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On the representation of large integers as sums
of distinct summands taken from a fixed set
e

P. Erods (IHaifa)

Let A4 be a seqguence of integers a, < wa, <2
1 = 1 2

d(n) = \11..

—
izt

ie. A (n) denotes the nwmber of «'s not exceeding .

Rome time ago T conjectured that if (u, v) = 1 then every sufficiently
Iarge integer is the sum of distinet summands of the form #*¢’. Recently
Birelh [1] has proved this conjecture, his proof being elementary but
ingenious and difficnlt.

Further I eonjectured that if the sequence A satisfies appq a0 -1 and
is such that every arithmetic progression contains at least one integer
which is the =um of distinct «’s, then every sufficiently large integer is
the sum of distinet «'s. If we further assume that A () = 70 {6, ¢4, ...
denote positive absolute constants), then I have proved my conjecture,
but thiz resulf has seemed of little interest since I have hoped that my
conjecturs is true.

Recently, however, Cassels [2] has proved the following theorems:
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Thew ceery sufficiently large wuwmher is the swm of distinet a's,
20 For oevery & =0 awd oy =0 there exists a sequence 4 conlaining
Fefiwdtely wrany Terms fooevevy arithetie progression and satisfiying
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s0 that the number of integers — & which arve the sum of distinet a’s is < ex
for @ > x,.

It iy easy to see that the first theoremn of Cassels contains Bireh’s
result. The ingenious proof of Cassels is analytic and uses the method of
Hardy Littlewood.

The second theorem of Cassels clearly shows that my conjecture is
wrong, but then my old result is perhaps not entirely without interest.
In fact, I have suecceeded in strengthening it somewhat. In this note I
am going to prove the following:

TuEOREM. Let €' be a sufficiently large integer, and a, < «, — ... an
infinite sequence of integers satisfying

e f iy 5-1t
0) A@)> €Dk jor v >xy. o 4 (%) F——

Assume further that every arithmetic proyressfrm contains at least one inleger
which is the sum of distinet @’s. Thei every sufficiently large integer is the
sum of distinet a's.

It would be interesting to know, especially in view of the second
theorem of Cassels, whether the exponent in (0) can be improved. I have
not succeeded in doing this, but perhaps an improvement of my method
will give the Theorem if (0) is replaced by A (z) > 2+ for every ¢ > 0 if
2 > xy(e). Perhaps the Theorem remains true if we only assume A4(z)
= Cz'2, but a simple argument shows that A(x) > C22 is not sufficient

if ¢ <) 2. In fact, the following simple vesult holds: Let a, < a, - ...

= — ek .
Assume a; - —— where ¢ is an absolute constant. Then for all suf-

ficiently large &, ag < a4+ a,+...— ap—y. It is easy to wzee that thisx result
is the best possible in the following sense: Let g, tend to infinity arbi-

trarily slowly with k. Then there exists a sequence a, - «a, < ... satisfying
k-1
Bgk | s . ) e " :
aj. qfﬁ for whieh limsupla, — Z a;) = oo, This of course implies
o =~ i=1

that there are infinitely many integers which are not sums of distinet «’s.
We leave the simple proofs of these statements to the reader.
First we prove three lemmas.
_ LemMA 1. Lel n be sufficiently lavge, Z = 1002 and let Tn -2 by < ...
< by << wn be any Z integers. Denote by f(m) the nwmber of solutions of
o= by —by, i =] (bi=b; and b; = b; are not counted as distinet solutions).
log

Then therve exists an integer L, 1 -k - Flogh satisfying
. JTog?

— Z W - 100
(1) Jlu) = (F 1)k [r) = ek v—H ek
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The number of sums b; -+ b;. ¢ = j, is clearly equal to (;) > 1 Z2, also
< bi+ by < 2n. Thus

an

E"f(-m) > L7,

n+l

Hence there clearly are two integers ¢ and d satisfying

d
_ [1on N\, 10(Z-10)
(2) — [ _-‘f(m) LS e
Consider the m’s in (e, d) for which
z . -z b logn
{3} Ek ~-,-].}-22‘,'. < !{JNJ = jEok—1 (]l =1 _}_. o [m]] .

If there are more than 2% integers satisfying (3) for some &, then two of
them, say u and », satisfy »—u < 10n/28Z and (1) is satisfied. Thus to
complete the proof of our Lemma it suffices to show that for some &
there must be more than 2% integers satisfying (3). Assume that this is
false. Then since f(m) <= Z we obtain

a

\’ __ \ i 7z s v
(4) fm) = ;;1 2 e S flm) - /3~— > fm)
logn a
where 1 — 2log? and > j(m) is extended over those m in (e, d) for
. Z o
- — s since Z = 10n'*
which f(m) < ES I Thus sinece Z > 10n
. A 107
’ \T' — ks / .) __H'_ U’;__
(1) ,: fim) < (d—e+ 1){ TIpat < OZ w(logn)t o(Z).

