detailed results obtained in this section will be needed in the se-
quel. Let us summarise the picture in the following
Tueorem 1. If R, denotes the number of returns fo the origin in the
rst n steps of a plane random walk, then

limP{R, <xlogn)=1—p¢™

or x < (log my**, and the limit is approached uniformly in this range.

Thus the asymptotic value of the mean of the random variable
R. !

is =y This ties up with one of the main results of [2] where
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it is shown that the number of lattice points entered in n steps is

= (1-L0(1)) with probability 1. Thus the average multiplicity of points

I
entered must be = log n.

-

REmark, CHunG and HUNT [1] found the result corresponding to Theo-
rem 1 for random walk on the line. They showed that if N, denotes the

number of returns to the origin in the first n steps, then % has a distrib-

ution which tends to that of | V| where ¥ is a normally distributed variable
with mean 0 and variance 1. f

We now go on to consider laws of the type of the iterated logarithm
for the random variable 7. Since the methods required are complicated and
not essentially new, we will not always give complele proofs, First let us
consider the small values of T.,.

THEOREM 2. If ¢(x) decreases to zero, ¢ (x)logx increases o - ~ as
X—»oc, and R, is the number of returns {o the origin in the first n steps
of a plane random walk, then .

PiR.=g(n)logn i.o}=0 eor 1,

glx) 5

converges or diverges.
] o o0g X A o

according as

Proor. The integral converges or diverges with the series ‘5 e i where

gu—g(m) and m—2" (k=1,2,...).
Suppose first that X, converges. We may assume that ¢ (x) = (log x)
since otherwise we can replace ¢ by

1! ['.l

() — max {op(x), (log x) "]
without upsetting the convergence of the integral. Hence by Theorem 1, for

k large we have
P{R:, <2 logm) < o 4.

By the Borel—Cantelli lemma, there exists with probability 1 an integer &,
such that ., = 2q: log m. for k= k. Now if my >0 = ny,

lﬁ?u 5 I lFe"'.’.

log nt = log F=3a
Hence
E_-l

@ =q(n) for n=m,.
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Now suppose that X¢. diverges. We need to be a litle more careful
as the events considered above are not independent. The conditions of The-
orem 1 are satisfied so that

(3.12) P(W,—W, > ™) =P(W,.,>¢" ™) = PR, =2")
where f,= [¢” "], Now

¥y
P{Ei‘. < 2r'-I] = F: t 'rr ~

P S el .

for r=r, by Theorem 1., since f,—» oe. The events W,—W, > o'
(r=1,2,..)) are independent. Hence again appealing to the Borel—Cantelli
lemma, there are infinitely many imtegers r for which

“rzr E"ﬂ T

and so

(

gt <=2
for infinitely many integers f,. This completes the proof of the theorem.
CoroLLAry. There is probability | that, for any constant k, R, <

_ fogn . 2 :
< ¥log logh infinitely often; but for any & >0, there is probability 1 that

. log n
R. > {iog log 7)™ Jor all large enough n.

Now let us go on to consider the unusually large values of R.. For
this purpose we shall find it useful to look al the sequence at the points

(3.13) my ="  (k=2,3,...).

Suppose w(x) is a monotonic function of x which increlises to + =~ as
¥ — -+ oo,

Write
14) o =w(m) (k=2,3,..)

AR,
lag m,

Pi }r;a;.l;pﬁ_

!
Tueorem 3. [f w(x) is a monofonic function which increases to -+ =
x—-+ and 2¢™* converges, where w is given by (3.13), (3.14), then
k=2

P “."-;éf;';- S y(n) i. a.I —0,

el Mathemalica XU1-2
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Proor. We may assurde that «o(n) = 2 log, n, since otherwise replacing
() by ¢ (n)=min [y(n), 2 log.n} will not effect the convergence of e ™
and will only strengthen the result of the theorem:

Then by (3. 13), (3. 14) and (3.9), a simple computation shows that,
for large enough £, -

Applying the Borel—Cantelli lemma we have, since Ze™"* converges, that
there exists with probability 1, an integer & such that

_'f.'.*?,,,h_i_l = e
m = iy for & = ks

Then if myp >n=m, and k= 4k,

ARy _ =L
logn — logm, —

==l = w(n);

and therefore there is probability 1 that

T
Ing > (n) only finitely often.

