THE AMOUNT OF OVERLAPPING IN PARTIAL COVERINGS OF
SPACE BY EQUAL SPHERES

P. Erp6s, L. FEw and C. A. ROGERS

1. Introduction. We say that a system X of equal spheres S, S,, ...
covers a proportion § of n-dimensional space, if the limit, as the side of
the cube (' tends to infinity, of the ratio

V(Ells,no)
7(0)

of the volume of €' covered by the spheres to the volume of C, exists and
has the value . We say that such a system X has density §, if the
corresponding ratio

3 V(8,~C)
r=1
V(0)

has the limit & as the side of the cube C tends to infinity. We confine
our attention to systems X for which both limits exist. 1t is clear that
8 = 0, if no two spheres of the system overlap, i.e. if we have a packing ;
and that, in general, the difference §—0 is a measure of the amount of
overlapping.

By well-known results of H. Minkowski [1] and H. F. Blichfeldt [2],
the maximum density 6, of a packing of equal spheres into n-dimensional
Euclidean space satisfies

" n+2/ 1 \n o
*g-;{;_—z <0, Q—Q—(W) ; (Z(’ﬂa) = Elk_“) -
These results have been improved, see [3], [4] and [5], but the improve-
ments tell us nothing new about the asymptotic behaviour of 6,'" as
n—+o0. If X has 0> 6,, a general (but not quite trivial) argument shows
that 8 > #; but does not, as far as we can see, give any estimate for §—6.

Our object in this paper is to obtain such an estimate for §—6, for a
wide range of values of f. Our method, which is based on one first used
by R. P. Bambah and H. Davenport [6] (see also [7]), does not work for
values of # approaching 6, but it does work for values of 8, which may
become exponentially small as # increases. It is also relatively weak,
when 8 is close to 1, as we do not obtain a result so strong as that of H. S, M,
Coxeter, L. Few and C. A. Rogers [8] on letting f tend to 1. It is however
the only explicitly known result for

(#+om))"<b<1.
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Our main result is

TaEOREM 1. If n = 2% and a system T of equal spheres covers a pro-
portion 0 of n-dimensional space with

[ i (]_ 2o 4.?1—1."4)—11,"2(%)ri;‘E’ [1 }
and has density 8, then
8=>0+10
where
0 = §[1—exp (16—3n12)][1—4{(§6) 2" —1} {14 3214} ]2, (2)
The estimate for 6—@ is not quite as simple as one would wish; one
gets a better idea of its consequences on noting that, if

1 1
—log—=
—log—-=o(1),

as n—>o0, i.e. if 8 does not tend to zero exponentially fast, then
O = §(§8)1+ 0, (3)

as n—>o0; and that, if

1 1 1 1
0 < lim inf— log — <Clim sup — logF < }logk,

LT N = B =00 n

i.e. if 0 does tend to zero exponentially fast at a rate strictly slower than
that of (4)"2, then

O = (5—46-2n—o(1)) i, (4)

We remark that Rogers [9] (see also [10]) has a result (Theorem 1),
which implies (on choosing V to satisfy 6§ =V —}V?) that, if 0 <0 <1,
then there is a lattice system of spheres, covering the proportion 6 of
n-dimensional space, and with density at most

o

8 ,
T rv—29)

This shows that we cannot expect too much overlapping when 6 is small.

< 04262, (5)

2. The approximation of spheres by polyhedra. In this section we
prove a lemma on the volumes of the parts of a convex polyhedron lying
inside and outside a sphere. Our result tells us that, if the volume of a
polyhedron IT does not greatly exceed the volume of a sphere S, and if
IT has not too many faces, then the volume of TTA S is substantially
smaller than that of S,
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LemmA 1. Let S be the sphere with centre o and radius 1, and let T1
be a convex polyhedron containing 0. Let N (t) be the number of faces of 11
whose (n—1)-dimensional planes arve within the distance t of o. Then,
provided 0 <h < 1<r, we have

F(SAT) <r OV ()4

a2\ (n/2-1 o
r

4 [l-—(D—[—(DJ:ﬂ.J\f’(x)(lﬁ g d(%)]V(S). (0)

where

@ =

[r‘s(l—ke) ]m’z. )

| r2—p2

Proof. Let Fy, F,, ..., Fy be the (n—1)-dimensional faces of IT and
let hy, hy, ..., hy be the perpendicular distances from o to the (n—1)-
dimensional planes of these faces. We suppose that the faces are named
so that

hy <h, <hg<...<hy.

