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-1<xI<x2< . . .<x„<_1

be n points in ( - 1, + 1) . A well known theorem of Faber [5] states that
there always is a polynomial of degree n - 1 for which

(1)

IP„- 1(xj)I<l, l<i<n

max I P,,-(.x) I > c logn .
-1<x<1

Throughout this paper P,(x) will denote a polymonial of degree n ; c, c 1 c 2 ," .

will denote positive absolute constants not necessarily the same if they occur
at different places . Tn other words : for no choice of the points X 1 ,"',Xn can
we deduce from the boundedness of I Pn _ 1(x) I, 1 <_ 15 n the boundedness of
I P,,- ,(x) I in the whole interval ( - 1, + 1) . Bernstein [1] asked himself the
question whether one can deduce the boundedness of I P,(x) I in ( - 1, + 1)
if we know that I P„(x) I < 1 for in > (1 + c)n values of x. His answer was
affirmative . In fact he showed that if I P„(x("'~)

I
< 1 for all roots of the in h

Tchebicheff polynomial T,,(x) where m > n(1 + c), then

max j P,,(x) I < A(c)
_ 1 <x < 1

where A(c) depends only on c . Zygmund [7] proved that (1) holds if T n(x)
is replaced by Pn,(x) the m` h Legendre polynomial .
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We can now put the following question : Let

(2)

	

_1<xin')< . . .<x(n)<_1,

	

1<_m<oo

be a triangular matrix . What is the necessary and sufficient condition on the
matrix that if for m > n(1 + c) .

P,(xim) ) I < 1,

	

1 < i < )n

then (1) holds . A priori it is not obvious that a reasonable necessary and
sufficient condition can be formulated, but we will find such a condition
which is not too complicated .

Put

COS O,(m)= xim) ,

	

0 < 0< ?C

Let 0 <_ a < # < n and denote by N(a, f) the number of O(jn' ) satisfying
a < 0i"' ) < P . Let

a < Dim) < . . . < O ín') < N

be the 0's in (a, /f), for each ri we define a subsequence 0,á,'n ; . . . 0 ;( m)
of these 0's where i, = i and if i,, i r _ 1 have already been defined then 0 0m)

is the smallest 0,( 'n), i r _, < l 5 j with W' )- O, _, >

	

thus the distance
112

between any two 0(,"0 is > n /ni and any other 0,x < 0;"' ) )<f3 is at
distance < 0 /m from at least one of the 0, , ~1 <= r <= k . Put

N,n) (a, f3) = k = k(0)

Now we formulate

Theorem 1 . Let x(j ` ) satisfy (2), and assume that

(3)

	

I P„(x ;") I S 1,

	

1 _< i <_ rn,

	

)n > n(l + c)

holds. Then the necessary and sufficient condition that (3) should imply (1)



is that there should be an h > 0 independent of m so that for every a<
satisfying

	

- a,,,) -* 00

(4)

and

(5)
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and that i.f 7n(a„ - a„)

	

O)o then

N ;~(af„li,,,) -(I +0(1)) n (Í~, - a.) .

Condition (4) means that every interval large compared to I contains
m

asymptotically at least as many points 0 < no two of which are "too close",
as T(x) .

Before we give the fairly difficult proof T would like to call attention to a
Theorem I proved 20 years ago [3] .

Theorem 2 . Let x;satisfy (2) . The necessary and sufficient condition
that to every continuoils function f(x), - 1 <_ x < 1 and to every c > 0 there
should exists a sequence of polynomials P„(x), n < m(1 + c), such that

Pn(xi„'I)-f(x~"'~), 1 ~ 1 ~ m

P„(x)-f(x) uniformly in (- 1, + 1) as n- oo, is that

Jim inf m . min (0j(0(,+,,), -0 " ~)>0

(6)

	

fl,) ( 1 + 0(1))
n

In
(fl . - am)"

Condition (6) means that every interval (in 0) which is large compared to
1- contains asymptotically at most as many x i 's as T,,,(x) . The classical orth-

ogonal polynomials as is well kno%vn satisfy both (5) and (6), and also (4),
thus our Theorem 1 contains the results of Bernstein and Zygmund as special
cases .

