
ONTHEMINIMALNUMBEROFVERTICES REPRESENTINGTREEDGES 
OFAGRAPH 

PACL ERDGS and TIBOR GBLLAI 

In this paper we will only consider non-directed graphs which do not. 
contain loops and where two vertices are connected by at most one edge1 
(see [ 1] and [ 71). We permit isolated points and we do not exclude the empty 
graph i. e. t’he graph without’ vertices and edges. z(C) and v(G) denotes the 
number of vertices respectively of edges of the graph G. G’ c G denotes 
t#hat G’ is a subgraph of G. (If G’ E G and G’ + G, we write %‘c C.) 

We shall say that the vertices PI, . . . , P,(k 1 1)2 represent .the edges 
e.(i 2 1) of G if every edge e.(l 5 i S i) contains at least one the 

:oin& ‘Pi(l 2 h s k). If the verticei PI, . . P, represent all edges of G 
we call R = (PI, . , , Pk} a representilzg syste; of G and say that R represents 
G. We denote by p(G) the minimal number of vertices representing every 
edge of G (i. e. we can find p(G) vertices in such a way that every edge of 
G cont’aints at least one of these vertices, but there do not exist p(G)-1 ver- 
tices with this property). If G has no edge, then by definition p(G) = 0. 
The chief object of this paper will be to give various estimations from 
above of p.(G). 

In $ 1 we shall obtain estimates for p(G) in terms of n(G), u(G) and other 
characteristic data of G. One of our results (Theorem (1.7)) which will be an 
easy consequence of a result’ of TURIN states that 

2 
, 1’ 

if v(G) > o . 

f n(G) ’ yV-3 

In rj 2, 3 and 4 we shall estimate p(G) in terms of ,u(G’) lvhere G’ runs 
through certain subgraphs of G. Our principal results are: 

If ,u(G’) S p for all 0’~ G with n(G’) 5 2p + 2, then p(G) s p. (Theo- 
rem (3.5)). 

1 Every edge “contains” exact,ly two vertices, which are “connected” by it. 
2 Numbers which are denoted by letters are always assumed to be non negative 

integers. 
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Let h. 2 2, p>pJh). Assume that n(G) 1 2p--h + 3 and that G h,as 
710 isolated vertices, f&her aswme th.at for every G’ 5 G With, ;z(G’) ( p + h 
,UYZ have p(G’) 5 p. Then ,u(G) 5 2p-h (Theorem (2.2)). 

In general the above results are best’ possible. 
In $ 5 we genera&e our problems to ,,multidimensional graphs”. Instead 

of graphs we consider sets of It-tuples (k >_ 2) and study the minimal number 
of elements which represent each of our given k-tuples. 

(1,l) First of all we need some definitions and notations. 
G will always denote a graph, and if in the following it is not explicitely 

indicated to which graph some symbols and notations belong, we always 
assume that they refer to the graph denoted by G. 

a(&!) will always denote the number of elements of the finite set H. 
We shall denote by PQ the edge connecting the verkes P and Q. The 

graph which consists of the vertices P and Q and the edge PQ wl also be 
called an edge. The graph which consists of the vertices PI, Pz, P3 and the 
edges PIP,, P,P,, P,Pl will be called a triangle and will be denoted by P,P,P,. 

If P is a vertex of G, then we call the number of edges of G which 
are incident to P the valency of P (in G). 

If any two vertices of G are connected by an edge G will be called com- 
plete. The graph consisting of one point will be called complete too. 

If G is complete and z(G) = n we shall call G a complete n-graph. 
Assume that G has at least two vertices. The complementary graph I!? of 

G is defined as follows: @ has the same vertices as G and two vertices of C? 
are connected if and only if they are not connected in G. 

For the definition of path and circuit see [‘i] (path = Weg, circuit = 
= Kreis). 

A graph G - having at least two vertices - is said to be connected if 
any two of its vertices are on a path of G. The graph having one vertex is 
called connected. 

The components of (the non empty) G are its maximal connected sub- 
graphs. 

Denote by S the set of vertices of G. Let H c S. We denote by [M] 
t&he subgraph of G whose vertices are the elements of ikl and whose edges 
are all the edges of G which have both vertices in M. 

If ME S and N c fl then we call the edges one vertex of which is in 
M and the other in N the MN-edges. 

[M, N] denotes the subgraph of G whose vertices are the elements of 
MU N and whose edges are the MN-edges of G. 

G is even if there is an M and N for which MU N=S, DZ n N= 0 and 
[M, N] = G. 

Let Pf S. G-P denotes the graph which we obtain by omitting from 
G the vertex P and all the edges incident to P. 

The vertices PI, . . . , 
two of them are 

Pj(j>l) of G are called independent (in G) if no 
connected by an edge (in G). One vertex is always called 

independent. ,E(G) denotes the maximal qmber of the independent vertices 
of G. If G is empty, then by definition Fu(GI = 0. 
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The edges e,, . . . , ej (j> 1) are called independent if they have no com- 
mon vertex. One edge is always called independent. The maximum number 
of t’he independent edges of G is denoted by E(G). If G has no edges we have 
by definition E(G) = 0. 

We shall call G k-fold connected (k 2 1) if in case X: = 1 G is connected 
and for k>l if z(G) L Jc + 1 and G remains eonnect’ed after the omission 
of any k-l of its vertices (and all t’he edges incident to them). 

(1.2) It follows from our definitions that if G,, . . , Gj (j 2 1) are the 
components of G then if q = 71, V, /L! p or E 

(1.3) It is easy to see that (see [6], p. 134.) 

(1) p(G) + F(G) = x(G) . 

If G is non empty then p(G) 2 1, equality here holds if and only if 
G is complet’e. From this remark and (1) we obt,ain 

(1.4) If G is non. empty then ,uiG) 5 n(C) - 1. Eqdity holds if and only 
if G is complete. 

If we make special assumptions about G we can improve the above 
estimation. Thus the following trivial inequalit’ies hold: 

(1.5) If G is own p(G) s +dC). 

If we assume that G does not contain a triangle (or a complete k-graph 
(k> 3)) then t,he problem of giving a sharp upper bound for p(G) ia terms of 
z(G) is difficult and will not be discussed in this paper- Because of (1.3) (1) 
this is really RANSIY'S problem ((81, [5]). 

(1.6) ,u(G) 5 Y(G) is friaial. Epuality h,olds if and only if no two edges 

of G have a com,mon ~vertex. 

We can obtain non trivial upper estimates of p(C) using both n(G) 
and v(G). 

Theorem (1 ,‘i). Assu,me fh.at C h,a.s edges. Then 

~6’) I 
2 v(G) x(G) 

2v(G) + n(G) 

or in other words: /c(G) is less than or equal to the h.armonic mean between 

in(G) and v(G). Equ.ality holds if and only if G is a complete graph, or if each 

component of G is a complete graph, each of which ha.s th.e same n:umber of vertices. 
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Proof, Our theorem is an easy consequence of a result of TURAN. TUBAN 
proved ([9], p. 26,) that if n(G) = n and G does not contain a complete 
Cj + I)-graph but contain a complete j-graph, then 

where n = jt + r (0 5 r < j). If r = 0 equality occurs if and only if G (G is 
t,he complement of G) has j components and each of them are complete 
t -graphsa. 