For each i let C; denote the semi-infinite cone with vertex o and with F,
as one of its sections, 7.e. the set of points which can be expressed vectorially
in the form Ax with A >0 and xe F,.

Let S* be the sphere with centre o and radius r. Let y; be the point
of F; nearest to 0. 1f |y,| =r we have

V(8*AC) <V(IIAC,). (8)

If h <|y;| <r, the points of S¥AC; not in Il are contained in the sphere
N; with centre y; and radius (r*—|y;[*)"®. In this case

V(S:AC,) < V(ITAC)+V(S,)

= V(IIAC)+-(r*—|y; )2 V (8). (9)
If |y;| <k, we again note that the points y of §*~C; satisfying
y.¥i=h|yil, (10)

are contained in a sphere of radius (r2*—A2)12, this time it is the one with
centre hy,;/|y;. So the volume of the set of the points y of S¥~C,;
satisfying (10) is at most (r*—A%)"2V(S). Now consider the set H*
of points y¥ of S*AC; not in II, but with

Y.y <h|yi|. (11)
With each point y¥ of I;* we associate the point
y=Yt+o(y*—¥y),

1—h2 11.’2

where
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The region (;—1I is convex and contains both y* and y, in its closure.
So y also lies in the closure of C,—II. Also, for y* in H ¥,

Y-y ={(1—¢)yi+4y*}. {(1—9) y;+¢y*}
= (1—¢)*y;.¥i+26(1—4) y*.y,+ P y*. y*
< (1—¢)2h*+2¢(1—¢) h2+2r?
= h24-¢2(r2—h?) = 1.
Thus the transformation y*-»y transforms the set H,* into a sub-set of

§A0—IL

Hence _
VHF) <¢$V((S—T)ACy),

and
V(S%ACy) < V(ILAC)+ (R—hm2 V (8)+V (H*)
<V(IIAC)+ (r2—h3)"2 YV (8)+¢™ V((S—l'[}n Ci) .
(12)
Summing the results (8), (9) and (12), we obtain
V(8%) < V(I)+¢" V(S—I)+N (k) (r*—h%)"2 V (8)
+V(8) f: (rP—a?)"2dN (z).

Integrating by parts, we have

f " (r—a?)n2dN (x)
h

= —(r*—h%)"2 N (h)+ J.r nax(ri—a?)md-1 N (x) da.
h

Hence
DV (8) =r DV (8%)
<OV (I {V(S)—V(S~II)}

+@V(S) J:nN(x) ( 1= %:-)(ﬂmqlid(i) :

r r

so (6) follows.

3. Periodic systems of spheres. We say that a system of equal spheres
S, S, ... is a periodic system with period R, if the spheres of the system

have a representation

B ¥, Bl B My 18 0 (13)
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where S is a fixed sphere with o as centre, where a,, a,, ..., ay is a finite
set, of points, and where by, b,, ... is an enumeration of the points of the
lattice Ap of points whose coordinates are integral multiples of . We
use X(S; a,, a,, ..., ay; R) to denote this system (13).

Our next lemma shows us that, if, when we keep S, M and R fixed
and vary a,, a,, ..., ay to ensure that X(S,a,, a,, ..., ay; R) covers the
largest possible proportion of space, we find that this proportion is not
too close to 1, then not too many of the centres

ai+b;; i=12,..M, i=12, ..,
can lie in spheres of radius 2k centred on these points.

