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1 . Introduction . We say that a system E of equal spheres Sl, S 2 , . . .
covers a proportion 0 of n-dimensional space, if the limit, as the side of
the cube C tends to infinity, of the ratio

V (II Srn C)
	 r-1	

V(C)

of the volume of C covered by the spheres to the volume of C, exists and
has the value 0 . We say that such a system E has density 8, if the
corresponding ratio

cc
L.I V (S, r' C )
r=1

V(C)

has the limit 8 as the side of the cube C tends to infinity . We confine
our attention to systems E for which both limits exist . It is clear that
8 = 0, if no two spheres of the system overlap, i .e . if we have a. packing ;
and that, in general, the difference 8-0 is a measure of the amount of
overlapping .

By well-known results of H . Minkowski [1] and H . F. Blichfeldt [2],
the maximum density On of a packing of equal spheres into n-dimensional
Euclidean space satisfies

	(n)

	

n+2( 1

	

l
2n-1

	

0"

	

2

	

2
)n'

\ (n) _ E
l k-n )

These results have been improved, see [3], [4] and [5], but the improve-
ments tell us nothing new about the asymptotic behaviour of 0,,'!n as
n-> oo . If E has 0 > On , a general (but not quite trivial) argument shows
that 8 > 0 ; but does not, as far as we can see, give any estimate for 8-0 .

Our object in this paper is to obtain such an estimate for 8-0, for a
wide range of values of 0. Our method, which is based on one first used
by R . P. Bambah and H. Davenport [6] (see also [7]), does not work for
values of 0 approaching on , but it does work for values of 0, which may
become exponentially small as n increases . It is also relatively weak,
when 0 is close to 1, as we do not obtain a result so strong as that of H . S . M .
Coxeter, L. Few and C . A . Rogers [8] on letting 0 tend to 1 . It is however
the only explicitly known result for

(*+o(1))n!2 < 0 < 1 .
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Our main result is

THEOREM 1 . If n > 2 20 and a system E of equal spheres covers a pro-
portion 0 of n-dimensional space with

B>

8 > B+O
and has density 8, then

where

0 3 [1-exp (16-1n 1I2)][1-4{(4B) -2!n -1}{1+32n-14}]n12 .

	

(2)

The estimate for 8-B is not quite as simple as one would wish ; one
gets a better idea of its consequences on noting that, if

1

	

1
-logB-=o(1),n

as n - oc, i .e, if 0 does not tend to zero exponentially fast, then

0 = 3 (B)4+°(1) ,

as n oo ; and that, if

(1)

(3)

0 < lim inf1 log1 < Jim sup1 log1 < log 4,
n

	

n

	

B

	

n'X n

	

B

i .e . if 0 does tend to zero exponentially fast at a rate strictly slower than
that of On'2 , then

0 = (5-4B-2 j n+O(1) )n;2 •

	

(4)

We remark that Rogers [9] (see also [10]) has a result (Theorem 1),
which implies (on choosing V to satisfy a = V-2V2) that, if 0 < 0 < z,
then there is a lattice system of spheres, covering the proportion 0 of
n-dimensional space, and with density at most

02

	

2
0+ (1-0)+-,/(1-20) < +2 .

This shows that we cannot expect too much overlapping when 0 is small .

2. The approximation of spheres by polyhedra . In this section we
prove a lemma on the volumes of the parts of a convex polyhedron lying
inside and outside a sphere . Our result tells us that, if the volume of a
polyhedron II does not greatly exceed the volume of a sphere S, and if
H has not too many faces, then the volume of II m S is substantially
smaller than that of S .
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LEMMA 1 . Let S be the sphere with centre o and radius 1, and let II
be a convex polyhedron containing o . Let N(t) be the number of faces of II
whose (n-1)-dimensional planes are within the distance t of o . Then,
provided 0 < h < 1 < r, we have

V(Snf) <r--n(1)V(II)+

+

	

J 1

nN(x)~1-
r2

\(nlz)
] ? (l( r

)I
V(where

where

(r 2(1-h2 ) ,n12

jl r2-h2
(7)

Proof. Let F1, F2 , . . ., FN be the (n-1)-dimensional faces of H and
let h l , h 2 , . . ., hN be the perpendicular distances from o to the (n-1)-
dimensional planes of these faces . We suppose that the faces are named
so that

h.1<h2<h3< . . . <hN .

For each i let Ci denote the semi-infinite cone with vertex o and with Fi
as one of its sections, i .e . the set of points which can be expressed vectorially
in the form Ax with A > 0 and xE Fi .