To prove the converse of Theorem 3 requires a great deal more trouble due
to the independence difficulties in the application of the Borel—Cantelli
lemma., We state two forms of the theorem which are almost equivalent.

Tueorem 4A. If wix) is a monotonic fonction satisfying w{x) = c.ly(x)
Jor some ¢; =0, then

!il h:;r—; >p(n) .o =0 or 1,

[0

according as e " converges or diverges, where iy, is given by (3. 13), (3. 14).

o

,_
||

THEOREM 4B. If w(x) is a monotonic function increasing to - = siuch
that wx)/log x decreases fo zero us x--»-f =, then

P::%g—’}w(n} i u!—(} or 1,

according as "'lég)x e~ converges or diverges.
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CorROLLARY. If r >4 is a positive integer, and

wx) = Li(x)+24(x) + L(x) + --- 4 (x) + o (%),
then
R,
P Togn
according as t>1 or t =1,

It is clear that for functions w(x) which satisfy the conditions of both
theorems, the two Theorems 4A, 4B are equivalent. The corollary can be
deduced from either. It seems likely that the condition w(x) > ¢uli(x) of
Theorem 4A could be relaxed, but some sort of lower bound to the rate of
growth of w(x) is necessary. A proof of Theorem 4A can be obtained
by making suitable modifications to the proof of ErDOs [4]; and a proof of
Theorem 4B can be obtained by modifying the proof of ChunG and Huwr [1].
By either method the details are extremely formidable, and we do not pro-
pose to write them down as there is only one idea needed which could be
described as new. This idea will be illustrated if we give a proof for the
first term only of the asymptotic expansion of the critical w(x). This is given by

Tueorem 4C. If w(x)=clog log log x, and R, is the number of refurns
fo the origin in the first n steps of a plane random walk, then

n‘?..
log

> pin) i oi—{] or 1,

>ap(n) Lo =0 or 1

uecording as ¢>1 or e =1,

Proor. With ¢ > 1, and o, defined by (3. 13), (3. 14) the series Je ™
converges. By Theorem 3 it follows immediately that

a R, B
P l IE&';?— > t}}(ﬂ‘} . 0. ‘ = (),
For the case ¢ = 1, it is sufficient to prove that

P}-I%:-Ju[n} m.‘::.

s=[e*" (k=23..)

Ey=— ]% }f;(h}{.
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Then, by (3.9), we have
1 )
P(Ei)— W{I +o(1)),

so certainly XP(E.) diverges. The points 5 are sufficiently far apart to use
the simplest form of argument for overcoming independence difficulties. We
can show the existence of ¢, such that

(3.17) P(E|ELEL. .. EL) = aP(E).

At the end of 5., steps the random walk path is certainly at a distance
< S0 from @. If T, is the event that there is at least one return to the ori-
gin' between s, and s"*, it follows form (2. 16) that

L 2
log &

for large k. If T, occurs, the path can be started from the first return to the
origin after s, . and f, — (s,—s!%") steps taken, Hence

(3. 19) P(E.|T.) = P(Q)

where @, is the eventthat in f steps starting from O the number of returns

(3.18) P(T.|EiEf... El)>1

is not less than _I—Tf;.{sj_] log 5.

Now it is clear that
f > 5 —5%,
so that log ¢ > log si(1—s;'").
It follows from (3.9) and (3. 16) that

1
P(Q) = W{l +o(1)).

Combining this with (3.18) and (3. 19) is sufficient to prove (3. 17), This
shows that
P{E:|EdEs ... Ei.v) diverges,

so that, with probability 1, the event E, occurs infinitely often. This com-
pletes the proof of the theorem.

4. The distribution of the returns to the origin. We have seen that
R, R.
tribution as n— . As a result these ratios do not approach a limit as

in the cases o — 1, 2, respectively, each have an asympfotic dis-

b This is where we introduce an idea not needed in [1] or [4].
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n— ~, We first show that a suitable averaging process leads to a limit,
and then show that if one only counts returns at a suitably sparse subse-
guence, then the number of returns has an asymptotic value.