Levma 2. Let S be the sphere with centre o and radius 1 in n-dimen-
sional Euclidean space, with n >4. Let R>2 be given, Let M be a
positive integer. Let ay, ay, ..., ay be chosen so that the system

E(S: a,, Ay, ..., Apr; R)

covers the largest possible proportion of the whole space. Suppose that this
proportion is 0 and that

0 < 1—(1—n-12)niz, (14)

Then, for each k with 1 <k << M, and for each h with 0 < h < } R, the number
N (k) of the centres

a;+b,, vk 2 M; 4=1,2.:.,
within distance 2h of a, satisfies
N,.(h) < (4h>+41)"2 exp (20%9). (15)
Further, if n >2%, 1 <r®<§(l—4n"14),
and h2 = 12—+ dn-1, (16)
then

r 22\ (/-1 g T

LnNk{x)(l—F) Td(-r—) < exp (—2n34). (17)

Proof. Suppose that 1 <k <M and 0 <h <}R. Let
Cn=am+bim,  Mm=1,2,..., Ni(h),

be the points of the system within distance 24 of the point a,. Ash <R
it follows that the points
: I m=1,2, ..., N.(h),

are all distinct.
We take

y= {1—@)¥(1—0)xmp2, (18)
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and consider the sphere X with centre a, and with radius
2= [(2h+y)*+ (L—y2)]¥2 = [4h24 1+ dhy 2,
It is clear that if the sphere
84-c,
has any point not in X, the whole set
(8+cp)—Z

will be contained in the sphere ¥, with centre

it (hety) Tk

and with radius
(=g,

It follows that the volume of the union
N
U (S+c,)
m=1
is at most
N
V(E)+ T V(Z,)=[(4h*+144hy)*>4 N, (k) (1—y2"2] V(S).
m=1

Let V,, be the volume of the part of §--c,, which lies in no other
sphere
S-+a;+b;

with
a;-Lb, ¢

m*

Then clearly

N N
3 Vo< V( U (S+cm))
m=1

me=1

< V[E}+ > V(Em)

=[(4h*+1+4-4hy)"*+ N (h) (1—3*)"2] V (S).

So we may suppose that m is chosen with 1 <~ m < N (k) so that
Vo <[ (N(8)) 7 (4024 1+ ahy)vz - (1 —y2m2 ] 7 (S). (19)

For convenience we may suppose that i(m)=1. Let 8'-}c, denote
the part of S-+4c¢, not lying in any of the sets S-ta;|b, with
a;+b;#c,.

Then the sets

M

ﬁ {S"'}'cmhf_b;'), U U {'Sl+ai+bj}
i=1

=2 j=1
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are disjoint and their union is

M o
U U (S+a;+b)).

i=l j=1

Comparing the densities of these sets, we see that the density of the set

M o
Uuu (S+ai+b,)

1= jm=1
is
60—V, R™.

So, if o (x) is the characteristic function of the set

M «
i

=8 J=1
and C is the cube defined by
0<u; <R, 1=1,2 ...,n,
we have
R"‘f o(x)dx=60—V,R™
c

Now consider the density 8(t) of the set

By

:f.’_Jl {S—|—t+bj)].
If p() is the characteristic function of S, we have

6(t) = R J.C [l——(l—élp(x—-—t“bi)) (l—o'(x))] ax.
So

R—nfc f(t)dt = R—ﬁﬂfc L [1 — (1— :z:;lp(x-t—b,.)) (1—o(x)) ] dx dt

=1—R-» fc [R“——V(S)](I—o(x)) dx

=1—(1—B"V(8)) (1— (60— R V,,)).
But by the original choice of a,, a,, ..., a,, to maximize the density we have
0(t) <0,
>1— (1—1!2-*l V(S)) (1—6-+RV,),

nd
a Vs 1—8)V(S)

N1
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Substituting this in (19) we have
10 < (Nk(k)) (4R 14 4hy)"2 4 (1— )2,

S0 that = (4k2 +1 +4:ky)"'ln
Ny(h) < 1—0—(1—y2)n2

(4R2-1)n2 (142
T A=0)— -y
= 2(1—0)7 (4h*+ 1)">(14-y)"2.

by (18).