Let S* be the sphere with centre o and radius r . Let yi be the point
of F1 nearest to o . If yi > r we have

V(S*nC1) < 11 (IInCQ) .

	

(S)

If h < yi < r, the points of S* n C i not in [I are contained in the sphere
5'i with centre y i and radius (r2-I yi 2)12 In this case

V(S*nC i ) < V(IInC1)+V(S1)

= V (II n Ci )+ (r2-I yi I2)n,2 V (S) .

	

(9)

If I y i I < h, we again note that the points y of S* n C i satisfying

Y . Yi>hIYil,

	

(10)

are contained in a sphere of radius (r2-h2)12, this time it is the one with
centre hyi JI yi l . So the volume of the set of the points y of S* n Ci
satisfying (10) is at most (r 2-h2)n 2 V(S) . Now consider the set IIi*
of points y* of S*nCi not in II, but with

Y * .y <h yi

	

(i 1)

With each point y ,̀' of H,* we associate the point

y = Yi+Cy1:- yd'

-
~
1-h2 )1/2

r 2-h2
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The region C,1-II is convex and contains both y* and yi in its closure .
So y also lies in the closure of C i -II. Also, for y* in Hi*,

Y .Y = {( 1-0) Yi+OY *} . {(1 -O) Yi+OY*}

_ ( 1- 0) 2 Yi •Yi+ 20( 1-0)Y * •Yi+0 2 Y* •Y *

(1-0) 2 h2+20(1-q) h2+02 r2

= h2+0 2 (r 2-h2 ) = 1 .

Thus the transformation y*-may transforms the set Hi* into a sub-set of

SnCi-II .

Hence
V(Hi*) < O-nv((S-II)nc1),

and

V(S*nCi ) V(HnCi)+(r2-h2 ) nj2 V(S)+V(Hi*)

V(IInCi)+(r2-h2)n(2V(S)+O_nV ( (S-II)nCi) .

(12)

Summing the results (8), (9) and (12), we obtain
V (S*) '< V (II)+ca-n V (S-II)+N(h) (r2-h2 )n ' 2 V (S)

+V (S) J
r
(r2-x2 )nI 2dY(x) .

h

Integrating by parts, we have

h

('r

(r
2-x2)nI2 dN(x)

_ - (r 2-h2 ) "2 N (h) +
I

nx (r2-x2)(n/2)-1 N (x) dx .
h

Hence

FV (S) = r-n IV (S* )

~r "tV(II)+{V(S)-V(SnH)}

+q)V (S)
fh

nN(x)' 1- z \ (n12)-1
dI

r '

so (6) follows .

3. Periodic systems of spheres . We say that a system of equal spheres
Sl, S 2 , . . . is a periodic system with period R, if the spheres of the system
have a representation

S+ai+b;,

	

i = 1, 2, . . ., M, j = 1, 2, . . .,

	

(13)



where S is a fixed sphere with o as centre, where a 1 , a 2 , . . ., am is a finite
set of points, and where b 1, b2 , . . . is an enumeration of the points of the
lattice AR of points whose coordinates are integral multiples of R. We
use E(S ; a1, a 2 , . . ., am ; R) to denote this system (13) .

Our next lemma shows us that, if, when we keep S, M and R fixed
and vary a1, a2 , . . ., am to ensure that E(S, al , a 2 , . . ., am ; R) covers the
largest possible proportion of space, we find that this proportion is not
too close to 1, then not too many of the centres

ai+b;,

	

i = 1, 2, . . ., M, j = 1, 2, . . .,

can lie in spheres of radius 2h centred on these points .

LEMMA 2 . Let S be the sphere with centre o and radius 1 in n-dimen-
sional Euclidean space, with n > 4 . Let R > 2 be given, Let M be a
positive integer . Let a 1, a 2i . . ., am be chosen so that the system

E(S ; a1 , a 2 , . . ., am ; R)

covers the largest possible proportion of the whole space . Suppose that this
proportion is 0 and that

0 < 1-(1-n-1(2)n1 2 .

	

(14)

Then, for each k with 1 < k < M, and for each h with 0 < h < IR, the number
Nk(h) of the centres

ai+b;,

	

i = 1, 2, . . ., M, j = 1, 2, . . .,

within distance 2h of ak satisfies

Nk(h) < (4h2
+ 1 ) n/2 exp (2n 3/4 ) .

	

(15)

Further, if n > 2 20 , 1 < r 2 < j (1- 4n-1/4) ,

and

	

h 2 = r2-4+ 4n -1/4 ,

	

( 1 6)
then

T x2 (n/2J-1 x x
,Ih

nNk(x)(1

r 2 )

	

r d (r) < exp (-2n 314 ) .