THEOREM 5., Suppose W, denotes the suffix of the s™ return fo the origin.
Then there are constants o, ¢. such that

(i) if the random walk is on the line, then

b1 1,_* ) . ; ;
jmi | Togn = Wit =& with probability 1;

(i) if the random walk is in the plane, then

lim } ]ﬂ; gt \1 Iqu {—r, with probability 1.
ProofF OF (ii). For a random walk in the plane define a sequence of

random variables by
1

;r{k} - E}E
0 otherwise

if  S.(k)=0, (k=2.8..).

Using (2. 6) we see that

E{u k41 =0 (i=1,2,..)

Hence, if we put pfn)— > u(k), we obtain
=]

1) (#()} — - log logn+ O(1).

The variance o”{r(n)} may be estimated since

r?

1
=4 & :-.l'-z:— =i lngl‘ ]Ugj (P {S (’) =z ﬂ}}

(P {8.(/)=0[8.(i) = 0} — P{S:() =0}).

|I|'I

ing (2.6), a simple computation shows that
a{r(n)} <, loglog n

for a suitable pasitive number ¢,.
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Let
(4. 3) gx=[e"] (k=1,2...);

then log log ¢ — &(1 + a(1)).
By Chebyshev's inequality, using (4. 1) and (4.2), for any & >0,

P ’ 7(g) 1

for a suitable constant ¢,,. Using the Borel—Cantelli lemma, we see that

Toglogg, =

g 1 ~

Now if gua=n =g,

i) . v(n) . vig)

log log g, loglogn — loglog g’
log log geu. : : - 1
By (4. 3) Tog log 2 —+1 as k—+=<. It follows immediately that, with prob
ability 1,
(4.4) L) LR

wewloglogn  =r°

We now show that the result (4.4) is equivalent l'ﬂ (ii). By Theorem 2, we
know that, with probability 1, R, = log n{log log n) " for large n. Hence

(4. 5) W, <erlos+*  for large n.
Similarly from Theorem 3 we can deduce that

(4.6) W, > e'8*  for large n

n
]

W r(W.), so that, by (4.5) and (4. &),

i o i/ I0E 4 I ' ] I n flng w)?
= log n ¢ ok log n :?1 log W, = log n r(elea)

for large #, with probability 1.
Since, with probability 1, both sides of (4. 7) approach the limit 1/,
this completes the proof that

H I :!'1 =I _] f_
i logn < b2 ogW, =t} . "
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Proor oF (i). Precisely the same method will work in this case, using
the results of CHunG and Huwnt [1] instead of Theorems 2 and 3.

THEOREM 6. (1) For a random walk on the line, let R.(2K) be the num-
ber of infegers k for which S/(2k=0 (1 =k =n). Then there is a posi-
tive number ¢, siuch that

P lim R.(2F) log n—=1¢,} = 1.

(ii) For a random walk in the plane, let R, (2[k log k]) be the number of
integers k for which S.2[klog k])=0 (1 =k =n). Then there is a posifive
number ¢ such that

p!lim ReClklogh)
v loglogn !

The proot of this theorem is very similar to that of Theorem 5, so we
omit it.

Let us now ask the following question about random walks in the plane.
We know that the walk returns to the origin infinitely often. However, there
will be some long “gaps” when the walk does not return. How long can
these gaps be? To make this precise, if g(n) is a monotonic function, let us
ask whether or not there are only finitely many integers n for which the path
(n, n—g(n)) does not contain af least one return to the crigin. We have
succeeded in answering this question in the following form:

THEOREM 7. Suppose f(n) is a monotonic fanction which increases to
+ oo a8 Xx— oo, and let E, be the event that the plane random walk path
does not refurn fo the ur{g:’n between n and n'": PIE, .o} =0 or 1,

according as the series z E{E T conmverges or diverges.

sl
)
ProOOE. Let F, be the event |S,(n)|=n'% Then P(F)>l—n'% and

an application of (2. 16) will give

2log n'

R | Wt
P{F. N E))>(1—nr"') Fin) Ingn
since the behaviour of the random walk after n depends only on its posi-

tion at the a'™ step. Hence, for large n,

(1-+a(l)),

|
3 Sy
Similarly, since |S.(n) = n, we can apply (2. 16) to give, again for large n,

(4.8) P(£) >

(4.9) P(E) <
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Now suppose first that ¥—— eonverges where n, — 2. Put fi(n)=

i f( )
~ 3 f(), and let Qi be the event that there is no return o the origin be-
tween e and n9, By (4.9), ZP(Q\) converges, so, with probability 1,
there is an integer K such that there is a return between a, and afi'“~ for
all k= K. Since n/™ = p{—n{ 9, this will imply that for n = n < my,
k = K there is at least one return hetwum n and a'.

