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On the representation of large integers as sums
of distinct summands taken from a fixed set
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Let -1- be a sequence of integers a,

	

a_ >

_1(u)=

	

I,

i .e . .I(1) denotes the number of a's not exceeding -ir .
Some time ago I conjectured that if (at, /') = 1 then every sufficiently

large integer is the suns of distinct summands of the form Recently
Birch [1] has proved this conjecture . his proof being elementary but
ingenious and difficult .

Further I conjectured that if the sequence A satisfies ,.r,k t 'a,, -1 and
is such that- every arithmetic progression contains at least one integer
which is the sum of distinct (Cs, 1-hen every sufficiently large integer is
the sum of distinct a's . -If we further assume that A (o)

	

al - l" ((',, czf . . .

denote positive absolute constants), then I have proved my conjecture,
but this result has seemed of little interest since I have hoped that my
conjecture is true .

Recently. however, Cassels 121 has proved the following theorems :
1 . _1s'- mute 11101

lim ( =l ( ' i ) - _~ ( ) ;'log log r = c>o

flint Mot for every re al 0, 0) 	0
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Then every suficiently large 0 number is the were of (discinet (I's.

2. For every s -> U 011(1 q	0 there exists a sequence _1 containing
infinitely every arithmetic progression and satisfying
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so that the number of integer,

	

x which are the sum of distinct a's is .-- sx
for x>x, .

It is easy to see that the first theorem of Cassels contains Birch's
result. The ingenious proof of Cassels is analytic and uses the method of
Hardy Littlewood .

The second theorem of Cassels clearly shows that my conjecture is
wrong, but then my old result is perhaps not entirely without interest .
In fact, I have succeeded in strengthening it somewhat. In this note I
am going to prove the following :

THEOREM. Let C be a sufficiently large integer, and a,

	

a,

	

. . . an:
infinite sequence of integers satisfying

(1 -i)(0) A (x) > Cx(rs-1)1 for

	

or

	

a,. `
( t y

l

	

for I > ro .
l J

Assume further that every arithmetic progression contains at least one integer
which is the sum of distinct a's. Then every sufficiently large integer is the
sum o f distinct a's .

It would be interesting to know, especially in view of the second
theorem of Cassels, whether the exponent in (0) can be improved . I have
not succeeded in doing this, but perhaps an improvement of my method
will give the Theorem if (0) is replaced by A (x) > x"'-'+e for every r > 0 if
x > :xo (s) . Perhaps the Theorem remains true if we only assume A (x)
> C,,-r' 12 , but a simple argument shows that A(x) > Cx 11' is not sufficient
if C < 1 2. In fact, the following simple result holds : Let a,, < a,

Ir' ; ck
Assume a,. --- where c is an absolute constant . Then for all suf-

ficiently large k, ak al - a . . . ak•_ , . It is easy to see that this result
is, the best possible in the following sense : Let / tend to infinity arbi-
trarily slowly with k . Then there exists aa sequence a, -, a, < . . . satisfying

k2 T	k-i
ak, <	 for which limsup(a,,.-

	

a-,•) = oo . This of course implies

that there are infinitely many integers which are not sums of distinet a's.
We leave the simple proofs of these statements to the reader .

First we prove three lemmas .
LEMMA 1 . Let 'n be sufficiently large, Z > 10n' and let n < b,
< b,, < ii be any Z integer, . De-note by f (m) the number of solutions of
m = bi -bi, i

	

j (bi =b; and b;-b- are -not counted as distinet solutions) .
loo' ,+Then there exists an integer k•, 1

	

k

	

logit- satisfying

(1)

	

/(u)

	

z
(k-1) ,,,

	

(k- 1)`-'0 1~
' - 11

10 ii
7 oh.