Applying this theorem we obtain 

where z(G) = 11, p(G) = j and n = jt + 1’ (0 5 z < j), Further if T = o 
cqualit’y occurs if and only if all components of G are complete t-graphs. 

Let p(G) = k. By (1.3) j = n -k, thus from (2) 

(3) Y(G) 2 in - 4 @ + r) 
2 (n - k) 

From 0 5 T<TI -k we hare k<n--r 5 n. Thus 

(4) (n - r) (k + r) 2 nk , 

equality only if r = 0. From (3) and (4) we obtain, assuming that v(G) z 
= m>O 

Equality can hold only if we hare equalit,y both in (4) and in (2). Thk com- 
pletes our proof since every graph G lvit,h z(G) I 2 is the complementary graph 
of a certain graph. 

From (1.7) we easily obtain 

Theorem ( 1.8 ) 

(1) p(G) g 7dcG) +dycG) 
3 

Equality h.olds if and nnl~~ if G is empty OT if the com.pnnents of G are edges and 
triangles. 

Proof, If G is rmpt’y the theorem is t’rivial, henceforth we shall assume 
,x(G) > 0. It, follows from (1.2) t,hat it will suffice to prove our theorem for 

3 TIJRds gere also in the case T > 0 the necessary and sufficient condition for 
equality in (1). 
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connect,ed graphs and that equalit,y can hold for G only if it holds for every 
component of G. 

Henceforth we shall assume that G is connected. Put n(G) = n, 
v(G) = m. 

For n = 1 (1) clearly holds with the sign < . Thus we can assume m & 1. 
From (1.7) we have 

Pu(G) i 
2mn 

2m+n’ 

equality holds if and only if G is complete. For positive m and n the inequality 
2mn/(2m + n) & (m + n.)/3 is equivalent to 

(3) QS(m-n)(2m-n). 

Therefore if m 5 n, (1) is implied by (2) and (3), further we can deduce that 
equality holds if and only if m = n and G is a complete n-graph. But this is 
possihle only if n = 3. 

If m<n, then since G is connected, m = n - 1 and G is is a tree (see 
[T], p, 51.). Since every tree is even, we have by (1.5) 

For n 2 2 we have (m + n)/3 = (2n - 
This proves (1) for m <n and shows that 

1)/3 Z 1/(2n), equality only for n = 2. 
equality holds if and only if G consits 

of a single edge. This completes the proof of our theorem. 

(1.9) Next we estimate ,u(G) in terms of E(G). 

Assume v(G) 2 1 and let PI PI, , . . . , P, Pi(s = E(G) 2 1) be a maximal 
system of independent edges of G. Clearly the vertices P1, . . . , P,. Pi, . . . , Pi 
represent the edges of G. On the other hand we clearly need at least s vertices 
for the representation of the edges of G. Thus we obtain the following trivial 
inequality 

(1.10) 0 5 PW S 2 +3. 

(1.10) trivially holds for v(G) = 0 too. 

The following theorem which we will often use is due to K~NIG ([;I, 

p. 233.). 

(1.11) (Kijma). POT even paphs p(G) = s(G). 

For the upper bound in (1.10) we have the following 

Theorem (1.12). p(G) = 2 E(G) holds if and only if G is empty or each 
component Gi of G is complete and n(G,) is odd. 

Proof. The sufficiency of the above conditions is evident. To prove 
the necessity observe that because of (1.2) it will be sufficient to show that 
for a connected G sat’isfying z(G) 2 2, p(G) = 2 E(G) holds only if G is complete 
and z(G) = 2 E(G) + 1. This immediately follows from (1.4) and from the 
following 



186 ERD&--GALLAI 

Theorem (1.13). Let G be k-foldcomected (k 2. 1). Assum.e n(G)> 2&(G) 41, 
then k 5 E(G) and 

/L(G) 52&(G) -k. 

The above bound for p(G) is best possihbe. 

Our proof of theorem (1.13) uses t’he theory of alternating paths. The 
proof can be deduced easily from the propert’ies of alternating paths stated 
in 3 4 of [4]. We do not give the details of the proof. 

We remark that one can give a simple proof of (1.12) without using 
(1.13). 

The following example shows Ohat’ the bound 2 e(G)---k in theorem (1.13) 
is best possible: Let G, be a complete k-graph and Gi a complete (2ai + l)- 
graph (k: 2 1, ai 2 0, i = 1, I a . , 
no common vert,ex. The vertices 

1, I: > Ic + I). The graphs G, and Gi hare 

G,(i=l,..., 
of G are the vertices of G, and those of the 

I), the edges of G are the edges of G,, the edges of Gj (i = 1, 
. ,I) , and every edge which connects a vertex of G, with a vertex of Gi 

ii 2 i 5 I). We have 

e(G)-k+ $G 
I=1 

p(G) =k+ 22a,, 
i=l 

n(C)=k+ ~(2ai$ l)=rZ-kk+&E(G) > 2&(G)+ 1. 
i=l 

G is k-fold connected, p(G) = 2 E(G) -k. Observe that in our example n(G) 
can be made arbitrarily large for given E(G). 

Remark. If G satisfies n(G)> 3 E(G) - 2 (E(G) 2 1) and is connected 
then we can prove 

(1) p(G) s 2 e(G) - cl 

where d is the minimum of the valency of the vertices of G. If C is L-fold con- 
nected and n(G)>l, then clearly d 2 k, thus (1) is a sharpening of (1.13). 
The proof of (1) is similar to that of (1.13) and will be suppressed. 

Finally we obtain bounds for p(G) in terms of E(G), Y(G) ancl n(G). 

Theorem (1.14) 

(1) 
W3 - E(G) 

P(G) S ~V-3 + :- 9 

(2) ,+I 5 e(G) + 
n(G) - 2 e(G) 

2 
+ W) - E(G) 

4 - 

Remarks. These bounds are best possible. For (1) we see this by con- 
sidering a graph whose components are edges and triangles, and it is not 
difficult to see that this is the only case of equality. 

For (2) the situation is more complicated. The only connected graphs 
(with Y(G) > 0) k nown to us for which there is equality in (2) are: 1.) an edge, 
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2.) a triangle, 3.) a complete 4-graph, 4.) two triangles connected by an edge. 
It is possible that t’here are no other cases. Clearly if all t’he components of 
G are the above ones then G satisfies (2) with the sign of equality. 

Proof. We use incluc%ion for v(G). (1) and (2) are trivial if v(G) s 1. 
Let rn.> 1 and assume that (1) and (2) holds for every G* satisfying v(G*) cm. 
In what follows assume that G is an arbitrary graph for which v(G) = 712. 
We are going t’o show that (1) and (2) holds for G t’oo. 

We clearly can assume that G has no isolated point’s. If G is not con- 
nected, let its components be G,, . . . , Gj (i 1 2). Clearly ~j(G,)<,m (i = 1, 

9). Thus by our induction hypothesis and (1.2) it, follows that G satisfies 
(ii ‘ind (2). 