Conversely suppose that X f{ = diverges. Because of the law of zero

or one, it is sufficient to show that there exists an # > 0 such that for every
integer &, there is an integer &, with
(4. 10) l’ JUEy | >

:.;,

Since f(a) is monotonic, the series must also diverge. Thus if k,

l_:f{ 4}
is given and sufficiently large, we can certainly find &, such that
! 5 e
{4.11) a6 = o=, flm <10
We will show that this choice of k. satisfies (4. 10) with ﬁ=$- Consider
the events
(4. 12) Di=Ewu—Eunl U En)

The sets Dy, for k an integer satistying k, = 5k = k,, are clearly disjoint and

U E“L :\J.r,-:..‘lrf!\-l:..li:jJIr :

=y
so that (4. 10) will immediately follow if we can prove that, for & =5k = &y,
(4.13) P(Dy) > 12 P(E,,).
There are two cases to consider in estimating P(D.): (i) r—k small, (ii)
r—=k large.
(i) If r is such that sl >apa_ ., then the probability of no return be-

tween plt*s) and nl' is, on using (2. 16),

o dog n, _{I"I.‘. )
SA-e log s, ;{H-..f:) :
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since we know that |S,(nfi")| < mtivs, Thus we have in this case that

(4. 14) P(E. N £ S P(E).

|[| Ey

(i) On the other hand, if all"d = n. , we have by (4.9) that

(4.15) P(E..NE,)< P(E.;).

f{ )
The two cases (4. 14), (4. 15) mgether show that

P(E.,NE.)<3 f{ 5o ,]}P{Elr}

for any r >k This resull applied to (4. 11} and (4. 12) immediately gives
(4. 13). This completes the proof of the theorem.

We state without proof the result for a one-dimensional walk which
corresponds to Theorem 7. It can be proved by similar methods.

Taeorem TA. Suppose f(n) is a monotonic function which increases fo
+ o 4§ X, and E, is the event that @ random walk path on the line
does pot return lo the origin belween n and nl f(n))", then

P{E,-Lo)=10 or I,

according as the series X f(iT} converges or diverges.

We end this section by mentioning a related problem which we have
been unable to solve completely. Clearly the lattice points in any given
suare will eventually all be entered by a plane random walk., How quickly
does this happen? More precisely we have

ProsLEM. How quickly does the function f{n) need to increase so that
in an infinite plane random walk, with probability 1, all the lattice points
within a distance n of the origin will be entered by the walk before f(n)
steps except for finitely many values of n?

We can show using the methods we have discussed above that
Jn) = ntoe 0™ is large enough, but we have failed to get a satisfactory lower

estimate and have no plausible conjecture regarding a necessary and suffi-
Lient condition for the rate of increase of f(n).

5. Behaviour of the distance from the origin. For a random walk

in d-space we put o.(n) = |Si(n)|. Then for d —1, the celebrated law of the

iterated logarithm gives an upper bound to p.(n) for large n. The corre-
nding theorem in d-space is
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THeEOREM 8. For random walk in d-spiace

F]{J.J{.rr}::f f%nlag logn Lo =0 or 1,

according as c> 1 or ¢ = 1.

This result must be well-known though we have not found it stated
explicitly in the literature. It can be proved by modifying the proof for the
case d = 1. :

This form of the theorem deals with the unusually large values of o.{n).
We may ask: how large can a sphere be for §i(n) to remain outside it for
m=n,? This is equivalent to obfaining an upper bound for the rate of escape
of 8;{n). The lower bound was oblained in [2]. We will need to use

Lemma 1. If d = 3, then for a random walk in d-space
Plos(n) < n'" (logn) * i.0.} =0.
This is a special case of the rate of escape result of [2].

LEmMA 2. If d =3 and we start a random walk in d-space at a dis-
fance R from O, then it will enfer a sphere of centre O and radins AR (0<i<1)
with probability

p—(®)"*(1+0(1)
a5 R—+ ==,

This is proved for Brownian motion by Dvorerzey [3]. The random
walk case follows immediately from the relationship connecting them (see [T]).