	

(17)

Proof. Suppose that 1 < k < M and 0 < h < 2R. Let

Cm = ai6n)+b9(m),

	

m = 1, 2, . . ., Nk(h),

be the points of the system within distance 2h of the point ak . As h < 2R
it follows that the points

are all distinct .
We take
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ai(m), m = 1, 2, . . ., Nk(h),

y =
{1-(2)

2n(1_6) 2' n j1j 2
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and consider the sphere E with centre a k and with radius

z = [(2h+y)2+(1-y2)]1/2= [4h 2+1+4hy] 112 .

It is clear that if the sphere

S+C,n
has any point not in E, the whole set

(S+Cm)-E
will be contained in the sphere Zm with centre

and with radius
(1-y2)1/2 .

It follows that the volume of the union
N

U (S+ Cm )
m=1

is at most
N

V(Y)+ Z V(Em)=[(4h 2+1+4hy)n/ 2+Nk(h)(1-y2 ) hj2]V(S) •
m=1

Let Vm be the volume of the part of S+e,n which lies in no other
sphere

S+ai+b;

with
ai+bi -A c,,, .

Then clearly

E Vm < VI U (S+C,n.)
,n=1

	

m=1

V (Y-)+ E V (Y- .)
M

= [ (4h2+ 1 +4hy)I„2+Nk (h) (1- y2)n12] V (S) .

So we may suppose that m is chosen with 1 < m < Nk (h) so that

Vm <[(N k (h))-1 (4h 2 +1+4hy)n/ 2 +(1-y2)n/ 2]V(S) .

	

(19)

For convenience we may suppose that i( )n ) = 1 . Let S'+Cm denote
the part of 8+c„, not lying in any of the sets S+ai +bi with
a i+bi :f- Cm •

Then the sets
M r

U (S'+cm+b,),

	

U U (S+ai+b,)
j=1

	

i=2 j=1

ak+ ( 2h+y)
Cm- ak
CM- ak



are disjoint and their union is
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M n,
U U (S+ai+b ;)1 i=1 i=1

Comparing the densities of these sets, we see that the density of the set
M X
U U (S+ai+b;)i=21=1

is
0-Vm R-n

So, if u (x) is the characteristic function of the set
M o0

E = U U (S+ai+b ;) .
i=21=1

and C is the cube defined by

0<xi<R,

	

i=1,2, . . .,n,

we have

R-n JC Q(x) dx = 0-Vm R-n .

Now consider the density 0(t) of the set

Ev{ U (S+t+b;)} .
,1

If p (x) is the characteristic function of S, we have

0(t) = R-n [1_(1_p(x_t_bi)) (1-Q(x))1 dx .
fc

	

=1

So

R-- 0(t)dt= R-2n fc fC [1-(1- i~ p(x-t-b;)) (1-,,(x)) ] dxdt

= 1-R-nJc[Rn-V(S)](1-a(x)) dx

= 1- (1-R-n V (S)) (1- (0-R-n V.)) .

But by the original choice of a1, a2, . . ., am to maximize the density we have

0(t) < 0,

0>1- (1-R-nV(S)) (1-0+R-nV.),

and

	

V111

	

(1-0) V (S)
>1-R nV(S)> (1-0)V(S) .

Ni
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Substituting this in (19) we have

1-0< (Nk (h)) -1(4h 2 +1+4/zy)nl 2-{-(1-y 2)n,2

so that

	

(4h2+ 1 +4hy )n12
N k (h) < 1-8-(1-y 2)ni2

(4h2+ 1 )ni2( 1	+y ) n'2

(1-8)-(1-y2 )fl1 2

= 2(1-9)-1 (4h 2+1)112 ( 1 +y)n 2
by (18) .

Since
0 <- 1-(1-n-1/2)1/2

and n > 4, we have

(1-8)-1 < (1-n-1/2 ) -112

= expf-2In log (1-n-1 1 2)j

= exp{21112+2 .2+2 . 3
1 n-1 / 2 + . . .}

< exp f2n1 /2 + . } .

Also
(1-6) 2 /n > 1-n112

and

So

Hence

1- (2) 211= 1-exp{-(2/n) log 2}<(2/n) log 2< 2/n .

y{l-(1) 211 (1-9) 211 }112 <{1-(1-{1-( )2n})(1-n 1(2)}112

<{1-(1-{2/n}) (1-n -1 / 2 )11!2

< 2n-1f4 .