The number of sums bi b i . i + j . is clearly equal to (9} > Z2 . also

n < b i + b .; < 2,n . Thus

f (m) > 3 Zz .
?e= 1

Hence there clearly are two integers c and d satisfying

(2)

(3)

On the representation of large integers as anises

Consider the m's in (e, d) for which

d
f (m)

>
10(Z-10)

3
r

1	log rt(h	
-)`2k / It (lit)

	

k22k-1

	

(h - 1 '	2log2

C

347

If there are more than 2k integers satisfying (3) for some k, then two of
them, say -u and v, satisfy v - u C 10nf 2k Z and (1) is satisfied . Thus to
complete the proof of our Lemma it suffices to show that for some k
there must be more than 2k integers satisfying (3) . Assume that this is
false. Then since ,f (m) < Z we obtain

d

	

t

	

d

	

d

(4)

	

J f('ur)

	

2k.Ir-2k-I r,/, (m) < Z -	f(m)

log n

	

d , i
where t [21o92 and f(m) is extended over those m in (c, d) for

which f (iii) <
(l
	 Z	)zt Thus since Z > 10n 1,2+1 2

d

`I '

	

Z

	

~t.

	

10Z
f(m)

	

(d-c-' 1)	 < 20 2 . --		o(Z) .
(d -1) 2 2 1

	

't?"
---

(loon
C

From (4) and (4') we have
d

f (m) < .-; Z-2

	

(Z)

	

° (Z-10)

	

for sufficiently large Z ,
C

which contradicts (2), and thus our Lemma is proved .

LEMMA 2 . Let G be a group of n elements and a17 a,, . . . a finite or
infinite sequence of elements of G . Suppose that there are k distinct elements
b 1 , . . ., bk of G -which, cant be represented in the form  ]jai', e, = 0 or 1 (the
product is always finite) . Then there exist k or fetter a's, a,,	ar, . i •

	

k,

so that each of the b's cant be represented it+ the jorm /7a', .
=1
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First of all we can assume that the number of a's is at least k, for
otherwise our Lemma is trivial .

If the unit element of G cannot be represented in the form / 7 av ,
then all the elements a17 a,- a2, . . ., a,- a2 • . . . • ah are distinct and our Lemma
is proved. Thus we can assume that the unit can be represented in the
for rri-7J a' and let ai , . . .ai, be its shortest representation (s < k) . There

are at least s distinct elements of the form f 7 a ~? since the s elements
j=1

air , all • ai,, . . ., a •• , • . . . ai, are all distinct .
s

If all the b's are of the form 77az ;, our proof is complete . If not,
=1

s+l

there exist ,, an a .;._ , so that

	

azj contains at least one b which is not of
=1

S

the form 1I ai (for otherwise all the Vs would be of the form jja,1) . If
j=1

	

j = 1
h'+1

all the b's are of the form 77 a?', our proof is complete ; otherwise, we
i=1

s+ •~
can find an ai,-, such that /7 a?',' contains at least one b not of the form

?-1

If a. ji . Continuing in this way we finally obtain an, . . , ai,, at,-,,, . . ., a-is+t,
j=1

S-t

so that every b is of the form 11 a e and that each a, •, ,,, 1 ~ i• <- t gives7-1
at least one new b, or k > s -, t and the proof of Lemma 2 is complete .

r

LEMMA 3 . Let x1 , xz x,, be any -r integers. Then Z- Fix, = 0 (mod))
d=1

is solvable in numbers er = 0 or 1 .

Lemma 3 is well known . If the sums x1 , x1 X ., , . . . , x1 = . . . + x,, are
all incongruent modr, one of the sums is 0 and there is nothing to prove .
If X,

	

x1- . . . + xA'2 (mod i'), k 1 < k., ± r, then

	

rA.,+1 + . . . XkC .,
0 (modr), which proves the Lemma .