From (4) and (4') we have
d
Zf{m} < VA2 —o0(Z) < ‘Y(Z—10) for sufficiently large 7,

which eontradiets (2), and thus our Lemma is proved.

LEMMA 2. Let G be a group of n elements and ay, ay, ... a finite or
infinite sequence of elements of (. Suppose that there arve k distinet elements
byy ooy bre 0f G which can be represented in the form [[af, e = 0 or 1 (the
product 18 aliways finite). Then there exist k or fewer a’s, a; ., ... a;, r =k,

r

so that each of the b's can be represented in the jorm [[a¥.
i=1
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First of all we can assume that the number of a’s is at least &, for
otherwise our Lemma is trivial.

If the unit element of ¢ cannot be represented in the form [[af,
then all the elements a,, ¢, @y, ...y @y &y ...- @ arve distinet and our Lemma
is proved. Thus we can assume that the unit can be represented in the
tor m [ [ af and let ay,...a;, be its shortest representation (s << k). There

are at least s distinet elements of the form ”a,j since the s elements
=1

Oiyy @iy " Qiyy ooy @iy oot gy QTS A1l dl\tl]l{_t

If all the b’s are of the form _”a.i-j, our proof iz complete. If noft,

i=1
a+1
there exists an ay,., so that [[ af contains at least one b which is not of
i=1

the form ”m (for otherwise all the b’s would be of the form [] ail). 1f
g=1 =1
s+
all the B's are of the form ” ai], our proof is complete; otherwise, we
j=

43
can find an ;. , such that ” ay; contains at least one b not of the form
=1 =
Gy
[ ] . Continuing in this way we finally obtain e, .., @i, i,y o iy,
i=1
st

s0 that every b iz of the form [[ af} and that each a;,,, 1 < r <t gives
7=1
at least one new b, or k = s--t and the proof of Lemma 2 is complefe.
T
. ol
Lexia 3. Let oy, &y, oy & be any v integers. Then D ey = 0 (modr)
i—1
is solvable in numbers g = 0 or 1.

Lemma 3 ix well known. If the sums @&, @ 75, 00y @ — .0 &, ale
all incongruent modr, one of the sums is 0 apd there is nothing to prove.
If @+, =2+ ooy, (modr), k<< k< r, then iy ii+...+ @y
= ( (modr), which proves the Lemma.

Now we can prove our Theorem. Put « = () 5—1) and

(5) lim sup I—ql%; _f_m} =g, w=<pis<l Dby (0).

o 7.7

Assume firgt g = «. Let ¢ = &{«, p) be sutficiently small and choose
sufficiently large i, so ﬂlat
(6) A(n)—4 (J—i) >l E

By (5) such n clearly exist. If 3 = « we distingnish two cases. If

(7) lim sup iﬂ =D o0, D=

H="0
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we choose sufficiently large n, so that

® sm—af) > 2o
By (7) such n clearly exist. If
(9) lim sap ‘é%) — ca

=0
we choose n sufficiently large and such that

J i
(10) Al AW g ey

i ot

It follows from (9) that (10) can be satistied for arbitvarily large ». Pul

(11) |1 (46— (] _i)l.-_- A

and apvly Lemma 1 to the Z largest a’s, a; y, ..., 7. in the interval
(n/2, w). From (1) it follows that there are {(wo integers » = < ¥ < 2p
i ' i Clogw ;
such that for a certain & -2 °— the equations
2log?2
10
41 <l i, <l+ 2,

(12) wt+a;=unw, ap—ap=10v, T =p—u-=

both have at least [Z](k + 12251 solutions where each « oceurs as a sum-
mand in at moxst one of the equations (12). To prove (12) observe that
Lemma 1 implies that equations (12) both have move than Z/(k--1)22%
solutions. It an «p oceurs as a summand in both a; —a: — w and ay—a;r
= ¢, we only count it as a solution of one of the equations, and we can
clearly arrange this in suech a way that equations (12) should hoth have

at least
1 VA ] ' VA '
[i’?'(a-'-.— '1)2'2#J - L_A- + iJ‘_-’f*-'“‘J
solutions, as stated.