In [3] the proof of Theorem 2 was only outlined . The proof of Theorem 2
is in fact similar to the proof of Theorem 1 . It can be shown that Theorem 2
is substantially equivalent to the following



Theorem 3 . Let x~"'~ satisfy (2) . The necessary and sufficient condition

that there should exist to every c > 0 and A(c) so that to every

< 1, 1 < r < in, I < n1 < oo there should exist a polynomial
P„(x), Ir < (I + c)m satisfying

is that (5) and (6) should be satisfzed .

Theorem 3 (and therefore Theorem 2 too) is clearly related to Theorem 1 .
1n this paper we do not further discuss Theorem 2 and 3 .

Now we prove Theorem 1 . First we show that (4) is sufficient, in other words
if (4) holds then for every c > 0 (3) implies (1) . 'To show this it will clearly
suffice to prove the following .
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Theorem 4. Let q > 0, c > 0 be arbitrary given numbers, e = r(q, c) is

ciently small and B = B(r) is given . Then there is an A = A(ij, c, e, B)

so that if

P,,(xi "'» = y mt, I P„(x)1 < A(c),

	

- 1 < x <_ 1

- I < x i < . . . < x," < 1, COS O i = x i , r = 1, • • •,m

is a sequence for which for every 0 <_ a < /i <= zz satisfying

(9)

	

I P„(xi) I< 1,

	

1< i _< m.

We have

>
B

/i-a -
nz

N;"/i) > (1 - c)
177

(/1- a) .

Then if P„(x), n < 1 + c is any polynomial satisfying

s

P„(x)I < A(q,c,c,B)

	

for - 1 <_ x < 1 .
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To prove Theorem 4 we will need two Lemmas :

Lemma l . Let z, < , . . . < z„ be the roots of the n"' TchebicheT

polynomial T„(x) . Let t be a fixed integer and - I < y, < . . . < yn < l. where

y j = z r for 1 <_ i <_ a and u + t < i _<_ n . Assume further that for a fixed n > 0 .

(10)

	

arc cos

	

arc cos y„, s > r1/n, 1 < s < t .

Then for an absolute constant C = Q1, t) we have

Ilk(x)I <C(rl,0,

	

-1<x<1,

	

1<_Ic<it

where

(Q((x

	

co(x) = 11 (x - A)
k = 1

are the fundamental polynomials of the Lagrange interpolation formula

belonging to the yk .

Denote by Lk(x) the fundamental polynomials of the Lagrange interpol-
ation belonging to the zk . It is well known that [4]

(11)

	

ILk(x)I<4,

	

-1<x<-1,

	

1<-k<ai .

Lemma 1 follows from (11) by a simple computation by comparing
factors of Ik(x) and L,(x) term by term and by using (10) . We leave the simple
details to the reader .

Before we state Lemma 2 (which will be the most difficult part of the paper)
n

we introduce the following notations : Let P„(x) = IZ (x - x i), cos Bo = x o

is an arbitrary point in ( - 1, + 1) . I(a) denotes the interval
{cos ® o , cos(d o + a)} and I( - a„t3) the interval {cos (0, - g), cos (0, + fl)}*
N,,(a) respectively N„( - a, f3) denotes the number of the x, in I(a) respectively
in I( - a, /3) .

the

Lemma 2 . To every t, and c i there is a t z = tz (t,, c,) so that if

n > no(t i , t z , c,) and for every t i < t < tz
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(12)

	

N„ (
t
n

) > (1 + c l ) t/rc and N„ ( -
n
t) > (1 + c 1 ) t/n

then

(13)

	

I P„(xo) I< 2 max I Pjx) I .15x51

In other words qualitatively speaking if P„(x) has much more roots in every

large neighborhood of x o than the 11 th Tchebicheff polynomial then I P„(x o )I
is much smaller than the absolute maximum of I P„(x)I in ( - 1, + 1) .

(13) would hold with an arbitrary cz instead of z i but then t z (t,,c,) has to

be replaced by t z (t 1 ,c l,c 2 ) .

One further remark : In (12) we only consider those intervals for which

0<0,+
t

< 7T .
n

To prove Lemma 2 we replace our P„(x) by a new polynomial Q,(x) . Outside

of I ( -
t?