Now we can prove our Theorem . Put a = II 3-1) and

( 5)	 limsup log A (x)} _ logx ,	a	l3	1	by (0) .
,7,

Assume first (3 > a . Let e = e(a, 13) be sufficiently small and choose
sufficiently large n, so that

rz.1 >(0)

	

A('e)-A(~I > rt'3-

BY (3) such n clearly exist . If l4

J

= a we distinguish

A(x)( ;)

	

limsup	„-=D< c~-, , D>C . -

two cases. If
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we choose sufficiently large a, so that

( a~\

	

D

t

By (7) such u clearly exist . If

(9)

	

limsup 1( `e? ~ - c
ti

we choose n sufficiently large and such that

-1-(aa)

	

_i(aai)
(10)

	

; - -

	

aaa -z=

	

ac"

It follows from (9) that (10) can be satisfied for arbitrarily large n . Put

(11)

	

~.,(I( )-A ( - I,
)
1 )J

--7

and apply Lemma I to the Z largest a's, a,-,, . . ., a s-,, in the interval
()-a12, a) . From (1) it follows that there are two integers

such that for a certain I

	

logn 2log2 the equations

10aa

Z_ 2'°

both have at least - [7/)/ 1-PV"] solution,: "here each it occurs as a sum-
mand in at- most one of the equations(12).To prove (12) observe that

Lemma 1 implies that equations (12) both have more than !'(k- 1 ) 2 2 4'
solutions . If an a l; occurs as a summand in both a -ei ; = as and ay --a ; ,
= a', we only count it as a solution of one of the equations, and we Can
clearly arrange this in such a way that equations (12) should both have
at least

~ I1

	

%

	

_ J.

-d

	

[k . 142k I

solutions, as stated .
By our assumption every residue class mod 1 (T -- - r - aa) contains

integers winch are the sums of distinct CC's . Thus Q Lemma 2 there are R Ws

(12)

	

((H-aa ; -

	

a a-,

	

a,;--

(13)

--1(aa)-

cr ;, , . . . . r ; y;

	

P,

	

1'.

asp if <

	

a

	

=_;2a-

so that every residue class mode T is the sum of distinct a's from the
sequence (13 ) .

Henceforth we shall consider only those solutions of (12) where
each a occurs in only one of the equations (12) and where none of the
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numbers (13) occur in any of the equations (12) . Under these conditions
both of the equations (12) have at least

Z

	

Z

	

loll
,

	

Z
(14)

	

[(k--1)22xi1]-I' > [(

	

1)29k+1]

	

Z2k

	

(k_1)2~x.=a,

	

L

since by (6), (8), (10), (11) and (l2) Z > Cuu and, by Lemma 1, 2 7~

	

It .
Clearly all the numbers

(15)

	

Lit, (L-4a -- v, . . . , Lv;

	

L2' = Li L7'

can be written as the sums of distinct a's ; in fact, they can be written
as the distinct sums of solutions of (12) without using any of the numbers
(13) . The numbers (15) are L-- 1 consecutive terms of an arithmetic progres-
sion with first term Lu and difference v - it = T.

Now we shall show that every integer

(16)

	

Lu LsT ,

	

.s > 0

is the sum of distinct Ws ,here the numbers (13) will not be used. If we have
accomplished this, then it immediately follows from Lemma 3 that by

7i
using the integers (13) every integer not less than Lit - ' a; j is the sum

~ =1

of distinct a's, and hence our Theorem is proved .
Thus we only have to prove our statement about. the integers of

the form (16) . Denote by B the sequence b, < b 2 < . . . which we obtain by
omitting from the sequence A the numbers (13) and the [~ (A(-u,)-A(n/2))]
numbers or,-,, , . . . , x7 ._ 2' , some (or all) of which were used in the represen-
tation of the numbers (15) . Consider now the T smallest Ws, b„ . . ., b1. .