By our assumption every residue class mod 7 (7 — v — u) contains
integers which are the sums of distinet a’s. Thus by Lemma 2 there ave R a’s
{]{J. iy eees I.'!;J,; . Ii’ S 2 s
so that every residue cluss mod 7' is the sum of distinet «'s from the
sequence (13),

Henceforth we shall consider only those solutions of (12) where
each @ oceurs in only one of the equatious (12) and where none of the
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numbers (13) occeur in any of the equations (12). Under these conditions
both of the equations (12) have at least

Z Z Wn [ Z _
(L) [(‘ET}'-"QWJ Sk [(T+ 1)22*“] e [{A- —W] e

since by (6), (8), (10), (11) and (12) Z > 1 Cn® and, by Lemma 1, 2% < n.
Clearly all the numbers

{15) Lu, (L—1)u-+wv, ... ,Lv; L =Lu+ LT

can be written as the sums of distinet a’s; in fact, they can be written
as the distinet sums of solutions of (12) without using any of the numbers
(13). The numbers (13) are L -1 consecutive terms of an arithmetic progres-
sion with first term Lu and difference v —w — T.

Now we shall show that every integer

{16) LutsT, s=10

i3 the sum of distinct a’s where the numbers (13) will not be used. 1f we have

accomplished this, then it immediately follows from Lemma 3 that by
R

using the integers (13) every integer not less than Lw -+ Y a;; is the sum
of distinet a’s, and hence our Theorem is proved. -

Thus we only have to prove our statement about the integers of
the form (16). Denote by B the sequence b, < b, < ... which we obtain by
omitting from the sequence 4 the numbers (13) and the [% {rl('.‘l-}—A(?l.J."Q))]
numbers «; y, ..., 1oz, some (or allj of which were used in the represen-
tation of the numbers (15). Consider now the 7 smallest b’s, by, ... bp.
By lemma 3 there is a sum bw ... +bm = x, = 0 (modT), 1< 2 R
<4 < 7. Omit the b’s occurring in the representation of &, and consider
the 7' smallest amongst the remaining #'s; again by Lemma 3 there is
a smm

bagi-b o0l =a =0 med L), <l
1 T

(now we can only assert iy, < 2 < 27). Suppose we have already defined

iy ey 21 Take the T smallest b's whieh do not oceur in the repre-
sentation of @, ..., ;. By Lemma 3 the sum of some of them is
a multiple of 7'; this defines zy,. Clearly & —-oo but the xp are not neces-
sarilv. monotonically increasing. Kvery b occurs in the representation of
at most one ., and it clearly follows from Lemma 3 that there are fewer
than 7' #'s which never oceur as summands for some 1. Now we prove
(17) < LT

and for all & 1

(15} N O S S SR e LT =
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Agsume that (17) and (18) are already ]er'ed Then it i3 easy to see
that every integer (16) is the sum of distinet a’s where the numbers (13)
are not used. First of all we have a,lreadv shown that the numbery (15)
(i.e. numbers of the form Lu+-sT', 0 << § <~ L) are the sums of distinct a’s,
where the numbers (13) and the a’s “hwh occur as summands in the
have not been unsed. Thus all numbers (16) of the interval (Lu -,
Lu+ LT —+r,) are the sums of distinet a’s, and by (17) this implies that
all numbers (16) of the interval (Lwu, Lu -+ LT 4-x,) are the sums of dis-
tincet a’s. Assume that we have already shown that all numbers (16) of the
interval (Lu, Lu + LT 4o, ...+, ;) are the sums of distinet a’s. Clearly
all numbers (16) of (Lu—+xy, Lu+LT 4o 4 ... Lwp_ +a3) are the sums
of distinet e’s. By (18) this implies that all numbers { 16) of (Lu, Lu+ LT+
&+ ... ry) are the sums of distinet «’s (the numbers (13) are clearly
not u%ed ag sumwands). Thus clearly every number (16) is the sum of
distinet a’s, and our proof is complete.

Thus to prove our Theorem we only have to prove (17) and (18).
First we show (17). By (6), (8), (10), (11), (12) and (14) we have

10w 80nt-« I [ Z ] N Dns
' - (

) oo 4 o o
W3 Ry TEpm S (F1pei-2| = (ks 1peers

(if lim A (x)/e® — oo then in (19) € should replace D).
Thus by (19) we have, for sufficiently large =,

1() ({")

Thus, by the definition of the o's. by = asp. Hence by the definition of x,
and (0) we have

r 27 a7
. \" N \1’ - \" . .!‘ b I o . :E_"(‘ 1a L
A 2 by L 2 (?.:-") ey =l 2 (-(_;) +ey .
i=1 F—7 Py
Thus to show (17) we only have to show
f0 1
(20) _)(“—(1) Lepge 1
or by (19) and (20) :
'80”1—u' 1 i.)h‘([

21 b by <T 7 R R
i ( D2k ) tée = (k= 1)z2k=3

But (21) clearly follows from o?+ a = 1 for sufficiently large €' and »
(since the numerator of the right side is larger than the nmwumerator of
the left and the denominator is smaller and ¢, can be neglected). Thus (17)
is proved.
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In the proof of (18) we will often omit the simple but tedious com-
putations (*). Denote by a, the greatest ¢ which oceurs in the represen-
tation of w,, ..., #—,. By the definitions of ., we have

(‘70} .r-};{TG.y:_T.