Henceforth we sha.ll assume that G is conne&ed. 
Assume first. that G has a vertex P of valency 1 and let PQ be the 

edge incident to P. There clearly exists anot’her edge incident to Q say QQ’ 
(Q’ # P). Omit th e edge QQ’ from G, and denote t’he graph thus obtained 
by G’. Let R be a represent,ing system of G’ with a(R) = p(G’). Clearly R 
cont’ains P or Q, hence we can assume Q<R. But then R is a representing system 
of G too, thus /A(G) = p(G’). A simple argument further shows that ~((7’) = E(G) 
(i. e. if a set of independent edges of G contains QQ’, we can replace QQ’ bq’ 
QP and obtain a set of independent, edges of G’). From this and from z(G’) = 
= z(G), v(G’) = v(G)-1 and from the induct’ion hypothesis we obtain (1) 
and (2). 

Henceforth we are going to assume that’ the valency of every vertex 
of G is 2 2, 

If z(G) - 2&(G) = 0, then (2) clearly implies (1). Xext we show that 
(2) implies (1) also if z(G) - 2&(C) = j>O. Let Pi Pi (i = 1, . . . 7 s; s = E(G)) 
be a maximal syst’em of independent edges of G. Furt,her put N = (PI, . . . 1 

P,, Pi, * - - 9 Pi], g = S-N (S d enotes the set of vertices of G), [N] = G’. 
By our assumptions 

(3) 1 r E(G) 5 v(Q) < Y(G) . 

The vertices of @ are independent (in G) and all of them have ralencv 2 2. ” - 
Thus we have 

Y(G) 2. v(G’) + 2 j 
and hence 

(4) 
1 s w(Q) - y(Q) s W? - G3 , 
2 4 4 

which shows that (2) implies (1). 
Thus it will suffice to prove (2). 
Assume for the time being t’hat z(G) - 2 E(G) = j> 0 and let us use 

our above notations. Clearly if R is a representing system of G’ then Rug 
represent all edges of G, thus p(G) 5 p(G’) + j. Further clearly ~((7’) = E(G) 
and n(G) = x(G’) + j. These equalit&ies toget’her with (3) and (4) imply (2) 
by the induct’ion hypothesis. 

Henceforth we can assume z(G) = 2&(G). 
Assume first that G contains a path with the edges PIP,, P,P,, P3P4, 

where P, and P3 have valency 2 in G. Let G’ = (G-P,) - P3. If G cont(ains 
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the edge PIP, put G” = G’, if not’ G” is obtained from G’ by adding the edge 
PIP4 to it. It is easy to see t’hat 

(5) n(G”) = z(G) - 2, v(G”) 5 v(G) - 2, c(G”) = e(G) - 1, ,u(G”) = /A(G) - 1. 

(5) and our induct’ion hypothesis implies (2). 
Henceforth assume that G does not contain a path of the above type. 
LetPiP:(i=l,...,s;s=&(G)) b e a maximal system of independent 

edges of G. By our assumptions the valency of both Pi and Pi(i = 1, . . . , s) 
are greater than one and by our last assumption t’hey can not bot’h be two. 
Thus without loss of generality we can assume that the valency of Pi is 
23 (i = 1, . . . , s). Assume that for some i (1 5 i g s) the sum of the valen- 
ties of Pi and Pj is greater than 5. Put G* = (G - Pi) - Pf. Thus 

(6) n(G*) = n(G) - 2, v(G*) S Y(G) - 5, e(G)) == e(G) - 1, ,u(G*)2p(G) - 2 . 

(6) and our induction hypothesis proves (2). 
Thus finally we can assume that the valencies of the vertices P, are 

all 3 and the valencies of the vertices Pi are all 2(i = 1, II . . , 8). But then 
Pi and Pj(i + f, 1 5 i 5 s, 1 S j g s) can not be connected by an edge, 
since otherwise G would contain the path with the edges Pi Pi, Pi P$ P; Pj 
where Pf and PI having valency 2 in G, but this contradicts our assumptions. 

Hence we see that the vertices P,(,i = 1, . . . , s) represent all edges 
of G, which clearly proves (2). 

Thus the proof of Theorem (1.14) is complete. 

(2.1) E(G) 5 p is equivalent to the statement that ,u(G’) 5 p for every 
C’ c G with v(G’) s p + 1. Thus the trivial relation p(G) 5 2e(G) can be 
restated in the following form: 

Assume that for every G’ _E G with v(G’) 5 p + 1 we have ,u(G’) 5 p. 
Then p(G) 5 2p. 

It is now a natural question to ask: what can be said about p(G) if for 
every G’s G with r(G’) 5 g (p>p + 1) p(G’) s p? Here we prove 

Theorem (2.2). Let h 2 2. Then there exists a smallest integer p,(h) with 
the following properties : If p>p,(h) and G is a graph with n(G) 2 2p - h + 3 
which has no isolated points, and for every G’ G G with v(G’) 5 p + h we hum 
p(G’) 5 p, then 

(1) p(G)g2p-h. 

Before proving our theorem we make some remarks. 

1.) 2p-h is best possible. To shoK this let G, be a complete (2p-h)- 
graph. The graph G, is defined as follows: Its vertices are the vertices of G,, 
another vertex P, and the vertices of a set ill (which may be empty, but 
which does not contain P and the vertices of G,). The edges of G, are the 
edges of G, and every edge which connects P with a vertex of G, or ill. It is 
easy to see that p(G,) = 2p-h. Now we show that for every G’ E G, (which 
does not contain an isolated vertex) satisfying r(G’) g p -+- h we have 
/((Cl) g p. To see this observe that if G’ does not contain P we have z(G’) 5 
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s 2p--h and therefore by theorem (1.8) p(G’) 5 p. If G’ contains P then 
the number of the not isolated vertices of G’-P is not greater than 2p-h, 
vlG’-P) s p + h-l. Thus from t’heorem (1.8) p(G’-P) 5 p-l or p(G’) 5 p 
which completes the proof. 

We remark that in our example 2.z(G2) equals one of the values 2p-h, 
221-h -l- 1, 2p-h + 2. This is not an accident, since if 2&(G) 5 2p-h., then 
because p(G) 5 2&(G) (1) trivially holds, equality only if 24G) = 2p-h. 
Further a simple modification of our proof of Theorem (2.2) shows that it 
2E(G)>2p-h + 2 we can improve p(G) 5 Sp-h to p(G)<2p-1 where 1 
tends to infinity with p but is of much lower order than p, we can give only 
very rough estimates for 1 = d(p, h.). 

2.) In (2.3) we shall show that if p is not “sufficiently large” compared 
t.o h then (1) does not always hold. More precisely we shall show that if c is 
an arbitrary constant and h> h,,(c) then p,,(h) >ch.. 

3.) If h = 2 our proof could be simplified considerably, and we can 
show p,(2) = 2. 

Proof. of (2.2). (I) According to a well known theorem of R’AMSAY) 
{see [S] and [5]) to every k there exists a v(k) so that every G with n(G) h cp(k) 
either contains a complete k-graph or G has k independent points (i. e. ii(G) 2 k). 
Clearly (p(k) h k. 

We are going to show that 

(2) p,,(h) < h. + $PP h + 4)) . 