2(1-B)-1 (1+y) 112< 2 exp{211/2 +2+2ny}
< 2 exp {2n 112+2+n3 '4 } < exp {2n3'4 },

and the result (15) follows .
Now suppose that n > 220 , that

1 < r2 < 4(1 -41114 ),

	

(20)
and that

h2 = r2 4+4n X14 .

Then
3+4n-1 / 4 < h2 < 1-n-1 ' 4 .

	

(22)



Also, provided h < x < r, we have

d	{(4x 2+ 1) (r 2-x 2)} = 4r2-1-8x 2
d (x2 )

Hence
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4r 2-1-8h 2

=-4r 2+1-32n-X14 < 0 .

(4x2+ 1) (r2-x 2) < (4h 2+ 1) (r 2-h 2 )

for h < x < r, and

fh kU()nN

	

1-

	

(nj2)-1
-d(r

fJ
rnrn [exp(2n 3/4 )]( 4x2 +x) [(4x 2+ 1 ) (r2- x2 )](n' 2)-1dx
h

<nr n [exp(2n 3 ' 4 )](r4+2r 2 )[( 4h 2+ 1 )(r2- h 2 )] (n12)-1

	 r4+2r 2		2

	

2

	

2

	

2 n;2=n[exp(2n 314 ) ] [ (4h2+1) (r2 -h2)] [r (4h +1)(r -h )]

	 r4+2r 2
-

n[exp(2n314)] (4h2+1) (4-4n 1/4)] [1-4(4-r 2)n -1,/4
I

	

- 64r-2 n-1,'2]n/ 2

<n[exp(2n314)] (4)2+2(4) [1-1272 114]n/2J

	

1_14 (4 - 8)

< exp(2n314+log 8+log n-6n314 )

< exp(-2n3 / 4)

This proves (17) .

4 . Proof of Theorem 1 . It is clear from the nature of Theorem 1
that the methods described in Chapter 1 of [12] suffice to reduce the
general case of Theorem 1 to the special case when the system E is a
periodic system of the type (13) described in §3 with period R > 2 .
Suppose then that E is a periodic system with period R > 2, with density 8,
and covering a proportion 0 of space, with

0> 3(1-4n-114 ) -nI2 (S) n/2 .

179

(23)

Let E be the system E(S ; a1, a 2 , . . ., am ; R) introduced in §3 . Let
EO be a corresponding system

Z (S ; al(o) a2 co>, . . ., am(O) ; R),

with the same S, M, R, but with a1(0 ), a~0) , . . ., a1(O) chosen to maximize
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the proportion of space covered by the system . Then the density of E O
is SO = S and E0 covers a proportion 0 0 > 0 of space . Write

0=min{00 , 1-(1-n-112)n12} .

	

(24)

If 00 > U, we can obtain a new periodic system E1, with density a < S,
covering precisely the proportion 0 of space, and satisfying the required
maximality condition, by increasing R to a suitable value R( 1 > and modi-
fying the choice of a 1(0), a 2(0) , . . ., am(O ) appropriately . Let this new system
be

E 1 = E (S ; a1(1) , a 2(1), . . ., aM(1) ; R(')) .

If 00 = 7/', we take E 1 = E° and write a = S .
In either case we arrive at a system

E1= E (S ; a1a) , a2(') , . . ., aM(1) ;

of density a covering the proportion & of space, with

k1) > 2,

a(1-4n-1 1 4)-nl2(W)n /2 < 0 <

	

-
112)n/2 ,

	

( 25)

a < S .

	

(26)

We write

Then

We also write

r = &) ' 1n .

	

(27)

1 < r2 < 4(1-4n -114 ) .

	

(28)

h2 = r2-&+4n 1 1 4.

	

( 29)

Let c 1 , c2 , . . . be an enumeration of the points
a2(1)+b;(1>, i = 1, 2, . . ., M, j = 1, 2, . . ., (30)

where b1( 1 >, b 2(1) , . . . is an enumeration of the points whose coordinates
are integral multiples of R(1> . For each positive integer k, let II (ck ) be
the Voronoi polyhedron of all points x, satisfying

x-c k < I x-c l 1,

	

1= 1, 2, . . . .