Since
0 <1—(l—n-12)n2
and n > 4, we have
(1—0)1 < (1—n~12)-n2
= exp{—in log(1—n12)}

— oxp b g )

< exp{in'®4+1}.
Also
(1—B)2n = 1—n12
and
1—(3)*" = 1—exp{—(2/n)log 2}<(2/n)log 2 < 2/n.
So
y (1= @) (1—8)¥< (1— (1— {1— () (1—n- )2
<{l—(1—{2/n})(1—n-12)}2
< 2p1A,
Hence

2(1—06)~ (14-y)"*< 2 exp {}n'*+-+ny}
< 2exp{in'?-1+4n*4} < exp{2n3},

and the result (15) follows.
Now suppose that n > 2%, that

1<rt<i(l—4n1),

and that
he =21 dn1

Then
A 4dn 1t < b2 < 1 —n VA,

(20)

(21)

(22)
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Also, provided & < x < r, we have

e {(40°4-1)(r*—a?)} = 4r®—1—8a?

< 4r*—1—8h?
=—4r241—32n"1M < 0.

Hence
(f0t+1) (P —a?) < (4h341) (2 — )

forh <a<r,and

. 22\ @21 5 o
me“ﬂ@“ﬁ) ‘?4?)

< frnr—“[exp (2nPM) ] (423 +-a) [ (422 1) (r?—a®) |21 da
h

< nrexp(2n3) ] (r*++3r3) [ (4A2H-1) (r2—A2) |21
4.1 1,2
= nexp ()] | s | (e -y

ri ot
(4R 1) (f—4n~1)

Vi 102} (R
Gy | DT

< exp(2n®i-+-log 13+log n—6n*)

] [1—4(4—r—2)p-1t

= nlexp(2nr3)] [
— B4y Li2]n

<nfexp(uY]|

< exp(—2n3H),
This proves (17).

4. Proof of Theorem 1. 1t is clear from the nature of Theorem 1
that the methods described in Chapter 1 of [12] suffice to reduce the
general case of Theorem 1 to the special case when the system X is a
periodic system of the type (13) described in §3 with period R > 2.
Suppose then that X is a periodic system with period R > 2, with density 8,
and covering a proportion  of space, with

0> &(1—4n-14)-ni2($yni2, (23)

Let X be the system X(S; a,, a, ...,ay; R) introduced in §3. Let
X, be a corresponding system

E(S; aliﬂ)’ ag(ﬂ), ikl aM{U); R)’

with the same S, M, R, but with a,, a,®, ..., ay® chosen to maximize
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the proportion of space covered by the system. Then the density of X,
is 8, =24 and X, covers a proportion 8, > 0 of space. Write

# = min{6,, 1— (1—n-12)n2}, (24)

If 6,> 9, we can obtain a new periodic system X, with density o <,
covering precisely the proportion # of space, and satisfying the required
maximality condition, by increasing R to a suitable value R® and modi-
fying the choice of a,®, a,9, ..., ay© appropriately. Let this new system
be

Z,=3(8; a,®,am, ..., an"; RY),

If 6, =&, we take X, =3, and write 6 = 8.
In either case we arrive at a system

Z,=X(8; a® a,®, ..., ay"; RY)
of density d covering the proportion ¢ of space, with

RO>2,
%{ 1 _4n»1f¢)~nrz (*)mrs <P L 1= (1—n12)ni2, (25)
0 <8. (26)
We write
. r= (%)~ (27)
Then
1< < §(1—dn-19), (28)
We also write
h?=ri—}44dn—18, (29)

Let ¢, ¢,, ... be an enumeration of the points
ai{u-}_bj(us i= 1: 2! wwey -M: j: 1: 2: seey (30)

where b,®, b,V ... is an enumeration of the points whose coordinates
are integral multiples of R®, For each positive integer k, let Il(c,) be
the Voronoi polyhedron of all points x, satisfying

[x-—'cklglxﬂclls I::l, 2,....