Clearly 

(3) h + pl(p1(2 h + 4)) 2 3 h -I- 4. 

Our proof wTil1 be indirect. We are going to show that the following 
conditions lead to. a contradiction: 

(4) C has no isolated point. 

(5) h 2 2. 

(6) p>h + p?(d2h + 4)). 

(7) z(G) 2 2p-h + 3. 

(8) If G’ 5 G and v(G’) 5 p + h then ,u(G’) 5 p. 

(9) y(G) > 2p-h. 

Let G satisfy the above conditions and put 

n(G) = n, E(G) = s. 

It is easy to deduce from our conditions and (3) that for every h 2 2 

p 2 11, 72 2 21, pu(G) L- 19, s 2 9. 

From (8) it follows that s 5 p. Let 

p=s+a. 
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Clearly a 2 0. (9) implies because of p(G) r 2s that 

(10) 2a 5 h-l . 

In the most important cases we will obtain the contradiction by showing 
that G contains a subgraph G’ whose components are triangles and edges 
and for which v(G’) 5 p + h and p(G’) = p + 1 (these facts contradict (8)). 
Assume that such a G’ has a~ + y components, z triangles and y edges. 

Clearly 

Y(G’) = 3r + y g p + h and AG’) =22+y=p+1. 

Thus 

(11) xg.-1. 

Conversely if (11) is satisfied then because of (3) and 21~ + y = p + 1 we 
obtain y > 0. G’ further clearly sat,isfies 

x-j-yss. 
Thus from y = p + 1 - 2x 

x2a-/-1. 

(From (5) and (10) a + 15 h-l.) 
In the following we will only use the G’ for which 5 and y takes on the 

following values : 

(12) In case 2ash-3 x = 2d + 2, y = s-(3a + 3). 

(13) In case 2a 5 h-2 2 = 2a + 1, y = s-(3a + 1). 

(14) x = 2a, y = s-(%-l). 

(15) Il:=afl, y = s-(a + 1). 

(II) Let e, = P,Pi (i = 1, . . , s) be a maximal system of independent 
edges. These edges will be considered fixed during the rest of the proof. Let 

M = (PI, . . . , P,), M’ = {P;, . . . , P;}, N = Al UN’, G, = [N]. 

z = S--V (S is the set of vertices of G.) 

If x is non empty (i. e. n> 2s), then put 

IF = {QD . . . , Qn--2s}. 

From the fact that s = E(G) it trivially follows that 

(16) the vertices of z are independent, 

(17) the edges PkQ, and Pi&, (Pk CM, Pi CM’, i + j, (Qi, Qj> E F) can not 
both occur in G, 

(18) if PiQk and Pj Ql are in G (i + i, k+ I, (Pi, PJ} E M, {Qk, Ql) E @), 
then PfPJ is not in G. 



3JI3JiKdL NUMBER OF REPRlW!NTINC VERTICES 191 

From (4) and (16) we obtain 

(19) every vertex of g is incident to NIT-edges. 

From (17) and (18) it follows that 

(20) if both P, and Pi( 1 s i S s) are incident to an NV-edge then P,P: 
and these two NF-edges form a triangle (this means that there can bc 
only one Nxedge incident to Pi and Pi). 

(III) We prove that 

(21) ,ii(G,) g 2h-3a--2. 

If F is empty then G, = G, n = 2s and because of (9) 

P4 UVJ,) = ~-/L(G) s 2s - (lp-h + 1) = h-%--l. 

In this case from (22), (5) and (10) follows (21). 
For the rest of (III) - ae assume that Nis non empty. Put G, = IN, F]. 

G, is an even graph which, because of (19), is non empty. Thus by the theorem 
(1.11) of K~NIG 

(23) d&J = 4Gd 

Let e;,.. . , eB,(s, = &(GO)) be a maximal system of independent edges 
of G,. By (17) we can assume that 

ei = P, Q, (i = 1, . . , so). 

Put n/l; = (Pi, . . . , Pi,). By (18) the vertices of M; are independent 
and because (20) if Pi E Hi t#hen the only vert,ex of 11: with which Pi can be 
connected by an edge is Qi. Denote by flf; the vertices of 171; which are 
connected with the corresponding Qi and put a(&) = t. 

Sssume t 1 a + 1, without loss of generality we have Hi= (Pi, . . . , Pi >. 
Let di = P,P:Q,(i = 1, . . . , t). Then t’he trianglos Oi(i = 1, . . . , a + 1) 
and the edges E,+~~ . . . , P, form a subgraph G’ of G whose existence because 
of (15) contradicts (8). 

Assume next t g a. The vertices of illi = M; - ML are independent 
(assuming that rW; is non empty) and t(he only edges incident to them belong 
to G,. Therefore the vertices of N1 = .M u (H’-M;) represent the edges of 
G. Thus 

/L(G) 5 cx(,Vl) = 2s - (so---f) 5 2p -- (u + so). 
Thus from (9) 

(24) so s h-n-l. 

Let R, respectively R, be a representing system of G, respectively G, 
having minimal number of elements. R,U R, clearly represents G and thus 
by (23) s0 + p(G,) 2 p(G). Thus from (9) and (24) we obtain ,u(G~) 2 2p-2h + 
+ a + 2. Thus by (1.3) (1) we obtain (21). 

From novv on the triangles d, and the sets &!I, f%!i will not occur any 
more, Thus we will use these symbok and the symbols used for their vertices, 
for other purposes. 
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(IV) Now we shall show that both [M] and [M’] contain suitably 
related complet’e graphs having sufficiently many vertices. From (6) and 
(10) we have 

d[Jq) = -cp(rp(2h -t 4)). 

By F([M]) 5 U(G,) we have from (21) 

#q[M]) <Iis + 4 r q(2h + 4). 

Thus by RAMSAY’S t’heorem there is an iw, c_ M so t,hat [Nl;] is complet’e and 

n([~J) = 9,(2h + 4). 
Let 

.dl~ = (PI, 1 . . , Pu}, iI!!; = {Pi, . . . , Pi} (24 = cp(2h + 4)). 

By (21) @([Mi])<2h + 4. Thus by z([M;]) = p1(2h + 4) we obtain from 
RAMSAY’S theorem that there exists an M;1 EM; so t’hat [Xl] is complete 
and n([Mi]) = 2h + 4. Put 

M;={P;, . . . ,P;h+4}. 

[lo) implies 3(a + 2)<2h + 4. Thus since [M,] and [Mi] are complet,e, 
the triangles 

are all subgraphs of G. 
By (10) 2a 5 h- 1. Now we distinguish three cases, 2a 5 h.-3, 2a = 

= h-2 and 2a = h-l. 

(V) Assume 2a 5 h-3. Then the pairs of triangles (Ai, 0:) (i= 1, . . . , a+ 1) 
and the edges e3aS4, . . . , e, form a subgraph of G which by (12) contra- 
dicts (8). 

(VI) Assume next 2a = h-2. By (7) n >= 29 + 1, thus Fis non empty. 
By (19) t’here are Nx-edges. Now the following st#atement holds: 

(25) Any two vertices of N which are not incident to NEedges are connec- 
ted by an edge. 

