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Theorem in the additive number theory
P. ErDOs, A. GINZBURG AND A. Ziv, Division of Mathematics, Technion-Israel
Institute of Technology, Haifa

THEOREM. Each set of 2n—1 integers contains some subset of n elements the sam
of which is a multiple of n.

Proor. Assume first n = p (p prime). Our theorem is trivial for p = 2, thus
henceforth p > 2. We need the following

LemMA. Let p>2 be a prime and 4 = {a,,a,,.. ,a,}2~’-s<pasetofsin-

tegers each prime to p satisfying a, % a, (mod p). Then the set z &0, 8 =0
or 1 contains at least s + 1 distinct congruence classes.

We use induction. If s =2, a,, a,, a, + a, are all incongruent (since a, * a,,
a, %0, a; % 0). Thus the lemma holds for s = 2. Assume that it holds for s — 1,
we shall prove it for s.

=1

Let by, b,, ..., by be all the congruence classes of the form ) ¢ 4, By assumption
i=1

kZs. If k=s+1 there is nothing to prove. Thus we can assume k = 5 < p. But
then since a, % 0 (mod p) it is easy to see (see e.g. [1]) that at least one of the integers
b;+ a,, 1 i< kis incongruent to all the b’s. Thus the number of integers of the

form Y ¢a, ¢ =0or 1is at least s + 1, which proves the Lemma.
i=1

Let there be given 2p — 1 residues (mod p). Arrange them according to size
0saysa,s...Sa3,-,<p.

i+p=1
We can assume @; # a;,,-, (for otherwise ) a; = pa; = 0(mod p)) and that

J=i

[

Y a,=c#$ 0(modp). Puth, =a,, — a4y, 1 Si < p— 1 Clearly —¢ =
i=1
-1

Z g by, & = Oor 1 is solvable. If the b’s are not all congruent this follows from
i=1

our Lemma and if the b’s are all congruent the statement is evident.
Clearly

Z a; + Z &b, = 0 (mod p)

i=1

is the sum of p a’s. Thus our Theorem is proved for n = p.
Now we prove that if our Theorem is true for n = u and »n = v it also holds for
n = uv, and this will clearly prove our Theorem for composite n.



Let there be given 2up — 1 integers a,, a,,..., d;,,-,. Since our Theorem holds
for u we can find u of them whose sum is a multiple of u. Omitting these u integers
we repeat the same procedure, If we repeated it 2v — 2 times we are left with
2uv — 1 —(2v—2) u = 2u — 1 a’s and since our Theorem holds for u we can again
find u of them whose sum is a multiple of u. Thus we have obtained 2v—1 distinct

1]
sets a0, ...,a®, 1 £ i < 2v — 1 of the a’s satisfying Y aP=c,u, 1 £i <20~ 1.
j=1
Now, since our theorem holds for v too, we can find v ¢’s say ¢, ..., ¢, satisfying
]
Y. ¢, =0 (mod v).
r=1

But then clearly

] L]
Y Y a”=u ¥ e =0 (moduv).
r=1 j=1 r=1
which completes the proof of our Theorem. Prof. N. G. de Bruijn gave a similar
proof of the above Theorem.
The same proof gives the following result:
Let G, be an abelian group of n elements and a,, a,,..., a2, are any 2n~1 of
its elements. Then the unit of G, can be represented as the product of n of the a's.
We do not know if the theorem holds for non-abelian groups too.
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