Because of the result of Powva, the problem of rate of escape is only
meaningful for 4 = 3.

Tueorem 9. Suppose ¢ < 1, pa(n) is the distance from O at the n'" step
of a random walk in d-space, d = 3, and v.(n}= inf oy(n), then

P ; () > ¢ l % iloglogn i r:l.!: = 1.

REmark. Since 7:(n) = o.(n), it follows from Theorem 8 that for ¢ >1
we must have

P : o (i) = rl :i nloglogn i o : —

The case ¢=1 can also be decided: in fact, by taking a great deal more
care one can prove that, for any a < 1,

p : ,,.J,{”};_ﬁ%’_;n:z log log n+al(m)| 7o, : =5
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We have been unable to obtain necessary and sufficient conditions for upper
bounds to the function w.(n) which would correspond to the results of
Erpos [4] and FeELLER [6].

ProorF oF THEOREM 9. Lei ¢, c,, satisfy
(5. 1) Doe<coupsea<l

Consider a single axis in ¢-space and let g(n) be the number of steps which
are taken in the direction of this axis. Lel

Q. = }q(n} = [%][

Then, since steps along the direction of each of the d axes are equally likely,
we have

5.2) P(Q)= 5

Now, by considering only the distance from the origin in the direction of
this one specified axis, we have

\h2

(5.3) P ]{?-r(.ﬂ} }cu[%n log log .rr] L

(log n)™

of-

Further, by Lemma 2,

9 b
galm) =y @ nlog log n] ! =

(5.4) P ':-:'.r(n) >0 [% filog log n

w1 ('-'-'m

since the required probability is that of not entering a sphere of radius ¢ .x
if you start from a distance ¢,x from its centre. By (5.1), (5.2), (5.3) and
(5. 4) it follows that for a suitable ¢y, we have

r'l.'l
(log ny"

In order to apply the Borel—Cantelli lemma we must replace the events in
(5. 5) by suitable independent ones. Let

(5.6) T | (k=—1,2,..)
where
(B.T)

" 12
(5.5) P : () > e i ﬁ n log log n] { >

Lol <ie
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Now put _
(5. 8) == inf |-3-fl:ﬂ}— Suln)|-

Mot SEMEtgpa
Putting mu.q—nm, = {,, we clearly have
Plu. >4} = Plra(ts) > 4] for any 4=0.
Hence if we put : . =
Ey = it > € (? fi log log f;] t .

we have by (5.5) and (5.6) that
€1
#’ll
But, by (5.8), the events E. E,,..., Es,... are independent. Hence, hy
Borel—Cantelli,

(5.9) PlE: io)=].

Now, by Theorem 8, there exists with probability 1 an integer & such that
for K=k,

P(Eﬁ-} =

where O<ecy< ).

N i
@.T(m.}t:E[ 7 |08 log m] -

Using (5. 6) this shows that
(5. 10) el < m5
!:inaily, by Lemma 1, there exists with probability 1 an integer &, such that
if k=K, .
TulMeiz) = m,}_ ;
Again using (5. ), this shows that
(5. 11) Fulfliea) = (s 108 108 )=
Nﬂwﬂ}suppuse k = Max(k, k) is such that E. occurs. Then, by (5.8) and
(5. 10),

. 2 y 1.l ’ 2 L2
“l.ld_l:_r’l'f_’__mss..(n}' r.n(&- t log log h‘) - me }rl.i ne. log log nm)
for large enough &, by (5. 1), (5.3). Now using (5. 11) we see that for such

values of & we have

2 i
Talfiga) > € lE M log log my ] .

This completes the proof of the theorem.
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We now state a theorem regarding the average rate of growth of o.(n).
This is relevant for d= 1,2 as well as d = 3.

Treorem 10. For a random walk in d-space, if o,(n) denotes the distance
Sfrom the origin of Si(n), then there are constants A, such that

- g .. "

(i) "2' BT R with probability 1,

o 1 —‘1 1

(ii) (og NF = T lo: (@ — &, With probability 1,

iii o5 : with probability 1, for d—3,4
) log N= 1+ foa(m)) b WAL 2 R RS nesie

Proor. The method of proof is very similar to that used in Theorem 5.
The three cases are also very similar, so we consider only the plane case (ii).