For if two such vertices would not be connected, the other vertices 
of N would represent the edges of G. Thus n 5 28-2 = 2p-h, which contra- 
dicts (9). Thus (25) .is proved. 

Assume first that there is a j (1 5 j s s) so t’hat both Pj and Pj are 
incident to N%-edges. By (20) the vertices of these Nredges which are in N 
must coincide. Denote this common vertex by Q1. Consider the triagles (O,, Ai) 
(i = 1, . . , , a + 2) defined in (IV). We can find a of these pairs in such a 
way that none of them should have a common vertex with ej. These pairs 
of triangles together with the triangle Pj P5 &r and together with all the 
edges ei (1 5 i 5 s, i + j) which have no common vertex with our a triangle- 
pairs form a subgraph of G whose existence by (13) contradicts (8). 

For the rest of part (VI) we can assume that no vertex of M’ is connected 
(by an edge) to a vertex of g. Thus we obtain by (25) that, [M’] is a complete 
graph. No we prove the following statement: 



3XD7IMAL NUXBER OF REPRESENTIXG VERTICES 193 

(26) Assume that G contains an edge PiQl (1 & i 5 s, QI Er), assume further 
k + j(1 5 k 5 s), then the edge Pj P, IS not in C. 

If (26) would be false, then since [M’) is complete the triangle Pj P, PL 
is a subgraph of G. From the triangle-pairs (Ai, dj) (i = 1, . . . , a + 2) we 
can again find a of them so that none of them have a common vertex v.%h 
ej or e,. These triangles together with the triangle Pj P, Pi, the edge PiQr, 
and all the edges e,(l 5 i 5 s, i # j, i # k) which have no common vertex 
with our a triangle-pairs form a subgraph of G whose existence by (13) contra- 
dicts (8). 

We now show that every vertex of M is incident to Np-edges, To see 
this observe that if Pk(l ( k s s) would be a vertex which is not incident 
to an NLq-edge, then by (25) this would be connected to every vert’ex of 111’. 
Among these vertices there clearly is a vertex Pg so that t’he corresponding 
Pi is incident to an Nz-edge, which con&diets (26). 

From (18) and from the fact that CM’] is complete it follows that the 
NT-edges incident to the vertices of iW are all incident to the same vertex 
Q1. Therefore by (19) p = (Q1). F rom (26) we further deduce that the only 
vertex of 111’ to which Pi can be connected is Pj(l 5 j s 8). 

Kext we show that no two vertices of .M are connected. To see this 
assume that G contains t’he edge Pj P,;(i J; k, (Pi, Pk} c M). Choose a of 
the triangle-pairs (Oi, dj) (i = 1, . . . , a + 2) so that none of them contain 
a common vertex with the edges ej and ek. These triangle-pairs together 
with the triangle Q1 Pj P, and together with all the edges ei( 1 5 ! & s, i # j, 
,i # k) which have no common vertex with one of our a triangle-pairs form 
a subgraph of G which by (13) contradicts (8). 

From what has been said it follows that the set R = M’ U r represents 
G, further a(R) = s + 1 5 2p---h and this contradicts (9). 

(VII) Finally assume 2a = h- 1. Then by (7) n 2 2s + 2, or F contains 
at least two vertices. Every vertex of N is incident to NFedges. For if N 
would have a vertex which is not incident to an NE-edge then the ot’her 
vertices of N would represent G, their number is 2s - 1 = 2p-h which 
contradicts (9). 

which 
Ry (19) and (20) there is a j and k(1 5 j s s, 1 5 k s s, j # k) for 

the triangles A’ = Q,PjPJ and A” = Q2 P, P; are subgraphs of G. 
We now select from the triangle-pairs (d,, 0:) (i = 1, . . . , a + 2) a.--1 
pairs so that none of them contain a common vertex with ej or ek. These pairs 
together with A’, A” and with all the edges ei(l s. i r 8, Z. # j, i + k) which 
haw no vertex in common with the selected pan-s form a subgraph of G. 
Ry (14) this contradicts (8). 

This completes the proof of Theorem (2.2). 

Now we show that if c (c > 1) is any constant and h > h,(c) then p,(h) > ch. 
More precisely u‘e shall show 

Theorem (2.3). Let c (c > 1) be any cm&ant, then there exists an h,(c) 
so th,at for every h> h,(c) there exists an infeger p>ch. and a graph, C satisf$ng 
the f&wing conditions : 

1.) C contains no isola.ted vertex, 
2.) n(G) 2 2p-h $ 3. 

13 A Matematikai Kutatd Intht Kbzlemhgei VI. 1-Z. 
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3.) For every G’ g G rhich satisfies v(G’) 5 p + h uz have p(G’) ;< p. 
4.) p(G) > Zp-A. 

Proof. (I) A theorem of ERD~S ([3], p. 34. (4)) implies that to every 
r(c) 1) there is an n, (c) SO that for every n>n,(c) there exists a graph G, 
having no isolated vertices, for which 

and for which 

(2) every circuit contains more than 2% vertices. 

We are going to show that 

no(c) h,(c) = max 28, ___ 
I 1 c 

satisfies the requirements of our theorem. 
Let h > h,(c), and choose p so that 

(4) 

Let further n satisfy 

ch<p+h. 

(5) 2P- ;pin<2p--+.&p. 

Let G he a graph having no isolated vertices and satisfying (1) and (2) 
with the above choices of c and n. We shall show that G satisfies the conditions 
l.), 2.), 3.) and 4.) of Theorem (2.3). 

Conditions l.), 2.) and 4.) are clearly satisfied. Thus t’o complete our 
proof we only have to show th.at 3.) js satisfied. 

(II) Let G’ E G, v(G’) 5 p + h. We shall prove that 

(6) AG’) s p. 

To prove (6) we define by recursion for every k z 0 a s&graph G, of 
G’ as follows: G, = G’. If Gk has no vertex of valency > 2 we put G,+, = G,. 
If G, has a vertex of valency > 2, let P, such a vertex and put G,,, = G.--P,. 
Since G was finite there is a smallest k say I so that G[+, = G,. G, has no 
vertex of valency greater than 2, and we obtained G, from G’ by the omission 
of I vertices of valency 2 3. Thus from (4), (5) and y(G’) 5 p + h we obtain 

rc(G,)=n--l< 2p- &P-l’ 

(8) v(G,) =--- ,v(G’) - 3 I < p + 21. - 31 . 
C 

Since all vert’ices of G, have valency g 2, the components of G, can 
only be circuits, paths and isolat#ed vertices. Assume Dhat’ hhere are j circuits 
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among the components of G,. By (2) every circuit of G, contains more than 
28~ vertices, thus by (7) 

or 

(9) 

The edges of a circuit or path of k vertices can ala-ays be represent& 
by [k/2] or [k/2] + 1 vertices respectively. Thus from (7) and (9) 

The edges of G’ which do not occur in G, we represent by the 1 vertices 
which do not occur in GI. Thus we obtain 

NW 5 i-43) + 1 < P - E + ;. 