——

Assume first ay, < @y (A1, ..., @z Were the Z largest a’s in (02, 2)
fo which we applied lemma 1; these a’s did not occur amongst the b's).
Then there are at most 27 a’s not exceeding a, which do not oceur as
summands in the representation of the z;, 1 <4 < k—1 (i.e. the R = T
numbers (13) and possibly ' #’s. Thus

¥ u
-l
(23) A T [ \ a;—2Ta, > \ a;—2Tay +.
I‘—l’ - ’_II
=1 1=

Assnme next that e, > a;.4; then we must have a, > a,. 5 and a, ~— n.
since the ap ¢, 1 =<4 Z, do not occur among the b’s and thus do not
oceur in the representation of the 's; «, > n follows since «a;, z has been
the largest « not exceeding n. Here Z further a's not exceeding e, do not
occur as summands in the representation of the u;. Thus we have

—Z

=

B ey = t;— 2Ty v .

| -

i=1

But from (11) and a, = » we have y = 2Z. Thus

iy — QT{EU.;_ T

L~

(24) R T X S

l<ig(y+1)2

M

=

"

Thus by (22), (23) and (24). (18) will follow if we show that
(25) N LT >3Tay. .
1S (g )
(23) is trivial unless a,. o = ! L. Thus by (0) (L is large)

(26)

y-+Ive L

(26) implies, by a simple computation fas in the proof of (20)) using
a4 =1 and (19), that
(27) y>L">1T.

By (0) and (27)

:‘3.“,‘ T/
Ayip < oy < —(;,) ”

(*) We shall constantly use the fact that L% 7T is large; this is implied by (19).
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Thus to prove (18) it will suffice to show that if y = L then

{98 100t
1 —'f’;"

\“1
a; = 3T =
pra— ] { !
Ted=(y—1h2 '
To prove (28) we distinguish three cases. Asswme first that in (5)
£ = «. By the definition of g we infer that, for every ¢ = 0 and ¢ = #(e),
ap = 40 Thur by a simple computation

- _
(29) /\ i = eyt P UEED

d .
1= (=102

E

where ¢, is an absolute constant and ¢; depends only on + Hence we have
to show that for y = L°
Dot 1l

(30) oyt Wit e, = 3T (:(ii) .
Sinee 1--1/(f+ ) > 1ja for sufficiently small ¢ (§ <1, a—(} 5—1)/2),
it will suffice to show (30) for y = L% and thisz follows by a simple com-
putation using (12), (14) «*+a =1 and j > «a.

Axsume next that § = « but (9) holds. Put A {(n)/n* = wu,. By (10)

we have
A(n) _ Alm)

(31) iy = for TR T
j}.” ?;’f[
By (31) and (11)
.
32 Z > pe,
(32) 5
From (31) we have for a; =~ n
) / -{ Vi
3 =
{' ”) e ('”-u,)
and for a; > »n we infer from § = a that for every e = 0 if »n = nye)
(34) ag > et
Thus if a@;em < % we have from (33)
\ Y 11+],-a
(35) ‘}- a; = (-5"‘ T
1=i=(y=-1)2 L

it

From (35) and (28) we only have to show that for y = L

gyl (a0 1o
(36) ¢ y‘{?a“' ~ 37 (2_) ,
iUy O

which again follows by a simple computation using (19) and (32) (it again
suffices to ghow (36) for y = L°).
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Finally. if ayyi120 = 1, we have by (34) for ¢ = eyle)
(37) E a; = egyttiitara),
L=i=(y - 1)/2
Thus we have to show that
or, for sufficiently large (',
(38) el ~ Y
Indeed (38) is trivial for sufficiently large € and u, since from
Qy+yzy = 1, Y = Aln) > (w7 and by (19) we have T < 80nl-a/(',
In the third case (7) holds. By (7) we have for t =, ay = L(#/ D).
Thus
V' ;= L 1
1=d=(y+1)/2

where ¢; and ¢ are absolute constants. Thus we only have to show that
for y = L°

. o e [ 2H\NE

(39) ﬁ?;-;; yrivie—ey > 87 (\7.') :

As before, it suffices to prove (39) for y = L By (8), (11) and (19).
(39) follows from «®+a =1 by a simple computation for sufficiently
large €' and » (it » is large y = L* is also large).

Thus the proof of our Theorem is complete.
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