Let N.(z) be the number of points of the system (30) within distance
2z of the point ¢;. Then, as n > 2%, RV > 2, § satisfies (25) and r and A
satisfy (29), we have, by Lemma 2,

J: nNk(x)(l—;_z;)(ﬂm—l % d(%) <E, (31)

where we write
Z =exp(—2n%H), (32)
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Wl‘itiﬂg o !?‘2(1‘-—;&2) ]nl'z

r2—h2

1—{16/(5—4r2)in-14 ni2
_ oo L st

< {r2(6—4r2)}me, (33)
and using Lemma 1, we deduce that, for each integer £,
V({8+ednaTl(c) <r 0V (Il(c,) +[1—®+OE]V(S).  (34)

But by the periodicity of the system with period B® in each coordinate,
we have

M
> V({8+aMnTl(a,®) = §(RO),
q=]

> 7 (1l(a,®) = (BO)",

=1

=

M
S V(8) = 3 (R,
i=1
So summing M inequalities of the form (34), and dividing by (R®)", we
have
3 <rn @4 [1—D+DE] 0.

Hence
0> F—r—n O
1—04-DE
-nP—JDE

-0+ oy

= 9+ {fO—r" O —JDZ}
= 34390 {1—4E}.

But

- {r2(1_k2) ]nfs

rﬂ__h2

_ [r?(5—4r2—16n"1%) \ni2
o 1—16n-1/

i A

T 1—16nY
> {1 —4(r2—1) (14 32n-14)jni2
= (39)"1[1—4{(39)~¥n—1} {14 32514} ]n2,



182 P. ErpéGs, L. FEw and C. A. RoGERS

So
0 > 04§ {1—oxp(— 203} [1—4{(39)Hn— 1}{1+- 321402, (35)
When we have 6 < & it follows that
8 >0 > 04§ {1 — 4 exp(— 29} [1—4{(§6)~¥n— 1} {1 32n-Va} s,
so that, certainly
8 > 0+ 3[1—exp(16—}n¥2)][1—4{(36)-2"— 1} {1+ 32018 ]r2,
When ¢ < 6 we have & < f, so that
§=1—(1—n-12)n2 < .

In this case
8> 9 >no+all—4B{(Fno) 2 — 11",

where we write
@ = }{1—4 exp(—2n%)},

ﬁ =1 +32n—”"

o= 1—(1—n-12)n2,

Here
i<a<i,
1<B<2,
0 < 1—5, < exp(—in'?).
We write

[(¢) = a[1—4B{p—1}]"2,
and study f(¢) in the range

(@) < & <(Fno)~"

We have
£(¢) =31—8{(gn)2m—1}]",

But

(tn94n =2 exp( — 2 log {1~ (1123
< (%)lrn exp ( % (1__, n—m)n.rs)
<(%)¥n exp(% exp(_*nus))

<(%)an(1+ niexp(—\}nlﬂ)) (36)
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<(1+ 5 tog ) (14 -exp(—3n))

3
<l4+—. (37)
Hence
1@ >1-2]"
> Je13 > 15, (38)

But we also have

—f'(¢)= 4aﬁén[1—4ﬁ{¢_ 1)1

<T8@m f (¢) < dnf(4).

8(3 [n)
So, dividing by f(¢), and integrating over the range
(F0)721" < & <(dmo)~*",

we obtain, on using (36)
log [ £((36)~2) ]—log [ ((3n0)-2") ]
< 5n[(no) 2" —(36)72"]
< 5n[(fne) ¥ — (]
< sn(f)n( > exp(—int4))
< 26 exp(—in'?).

Hence

F((@n0r2) > £((26)-2") exp{—26 exp(—in1®)}
> £((36)-*") {1—26 exp(3n®)}.
Consequently
8 > mo-+f( (dn0) )
> 6— (1—ng)+/ ( (§n0) ")
> 60— [exp(—n1®)] €57 ((376)-2") -+F ((Fn0)2")
> 0+ [1—exp(15—n12)][1—26 exp(—in?)1f ((36)*")
> 0+4[1—exp(16—nt)][1—4{(36) 2" — 1} {13204} o,

Thus we have the inequality in each case.
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