Thus if p/(4c) >_ Z/2 we obtain p(G’) < p. If p/(4c) < l/2, then by ,u(G,) s ~(a,) 
and by (8) we have 

,4G’) I .dG,) + 1 < P, 

which proves 3.) and thus the proof of Theorem (2.3) is complete. 

(3.1) In connection wit,h the general problem raised in (2.1) t,he following 
questions can be asked: 

Does there exist’ to every p a smallest f(p) so t’hat if G has the property 
that for every G’ E G with v(G’) 5 f(p) we have p(G’) s p, then p(G) 5 ~‘2 

This question can be answered affirmatively. From the Theorem (3.5) 
we easily deduce 

Theorem (3.2). Ass-uvae that for wwy G' 5 G zcith v(G’) 5 

ZL’~ have ,u(G’) S p. Then. p(G) 5 p. 

The estimate f(p) 5 2p+2 

I I 2 
seems t’o be a poor one. 

Conjecture (3.3). 

We can prove our conjecture for p r 4 (see the remark 1. made to 
Theorem (3.10)). Th e example of the complete (p -/- 2)-graphs shows that 

f(P) 2 i”; 2, 9 since if G is a complete (p f 2)-graph for every proper sub- 

graph G’ of it v,-e have ,$G’) s p and v(G’) 5 Pi-2 

i I 
2 -l,but~~(G)=p+ 1. 

13* 
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(3.4) Now xe ask the following question: 
Assume t,hat for every G’ c G satisfying z(G)) 5 q we have p(G’) 5 p 

what upper bound can be given for p(G) ? 
If q = 2p + 1, p(G) can be arbitrarily large. To see this consider the 

following even graph G*: The vertices of G* are Pr! . . . , P,, Q1, . . . , Q, 
and its edges are PiQj(i = I., . . . , m; j= 1, . . . , n). Clearly p(G*) = min (VA, n), 
but a simple argument shows that for every G’ c G* with n(G’) s 
5 2p + 1 we have ,u(G’) 5 p. Here we have for 112 = n ;z(G*) = 2 n. 
p(G*) = n. The more complicated examples given in [2] and [3] show that 
a graph G with n(G) = n, p,(G)> n-o(n) exists so that for every G’s G 
with ,z(G’) 5 Zp + 1 we have ,u(G’) s p. 

On the other hand we are going to prove t’hat for q = 2p + 2 we have 
,u(G) 5 p (which is clearly best possible). 

Theorem (3.5). Asswne that for every G’ g G ZL:ith, ;z(G’) s 2p + 2 zL’e 
h.aae p(G’) 5 p. Then ,u(G) 5 p. 

We will prove Theorem (3.5) in $ 4. It is curious to observe the sharp 
change between 4 = 2p + 1 and q = 2p + 2. This change can be seen also 
in the order of magnitude of the number of edges. 

If 4 = 2p + 2 (3.5) immediately gives 

(1) y(Q) i P@(G) - 1). 

(1) is best possible. To see this let the vertices of G be P1, . . , , P, , 
Qu . . . , Qnep (the set of the Q’s may be empty). The edges of G connect each 
of the vertices PI, . . , P, with all the other vertices of G. Clearly p(G) = p 
and v(G) = p (n-l). 

If q = 2p + 1 t’hen G* shows that v(G) can be as large as 
z(G)’ 2 

[i II 
-2 

For sufficiently large values of z(G) 

t#his is best possible. Here we have 

Theorem (3.6). Let n(G) 2 4(p + 1). Assume that for every G’ g G with 
n(G’) g 2p + 1, p(G’) S p. Then 

Disregarding the condition n(G) 2 4 (p + I), for p = 1 t’his theorem 
is identical with TURAN’S theorem ([9], p. 26.) for j = 2. The proof of Theorem 
(3.6) uses this special case of T~JRAN’S theorem. We supress t’he det’ails. 

Perhaps we can digress for a moment and call attention to the following 
interesting class of problems. Let x(G) = n and assume that for every G’ c G 
with n(G’) I q we have p(G’) 5 pa Denote by g(n, p, q) the maximum value 
of y(G). We wish to determine or estimate g(n, p, q). The cases q 5 p + 1 

are trivial sines there trivially g(n, p, q) = 1 . q>- 2 p + 2 implies by (3.5) 
f i 

g(n, p, q) = p(n-1). The interesting range is p + 2 5 q 5 2p + 1. The case 
q = 2p + 1 is settled by Theorem (3.6). q = p + 2 means that G does not 
contain a complete (p + 2)graph and is thus set’tled by TUR~~N'S theorem. 
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The determination of g(n, p, II) for general p and q seems to be a difficult, 
problem and we made very little progress with it. ERD6S can show that for 
sufficiently large n 

(1) 
(n + lJ2 _ 1 

gw, P, 2 P) = -y-- L 1 * 

The methods required for the proof of (1) and Theorem (3.6) are quite different 
than t,hose used in this paper. 

It is easy to see that conjecture (3.3) and theorem (3.5) can be restated 
in t,he following form: 

(3.7) Conjecture. If p(G) > p th,en there is a G’ E G for which r;l(G’) > p 

an.d t*(W) 5 . 

(3.8) If ,u(G)>p then there is a G’ c G for which p(G’)>p and n(G’) s 
5 zp+ 2. 

A graph G is said to be edge-critical if it has edges and for every G’ c G, 
A@) < P(G). 

G is point-critical if it has edges and for every G’ c G for which x(G)) < 
<n(G) we have p(G') < ,u(G). 

Clearly every G which has edges has subgraphs G’ which are edge-, 
respectively point-critical and for which p(G’) = p(G). 

(3.7) and (3.8) are substantially equivalent to the following statements: 

Conjecture (3.9). For every edge-critical graph G we have v(G) s p(G) + 1 

I 1 2 . 
Theorem (3.10) For every point-critical G we have z(G) s 2 p(G). 

The proof of the equivalence is left to the reader. The proof of (3.10) will be 
given in 5 4. 

Remarks, 1.) Conjecture (3.9) holds for p(G) 5 4. 

2.) In 5 4 we shall show that in (3.10) equality can hold only if 2&(G) = 
= x(G). 

3.) From (3.10) and from the fact that an edge-critical graph is also 
point-critical u-e obtain that for an edge-critical graph G we have v(G) 2 
I 2,W 
- 

I I 2 * 

8 4. 

(3*5)). 
In this $ we are going to prove Theorem (3.10) {and thus also Theorem 

Our definitions trivially imply 

(4.1) A point-critical graph can have no isolated vertices. If G is non- 
empty a& not point-critical, then it has a vertex P with ,LJ(G-P) = p(G). 
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(4.2) Let S be the set of 

(1) sj c_s (i = 1, . . , k ; Ii! 2 

ERD&+GALLAl 

vertices of G, further let 

2); SinSi= .0 (ifj, i,j=l,,.., 7;) and 

;; si=s. 
i=I 

Let R be a set of p(G) vertices which represent every edge of G. Clearly 
R n Si represents all edges of G, = [Si], thus 

(2) i$‘/4Gi) 5 P(G) . 