Suppase P ois a lattice point in the plane, Lét Y(P, n) be the probabil-
ity that S;(n)=P. Then

{(a) IF |P|<n'Zlogan,

(5.12) PIY(P,m) =0 or ——(14o(1)

according as P cannot or can be reached in n steps. Note that for fixed n
half the points can be reached and the other half cannot.

(by If |P|=>n"?logn,

(5.13) PIY(L, )} — [::]
Thus :;[1+19r(n} ] ‘}“Plj_(f;’?' Using (5.12) and (5. 13) we have

o PIY(E. m) _

- P{Y(P,n)
s I[P [1T{o,.(n}}ﬂ| =

e HOW

Pl Jug W

which gives

2 T 2
F{lﬂg n—loglogn) < & [.1 T () ] (1+o())< - (log n+-log log )
or

{& 14)

2logn

‘5(1 i :g,,{n):.{)_ (14o(1).
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Hence we have

1~ ! o2 Iugn s
(log NP =11+ {ea(n))*\  (log NY = (1+e(1))=1+0(1)
a8 N—s =,

A similar computation will show that the variance is small. It can be shown
that

5 O 1 -
I'{lug NY & -Jl—i—:n.{n}, _G[lugN_]'

The argument of Theorem 5 can be applied, proving first that the
limit exists as n—» =~ through the sequence r,— [¢*'] and then deducing the
general result.

6. Multiplicity of points on a random walk. A point P of the lat-
tice is of multiplicity m(P, n) if the random walk of n steps is at P pre-
cisely m(P, n) timesin the first n steps. Let us first consider how many points
there are ‘which are entered once and only once. For d=1, there will be
0, 1, or 2 of these, while for d =2 there will clearly be many. Lel us con-
sider the case « —2 in some detail. In a plane random walk of n steps how
many points have mulliplicity one?

In [2] it is shown that the probability that the A" step of a random
walk brings it to a point not previously entered is y,(k), the same is the
probability of no return to the origin in the first £#—1 steps. It is clear there-
fore that the probability that at the A*" step a plane random walk enters a
new point to which it does not return before the n™ step is (k) (n—k).

Let M(n) be the number of points of multiplicity 1 on a plane random
walk of n steps. Then clearly

(6. 1) E{M(n)} = 2, r’*(ﬂ} 2 (n—K).

By (2. 1), &{M,(n)} = (n41) {y.(n)}".
Using the estimate (2, 5), we have

(6. 2) E{Mi(n)) =n | (IDIH}" +0 ( {!ﬂgl n}:"_}.‘ '

Again using (2. 1) and (2.5) we have, if & , that

~ ]
BUMM) =2 37— R+ 7alk) X ) =

"

= 0| gy )+ gy + O (Coy
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This together with (6. 2) shows that

(6. 3) &M ()} = [ (ogny * [%_;%?]] '

In order to estimate the variance we need
Lemma 3. Let »(n) be the probability that a plane random waik path (i)
does not return to the origin in the first n steps and (ii) enfers a new point
at the n'™ step. Then
o= |7

REMARK. It is clear that »(n)~ {3.(n)}* as n— oo, but we need only
an upper bound,

ProOF. Let g = [g 1; then the probability that a random walk path has

not returned to the origin in the first g—1 steps is v.(g). Start a path from
S.(q) of length n— g+ 1 steps. The probability that the last of these steps
brings the path to a point not entered since S,(q) is y(n—g+1) = r(g)
by (2.1). Now if the path is to satisfy both conditions (i) and (ii) it clearly
must not return to the origin in first g—1 steps, and the 2™ point must
certainly be a point not enfered since the g™ step. Thus »(n) = {7:(g))°, as
required,

Now let p. be the probability that in a random walk of n steps, the
i step leads to a new point of multiplicity one, and let p; be the proba-
bility that at both the /™ and /™ steps points of multiplicity one are entered.
By splitting the path into three parts it follows that

(6. 4) Py = yyr(j—i)r:(n—j)
for 0=i<ji=n. Now

M) = X (py—ppy=2_2  (Py—Pip).

Using Lemma 3 and (6. 4), this gives
©5 o=z 3 0ne—n ]I —rli)rta—i) .