Let Nk (x) be the number of points of the system (30) within distance
2x of the point Ck . Then, as n >, 2 20 , R( 1) > 2, & satisfies (25) and r and h
satisfy (29), we have, by Lemma 2,

I nNk
(x) ~1_

r2
) (n/a)-1

r d ( r) <
where we write

R(1) )

8 = exp(-2n 3/4 ) . (32)



Writing
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~- (r2 ( 1-h2),n12

j1

r2-h2

_ {r2 (5-4r 2) 1n12	r 1 {16/(5-4r2 In 1/4, n/2
I

	

1-16n-1 / 4

{r2 (5- 4 r 2)ln/2

and using Lemma 1, we deduce that, for each integer k,

V ({S+Ck}r'1II(Ck)) <r n(IIV(II(Ck))+[1-(D+ b ] V(S) .

	

(34)

But by the periodicity of the system with period R( 1) in each coordinate,
we have

V ({S+a1(1)}n II (a 1 (1))) = t9'(R(1))n
i=1

M

V (II ( ai(1))) = ( R(1))n ,
i=1

M

F, V(S) = a(R(1))n .
i=1

So summing M inequalities of the form (34), and dividing by (R('))n,
have

0 <r-nq)+[1-(D+q)-7] a .

Hence

But

0-r-n
a
> 1-(D+cE

_ ~+ 8	 +r_n -O4 E

0+{&(D-r-n _8I }

_ 0-x-- 1100{1-4-} .

- Jr 2 (1-h2) }n/2
(l r2-h2

(r2 (5-4r2-16n1 / 4 ) 1n12
1-16n-1/4

-rn
(
1-	

4(r2-1) }n12
J11

	

1-16n-1 1 l4

r n {1-4(r2_ 1) (1 + 32n-1 / 4 )}n/2

_ (,',3)-1[1-4{('t9)-2/n_1}{1+32n-114}]n12 .

(33)

we
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So

a >8+j{1-4exp(-2n3/4)}[1-4{(43-8)-2/n-1}{1+32n-1/4}]n/2 .

	

(35)

When we have 0 < 0 it follows that

8 > a > 0+1{1-4 exp(-2n3/4)}[1-4{(j0)-2/n-1}{1+32n-1/4}]n/2,

so that, certainly

S > 0+3[1-exp(16-2n1/ 2)][1-4{(10) -2 /n -1}{1+32n-1 / 4}]n/2
When 0 < 0 we have & < 00 so that

a= 1-(1-n-1/2)n/2 < 0.

a
In this case

> y/0+a[1-4f{( -q0)-2/n-1}]n/2,

where we write
a = s {1-4 exp(-2n3/ 4 )},

= 1--32n-1/4,

'Y1 o = -(1 -n-1/2)n'2 .

Here
I <a<J,
1<f <2,

0 < 1-170 < exp(-zn 1/2 ) .
We write

f(o) = a[1-4p{0-1}]" 12 ,

and studyf(o) in the range

( )-2/n
< y' -

( 1,70)-2/n .

We have
f(q) >, 1[1_8((

4
3 'go)-2/n-

But

(J,70)-21n =(3) 2jn expl -- nlog{1-(1-n-1/2)n/2})

<(3)2/ne%p( 4 (1-n-1/2)n/2)
`n

<(3) 2/nexpl n exp(__ n1 / 2 ))

<(43)2/n

	

nI l }

	

exp(- nl/2)) (36)



Hence

But we also have
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< (1+4log
3)

(1-~
5

exp(-2n 1 / 2))

PC 4

	

n
241 n/2

1-

> le-1s > c-15.

4

-f'(0) = 4af2n[1-4p{cb-1}] (
n/2)-1

< 1-8(3/n)f(0) < 5nf(0) .

So, dividing by f (0), and integrating over the range
(4B)-2/n < 0 <(4170)-2/n

we obtain, on using (36)
log [f(( :130)-21n) ] -log [f((3117")-21n)]

< 5n[(3,7 )-2/n- (30)-2/n]

<5n [(417o)-2/n- (4)-21n

J

]

J

5< 5n(2)2/nl 5 exp (-2n1/2))

< 26ex

	

ln1/2) .P( -z
Hence

f((43,7 .)-21-) >f ((36 )

-2/n ) exp{-26 exp(-2n 1 ' 2)}

> f ((4e)-2'mn) {1-26 exp(2n1/2 )} .

Consequently

S > '90+f((4'70)-21n

> B-
( 1-170) +f( (4170)

-2/n )

> 6-[exp(-2n1/2)] e15f (( 4-70)-2/n) +f((4 170) -2/n)

B+ [1-exp(15-2n 1/ 2)][1-26 exp( -2n1/2)]f((4B)-2,n )

> 8+2[1-exp(16-2n1/2)][1-4{(4B) -2/n-1}{1+32n-1
/4}]n/ 2.

Thus we have the inequality in each case .

(37)

(38)
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