If there exists a decomposition of S into non empty subsets Si satisfying 
(1) for which 

holds, then we say that G is decomposable and we call the set (G,, . . . , Gk] 
a decomposition of G. The following two statements trivially follow from our 
definitions : 

(4.3) If G is decomposable we have n(G) > 1 and G has a decomposition 
(G,, . . . , Gk) where all the G,(l 5 i 5 k) are indecomposable. 

(4.4) If (the non-empty) G is not connected, it is decomposable. 

(4.5) If a(G) > 1 and G is indecomposable, then G is point-critical. 

Proof. If (4.5) would be false, there would exist by (4.1) a P c Sso that 
for G, = G-P xe would have p (4) = p(G). Clearly neither G, nor G, = [P] 
are empty and ,u(G~) = 0. Thus ,u(GJ + p(G,) = p(G), but then (G,, G,} 
would be a decomposition of G. 

the 
(4.6) Let G be point-critical and (G,, . . . , Gk} a decomposition of G. Then 

G, (i = 1, . . , , k) are also point-critical. 

Proof. Assume say that C, is not point-critical. Since G, is non empty 
it has by (4.1) a vertes P so that p(G,-P) = ,u(G,), But then by (4.2) (2) 

which is a contradiction since G was assumed to be point-critical. 

Theorem (4.7). If z(G) > 1 and G is indecomposable, then 

n(G) g P/A(G) 

where equality stands only if G consists of a single edge. 

Proof. (I) Because of (4.4) G is connected and therefore it has no 
isolated vertex. If G consists of a single edge z(G) = 2p(G) trivially holds. 
Henceforth we assume z(G) > 2. Let R be a set of p(G) = r vertices which 
represent every edge of G. Put S--R = T. Clearly neither R nor T are empty 
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and the vertices of T are independent. Thus every vertex of T is incident 
to TR-edges. 

Consider the graph G’ = [R, T]. Clearly G’ is even and contains edges. 
Put p(G’) = T’. Clearly 0 < 7’ 5 T. 

We are going to show in (II) that the only representing system of G’ 
with r’ elements is T. This easily implies x(G) < 2p(G), since R is a representing 
system of G’ and therefore T S- r’, or n(G) = r + r’ K 2r as stated. 

(II) Let R’ be any representing system of G’ which has r’ elements. 
R’ is non empty. Put 

R’ n R = R,, R’ n T = T1. 

Assume that RI is empty. Then from R’ c_ T and from the fact that 
every vertex of T is incident to TR-edges it follows that R’ = T. 

Thus to complet’e our proof we only have to show that the assumption 
a(R,) = ‘rl > 0 leads to a contradiction. 

By theorem (1.11) of K~NIC 0’ contains T’ independent edges, say 
ei = P,Pi (PicR, PicT, i=l, . . . , r’). Each of these edges is incident to 
exactly one vert’ex of R’. Denote by e,, . . , e,, the edges incident to the 
vertices of RI and put, {Pi, . . . , P:,> = T2. We evidently have Tl n T, = a. 
Let R - R, = xi, T - T, = Fz. G’ clearly does not cont’ain an i&T,-edge. 
Put 

G, = [RI IJ T,], G, = [xl u Ft]. 

a) Assume first that G, is empt#y. Then 

r1 = r’ = r = v.(R) = a(T). 

Since n(G) > 2 we have T > 1. Then if G, = [{PI, Pi)] and G4 = [S -- {PI, PiI] 
we have ,u(G~) = 1 and p(G,) 2 r - 1 (since G4 contains e2, . . . ? e,). Thus 
(G,, G4) is a decomposition of G and this is a contradiction. 

b) Assume now G, non empty. The vertices of R, represent’ all edges 
of G1 and since G1 contains t’he edges e,, . . . , e, NY obtain 

(11 PC%) = ~1. 

p(G,) 2 r--r1 is impossible since {G,, G,) would t#hen be a decomposition of 
G. But ,u(C,) < r---r1 is also impossible, for in this case if R, would be a 
representing system of G, having p(G,) elements, then R, U R, would represent 
all edges of G and thus 

P(G) 5 P(Q,) + PW < r, 

which is impossible. This completes t#he proof of (4.7) , 

Finally we prove (3.10) and our remark 2.) belonging t’o it. 

(4.8) If G is point-critical then n(G) I_ 2p(G), equality can hold only if 
a(G) = n(G). 

Proof. If G consists of an edge, (4.8) it trivial. We can t’herefore assume 
that n(G) > 2. Jf G is indecomposable, then by (4.7) n(G) < 2,u{G). Assume 
now that G is decompceable and let (G,, . . , Gk} be a decomposition of G 
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where all the G, (1 < i 5 
is point-critical and thus 

n(G) = 
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k) are indecomposable. By (4.6) Gi (i = 1, . . . , k) 

5 n(Gi) i 2 l4 ,uu(GJ = 2 p(G) , 
i=l 

Equality occurs if and only if every G, (1 s i 5 k) consits of a single edge 
In this case the edges of G,, . :. , G, are independent,, which implies 2&(G) = 
= z(G). 

(5.1) In this 5 we generalise our problems to “graphs of several dimen- 
sions” i. e. to k-tqdes. Let S be a set (it’s element’s we will call points) and 
Ii a certain +inite set of k-tuples formed from the elements of S. (For k = 2 
H was G and the points of S which occur in the 2-t’uples of H, i. e. in the 
edges of G were called the vertices of G. This G has no isolated vertices.) 
Denote by x(H) t’he number of elements of S which occur in the k-tuples 
of H and by v(H) t’he number of k-tuples of H. If R c S and if every k-tuple 
of H cont’aints at least one point of R we say that the points of R represent 
H or t’hat R is a representing system of H. Denot’e by ,u(H) t’he minimal number 
of points which represent H. 

Generalising the problems considered in (3.1) and (3.5) Ii. e. in (3.7) and 
(3.8)) we wish to determine the smallest values f(k,p) and g(k, p) which 
satisfy the following conditions : 

Every H for which p(H) z=- p contains a subset H’ and a subset H” 
for which p(H’) > p, ,u(H”) > p and v(H’) S f(k,p), n(H”) 5 g(k,p). 

We now obtain upper estimates for f(k, p) and y(k, p) further we deter- 
mine f(k, 1) respectively g(k, 1) for every k 2 2. 

Theorem (6.2) 

Proof. For p = 0 our statement is trivial. Assume henceforth p 2 1. 
Let H be an arbitrary finite set of k-tuples with p(H) > p and let to = 
= {PI, . . , Pk) b e an arbitrary element of H. Put H, = {t,). Since p(H) > 
> p 2 1 a single element can not represent H and therefore to every PiI (1 s 
5 i1 s k) there is a til in H which does not contain Pi>+ Let tit = {Pi,,, . . . , 
Pi,*} (il = 1, * * * y k) and put HI = {tl, . . . , tk). If p 2 2 we need at least 
three points for the representation of H and therefore we can find to every 
pair of point’s Pi,, Pi,in (1 s il s k, 1 s i2 s k) a k-tuple ti,f, = (Pi,i,j 1 i = 
= ,..., 1 k) which does not contain Pi, and Qili,. Put H, = {ti,i, 1 il,i2 = 
-l,..., k}. Continuing this process for every j (1 5 j s p) we obtain the 
Ltuples til,. ji (of H) and the points Pi,,,,ijii+, and t’he sets of k-tuples 
Hj (iI,. . , ii, ij+i = 1, . . . , k). Put 
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Since y(Hj) g kj we have v(H’) s 3 ?d. Now we show ,u(H’) > p. To 

see this let R be a representing sys&*m of H’. R must contain an element 
of t, say l’r. By our construction P1 ttl, thus R must cont’ain an element of 
t, say P12. If p > 2 then P, and Plz are not contained in trz and R must contain 
an element PI23 of t,,. This process can be continued (p + 1) times and we 
obtain that R contains the elements PI, Plz, . . . , PI2 . . . p +1 or a(R) > p 
as stated. 