By lemma 3 there is a. sum b i ll ; ; . . . -r b 7 ~i, - x, - 0 (mod T), 1

	

i "
1

< -i,r1 > C T. Omit the Ws occurring in the representation of x, and consider
the T smallest amongst the remaining Ws ; again by Lemma 3 there is
a stun

b ti2)-

	

rt-b 7 fz

	

xr, - 0 (mod 2')

	

Ti

(now we can only assert f ; .;' -- ir._r < 2T) . Suppose we have already defined
x„	r x, 1 . Take the T ;smallest b's which do not occur in the repre-
sentation of x17	X'.._1 . By Lemma 3 the sum of some of them is
a multiple of T ; this defines X k- Clearly x~.-oo but the x7~ are not neces-
sarily monotonically increasing . Every b occurs in the representation of
at most one x,-, and it clearly follows from Lemma 3 that there are fewer
than T b's which never occur as summands for some xk . A ow we prove
(17)	 :rl .,_ LT
and for all k > I
(1 )

	

J'~ . 1 -LT
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Assume that (17) and (18) are already proved. Then it is easy to see
that every integer (16) is the sum of distinct a's where the numbers (13)
are not used. First of all we have already shown that the numbers (15)
(i .e. numbers of the form Lu + sT, 0 _--~ s L) are the sums of distinct a's,
where the numbers (13) and the a's which occur as summands in the xk
have not been used . Thus all numbers (16) of the interval (Lit + x1f
Lu+LT + ,x1 ) are the sums of distinct a's, and by (17) this implies that
all numbers (16) of the interval (Lu,Lu+LT+x1 ) are the sums of dis-
tinct a's . .Assume that we have already shown that all numbers (16) of the
interval ( .Lu , Li.u d- LT + x1 ',- . . . + xk _1) are the sums of distinct a's . Clearly
all numbers (16) of (Lu+xk,•, Ln+LT+x1+ . ..+xk_1+xk) are the sums
of distinct a's . By (18) this implies that all numbers (16) of (Lac, Lu+LT+
-~- x 1 -~- . . . + ;-q.) are the sums of distinct a's (the numbers (13) are clearly
not used as summands). Thus clearly every number (16) is the sum of
distinct a's, and our proof is complete .

Thus to prove our Theorem we only have to prove (17) and (18) .
First we show (17) . By (6), (8), (10), (11), (12) and (14) we have

1)

	

10n-

	

80n'- a

	

I

	

Z2

	

1

	

Drza

8
(19) Z

	

rya

	

~r	 ,k. <
D .2k

	

L =

	

Ok1) -
- .>

	

(k +I )'2k- 6Z

	

(k+

(if lim A (x)/x° - oo then in (19) C should replace D) .
Thus by (19) we have, for sufficiently large ti,

n

A '')
. C(

	

21' .

Thus, by the definition of the L's . h T

	

. Hence by the definition of r 1
and (0) we have

7'

	

2 7'
V (1 ;

	

V

	

'

	

2
1l

_ T)'a
}

	

-- c2	 rr

Thus to show (17) we only have to show

(20)

	

2(C1)", e . L

or by (19) and (20)
800-1 L,

	

M ,
;7`

(21)

	

)k

	

+e2

	

(k -1)22k-5<

	

I
.

.

But (21) clearly follows from a2 H- a = 1 for sufficiently large C and n-
(since the numerator of the right side is larger than the numerator of
the left and the denominator is smaller and c ., can be neglected) . Thin (17)
is proved .
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In the proof of (18) we will often omit the simple but tedious com-
putations ( 1 ) . Denote by a,, the greatest a which occurs in the represen-
tation of v,, . . . . x,,_ , . By the definitions of x,, we have

(22)

	

x1,. < Toy -' -T

Assume first a y <a, + , (a1_ 1 , . . . . ai±z were the Z largest a's in (11 ;1'2, uj
to which we applied lemma 1 ; these as did not occur amongst the b's) .
Then there are at most 21' a's not exceeding ay which do not occur as
summands in the representation of the x1, 1 f k-1 (i .e. the R T
numbers (13) and possibly T Vs . Thus

(23)

Assume next that oy -> a,;j_1j then we must have a,.> a ;- and ay = 1a,

since the al, , . 1 ( i ~ Z, (do not occur among the b's and thus do not
occur in the representation of the x's ; a, > na follows since ai t z has been
the largest a not exceeding j1- . Here Z further a's not exceeding a y do not
occur as summands in the representation of the x i . Thus we have

21 - Z

!