The double sum in (6.5) can be estimated by splitting it into 4 parts. Let

— {-ia-——-] Since all the terms are positive and less than 1,
- Sae st s Y Y S
W prz;g k; 'I'E%; i + :-",T,'-"_' W -E%’;—‘: W +J.=:gﬂ- |T'_-'-1r_%|i+h| Fii?éi% kg Hﬁ':E-J‘!'_‘:.EH e
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The first 3 terms are U'{I‘-g and the fourth, by using (2.5),

mlog lagn i Thus

(log ny

n}'

= L o log log n
o' (M, ()} = U{ (lf}ﬁ_—'

This variance is not guite small enough for a straightforward application of
Chebyshev's inequality. However, the method used in Section 5 of [2] can be
applied here with only minor modifications to show {hat

i| e T et Y (e :
P i M|(ﬂ']' - {lﬂ__g_ﬂ'}l ] {]'ﬂg H}J H — Ul\[_h'lg_n}‘_") [i} ..‘-'D],

and the strong law can be deduced, as in [2], by using the sequence

—[&"] for
I
o S S
For details of the method the reader is referred to [2]. Thus we have
proved

THeorem 11. £f M\(n) is the number of poimls of the lattice enfered once
and only once in the first n steps of g plane random walk, then

) fim Mmlogny

PJ,._,., atn '1 k.

REMARK. For a fixed positive integer ¢, a modified version of the above
proof will show that the number of points of multiplicity ¢ in the first n steps
of a plane random walk is given asymptotically by the same formula

_n
(log ny -

A much simplitied version of the same argument suffices {o prove

THeorEm 12. If t is a positive integer, and d =3, then the number
Qu(t, n) of points which are entered by a random walk in d-space precisely
times in the first n s.r‘eps is such that

PI lim Qutt,m {f 4, = y(l—y)t-ti =1,

- T

where . is the probability that the path will never return to the origin.

REmMARK. This means that in ¢ = 3 dimensions the proportion of points
entered by a random walk of n steps which have a given multiplicity agrees
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with the distribution (3. 1) for the number of returns to the origin. We feel
sure that this result must also be true for the plane random walk, though
we have not attempted to prove it

The result of Theorem 12 shows that, for o = 3, most of the points
entered will have small multiplicity. Let us now ask what is the largest mul-
tiplicity occurring in the first n steps of a random walk.

TheEOrREM 13. Let Tu(n) be the upper bound of the multiplicity of points
entered in the first n steps of a d-dimensional randem walk (d = 3). Then

' ) D 3
pem 1OEN \
where:
1
L?—_W (d—g,“',...}.

Proor. Suppose first that 4> Za; then by (3. 1),
P{Ri(n) = 4 logn} < (1—yu)t 't
There are at most n points entered: hence
| P{Tu(n) > Alog n} <n(l—ypa) ™" —n'"%,

Using Borel—Cantelli it follows that the event {T(n) > (4a+#) log n} happens
gnly finitely often for the sequence m=2' (k=1,2,...) and as a result
happens for only finitely many integers n with probability 1.

There are independence difficulties in obtaining the result in the oppo-
site direction. This Hme we avoid these by splitting the path into a large
number of small pieces

Let

Consider a piece of the path containing u* steps. The probability that
the first point of this piece is returned fo in the first u steps is

1
1—72+0| g e
by (2.3). Hence the probability that this first point is entered Zlogn fimes
in the u* steps is at least

ro) = |1—rit o(m]ﬁnl

IIF Acta Mathematics X1/1—2
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There are at least » such pieces which are now independent. It follows that

P{Tu(n) =4 logn} = 1—{1—pu{n)}’,
s that ,
P(Tu(n) = A log n} < {1—p(m)}’ <e”
for a suitable & > 0, provided Z< 4,. Hence, if i—4;, by Borel—Cantelli,
there are, with probability 1, only finitely many n for which
Tyln) = 4 log'n.

This completes the proof of the theorem.

The problem of maximum multiplicity also has a meaning in the case
d=2. The method used in the proof of Theorem 13, using pieces of length
[n'%] and the estimates (3.6) and (3.11) is good enough to prove that

A e TR Tm)
= | 4.7 = I'ﬂwf (log ny* — hfnmuP {log n)y*

We think it likely that in fact

F‘5 lim T*{"},, — =
wem (10 R)

though we have not succeeded in proving this.

b1,

3
o

III'.
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