Theorem (5.3) f(k, 1) = k + 1 (k 2 2). 

Proof. By (5.2) f(k, 1) 5 k + 1. The following example shows f(7c, 1) E 
= k + 1. Let s = (PO, . . . , Pk). H consists of the (k + 1) k-tuples formed 
from S. Here p(H) > 1 but for every H’ c H ,u(H’) = 1. 

(5.4) In general we know little about the value of f(k, p). Conjecture 

(3.7) states that f(2, p) = ‘l 2 . 
I 1 

This and (5.3) might permit us to conjec- 

ture f(k, p) = P-!-k 

I 1 
Pfk To see this let H consists k . In any caSe f(k, p) 2 

I i k * 

of all the P+k 
I I k 

k-tuples formed from p + lz elements. Clearly p(H) = 

= p + 1, but a simple argument shows that for every H’cH p(H’)sp, which 

prows f&p) 2 
Pi-k 

I I k * 
A trivial argument shows that g(k, p) 5 X: f(k, p). Thus we have 

p+’ 

Theorem (5.5). g(lc, p) g 2 7d (k 2 2). 
i=l 

We know only a little more about g(x”, p) than about f(k, p). (3.8) states that 
g(2,p) = 2p + 2. Further we have 

Theorem (5.6). g(k, 1) = 

Proof. (I) First we show g(k, 1) r [(k + 2)2/4]. To see this let H be a 
set of k-tuples for which p(H) > 1, let further t’ and t” be two k-tuples of 
H for which a(t’nt”) = a is minimal. 

If a = 0, then putting H’ = (t’, i”} we have ,u(H’) > 1 and n(H’) = 
= 2k s [(k + 2)2/4]. Th us we can assume a>O. Put Vnt” = (PI, . . , , P,}. 
To every P, (1 5 i 5 a) we can find a ti of H which does not contain Pi. 
Put H’ = {t’, t”, t,, . . . , t,}. Clearly p(H’) > 1. Further for every i (1 5 
5fSU) 

(1) a(t’ntJ _> a, a(t”nti) 2 U, c#‘J-+‘ntJ s a - 1. 

Denote by ai the number of elements of ti which do not belong to t’ n t”. We 
have by (1) 

a, = a(ti) - a(t’nti) -&“nti) + a(t’nt”nti) 5 k -a - 1. 
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Thus 
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7d(Hy ~ff(f u Y) + zaj g 2 k - a + a(k - a - 1) = 
i=l 

which proves our assertion. 

(H) To show g(k, 1) 2 ((E $ 2j2/4] put [k/2] = I and M = {PI, . . . , Pq) 
where q = I + 1 if k is even and (I = I + 2 if k is odd, Let further 

3li=3~-{Pj}, 3~l={Pjl,..,,Pjl}, tj=3~jUM: (i=l!...,g), 
and 

(the P’s with different indices denote different points). 
Here we have a@,) = k (i = 1, . . . , I + 1) and 

76(H) = g + qb = 
(k + .v2 

[ I* 4 

Clearly p(H) > 1, but for H, = H - {t,> (i = 1, . . . , I + 1) we havr 
p(H,) = 1 since P, clearly represents H,. This completes our proof. 

(Received November 25, 1960.) 
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0 MWHWMAJIbHOM YkiCJIE TOYEK, PEI’IPE3EHTWPYIO~kiX PEEPA 
l-PA@A 

P. ERDCjS M T. GALLAI 

Pe3ioome 

B pa6we @arypqlyIOT JIiWIb TaKBe KOHeYHbIe HeHanpaBJIeHHbIe rpa$bI, 
KoTopbIe He conep>ria-r neTneii u B KoTopbIx fli3e ToYKH cBR3aHbI He 6onee Yei\l 
OAHEIM pe6poM. Yacno ToYeK rpa@a G 0603HaYaeTCR Yepe3 n(G), a WCJIO ero 

pe6epEyn~; WI. 
. . ..e# 2 1) pe6pa rpa@a G IJ Pl,...,P,(k 2 1) Tame TOYKM G, 

YTO nm6oe $l S i 5 j) CORep)KLIT XOTR 6bI OJHy M3 HMX, TO Mb1 rOBOpklM, YTO 

ply . . I) P,, penpe3eHmupyrom pe6pa e,, . . . , ej. 0603HaYnM Yepes p(G) MBwiManb- 
Hoe wcno ToYeK, penpe3eHTupynwixBce pe6pa G. Ecm G He cozepitcm pe6ep, 
TO nonaraeM p(G)= 0. UeJIb pa60TbI iIaTb BepxHHe rpaar4 #IFI p(G), acn0~1h3y~ 
pa3JIIiYHbIe AaHHbIe I4 CBOi'iCTBa G. OCHOBHbIe pe3yJIbTaTbI: 

ECAU G codepwum pe6po, mo p(G) He npesocxobum 2up,voHu4ecKoe cpebHee 
1 

om -n(G) u v(G). PaseHcmso uhieem dttecmo AUUlb 6 moJIi cnyqae, ecflu G nonHbrii 
2 

zpa@, lw.l ec/lu KazdaR KOhmOHeHmil c ecmb IZOAHbll? 2pagT c OdHu,zZ u medf 31ce 
WIC/IOM mo4eK. (Teoperda (1.7).) 

EMU p (docmamowo 8eAuKo)) omHocumeAbHo h(h 2 2) u BAA 2pa@a G, 
He codepwn.gezo u3oAupo6aHHblX moYeK, n(G) 2 2p - h + 3, mo, ecnu &Z/III scex 
nod2pa$oe G’ 2pa@a G, codepwaqux He o’onee p + h pe6ep, p(G’) 5 p, mo 
p(G) S 2p - h. (TeopeMa (2.2.).) 

EMU ~JZR gcex nodzpa@oe G’ 2paQa G, codepxayux He 6onee 2p + 2 moLteK, 
,u(G’) 5 p, mn p(G) S p. (Teopemra (3.5).) 

rpaHLIIJb1, @WypPipyK)~I4e B BTBX TeopeMaX, He MOryT 6bITb yJIyYIlIeHIIb1 
6e3 nanbHe#mx npeAnono~ew& 

5 5 3aHLIMaeTcR (<MHOI?OMepHbIiM)) o606uemie,w npo6neM. 3neCb BMeCTO 
rpa@OB @rypI4pyIOT k:-aTb1, 06pa3yeMbIe I43 no6bIx 3JIeMeHTOB (k: 12). 