	

`7

i=1

	

Tay

But front (11) and o f > o we have i > 2Z . Thus

- . . .-{--xx-1 >

	

ai-?1'a,r=z'
1 u i r (r- - 1),%,

Thus by (22), (23) and (2-1), (18) will follow if we show chat

(25)

	

`

	

a ,: +LT ;> 3Tay -r .

(25) is trivial unless ii

	

:1,L. Tins by (0) (L is large)

1 }T 1

	

L(26)

	

(C) > ;3 .

(26) implies, by a simple computation (as in the proof of (20)) using
a 2 -{-a - 1 and (19), that
(2i)

		

.

	

L

	

T .

By (0) and (2 )
Z z/1'

a y

	

(t_, ! (/ )

(') We shall constantly use the fact, that Ln/'T is large ; this is implied by (19) .

x1 =, . . . -;- xh- I a,-21 ay >

	

a1_2la y-r ..u



(30)
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Thus to prove (18) itt will suffice to show that if y > Lu then

a, i >31'

To prove (28) we distinguish three cases . Assume first that in (5)
(i > a . By the definition of 13 we infer that, for every r > 0 and t > t o ( e) .

a t > t 1 -'

	

Thus by a simple computation

(29) ~,

where c3 is an absolute constant and c4 depends only on H ence we have
to show that for y > L°

'
c 3 2~i+ 7 1CR+ ) c, > 3T

Viat
C,

Since 1 1/(j +r) > 1l'a for sufficiently small F ( ;3 1, a = ~~ ._;-1) 2} .
it will suffice to show (30) for y > L° , and this follows by a simple com-
putation using (12), (14) asT a - 1 and 13 > a .
Assume next that (3 = a but (9) holds . Put A () ; ra

	

r By (10)
we have

(31)

	

J

	

>(n)

	

A(aa)
aa .,,: - --

	

----

	

for

	

aaa.

	

a .aaa

	

in"

By (31) and (11)

(32)

	

Z > 8 aa .u

From (31) we have for a t az

('33)

	

a t > -~
u,a

and for at > n we infer from )3 - a that for every e > 0 if n > no(e)

at > ti'i"+F) .

Thus if a [( ,+ ,))_] ` as we have from (33)

lv~

	

af 1+1,u
(35)	a.1 > c5	lla . at ,

From (3)) and (28) we only have to show that for y > P

(36)

	

1+1,'u

	

2
3T ,a'ta' -

(~)
>

„which again follows by a simple computation using (19) and (32) (it again
suffices to show (36) for y = L°) .

(31)



354

Finally . f 1)r2( > ra, we have by (34) for ce = c~{E )

(37)

	

~'

	

a-j

	

e ?t1-r1 " ( " - )
1 ai<(y- 1)i2

Thus we have to show that

3 itcE y1 =

	

37

	

'C

	

'
or, for sufficiently large C,
(38)

Indeed (38) is trivial for sufficiently large C' and n, since front

a,,(y+ 1) 2l > a , y > A(ii) > Caa and by (19) we have T < 80n-/C .

In the third case (7) hold ;, . By (7) we have for t > to , o f > ? ( tJI))1 ,

Thus
\,

	

4 7
Cti

	

df1-1
"

where c7 and c8 are absolute constants . Thus we
for y L"

(39)	 ('7
D1, ; I

1

	

. .

P. Erdös

recu par !, Rédaction to `1 . 1. 1962

only have to show that

As before, it suffices to prove (39) for y = L" . By (8), (11) and (1)) .
(39) follows from U2_1 a = 1 by a simple computation for sufficiently
large C and n (if n is large y -= .L" is also large) .

Thus the proof of our Theorem is complete .
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