,
tz)

all the roots of P„ (x) are also roots of Q„ (x) . Q„(x) has the
n n

further roots

2i - 1

	

t 2

	

2i. - I
Cos 00 + - -71

	

_ < i _< j, = N,,

	

and cos (0. -n

	

-a-?r),
(14)

1<i< t2) .
n

Our Q„(x) has now n roots. By (14), in the interval

interval (15) .

I ( _ 2jz -1,~ 2J 1 -1
n

	

n

the roots of Q„(x) are congruent to those of T~(x) and by the well known
theorem of M . Riesz [6] Q„(x) must assume its absolute maximum in

( - 1, + 1) outside the interval (15) . By (12) 1( t2 n) is inside the
n



Assume now that

( 1b)

	

I Q„(zo) I= max I Q„(x)
- 15X<_I

By what has been just said we can assume that z o is outside the interval (15) .
Now we prove

(17)

	

I Q,,(xo) IPn(xo) I i 2I Qn(z0) I P,,(ZO) I
.

Assume that (17) has already been proved . By (16) we have
Q„(-z,) I >_ I Q,(x,) I, thus from (17)

which proves (13) and thus Lemma 2 is proved .
Thus to complete our proof we only have to prove (17) . The proof of (17)

is quite simple in principle and to avoid simple and routine computation we
will not give all the details . Without loss of generality we can assume that z o

lies to the right of the interval (15) . Denote by x, <_ . . . < x j , the roots of

P„(x) in I (it ) and by y i < . . . < y;, the roots of Q„(x) in I (2lln 1 ) .

X , >_ >_ x', are the roots of P„(x) in I( -
n?

and yi < - < yJ z those of

Q„(x) in I ( -
2j 2 -1

ll
Put

where
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P"(xo) I < 2

	

Pn(zo) I

	

max I Pa,(x)
-15X51

Q,,(xo)

	

P,.(--o)
P,,(xo) Q,,( z o)

7"
~7 (xo - yi)(Z0 - xi)

	

7''~ _ ~̀
(x0- A(zo- xi)

(19)

	

i-1. (x0 - xi)(zo - ~' i) '

	

112

	

i=1 (x0 - xi) ( zo - Yi)

Now it immediately follows from (12) and the definition of the x's and y's
t

	

t
that for every xi and x i not in I n n



Also since z o is to the right of (15) we have for every x ; not in

I \tln)

(21)

	

z0 - x i > z0 - y i .

From (12), (19), (20) and (21) we obtain by a simple computation that for

12 > t2 (tl, c i ) and n > 11 0 (1 2 , t i , CO

(22)

	

H, > 2

since for sufficiently large t 2 = t 2 (t l , c,) and n > 11 0 (1 2 , t i , c i ) the contribution

to 1-I, of the x, and y, corresponding to the x i in I
t

, which do trot satisfy
n

(20) can be ignored .
Similarly we see that for t 2 = t i (t i , c i ) and n > n 0 (t2 , t i , CO

(23)

	

1-1 2 > 1

since for the xí and yí not in I - tti ) we have
n

(24) (xo- Yí)(zo- XI) > 1 .
(xo - xí) (zo - Yí)

(24) can be deduced by a simple geometric (or analytic) argument from (20)

and z o > x 0 . The x, in I
(tn) can again be ignored for sufficiently large t 2 .

(18), (22) and (23) prove (17) and hence the proof of Lemma 2 is complete .
It is an open question if (13) remains true if instead of (12) we assume only

t

	

t
that for every t i < t < t2 Nn - -

n
, -
n

> (1 + c i )2t/n .

Now we are ready to prove Theorem 4 . If Theorem 4 would be false then
there would be a fixed c, s, ri and B so that for every D there would be arbitrarily

142 P . ERDÖS

(20) xo - ti `> 1 + 5 and xO - Y i > 1 + S, b = S(ci ) .
X0 - x j

	

xo - xí



large values of m for which there is a sequence - 1 <_ x 1 < . . . < x,„ <_ 1
satisfying

(25)

	

arc cos x,,, - are cos x, > il/m

and for every x and fl satisfying (7), (8) is satisfied . Finally this sequence would

be such that there would exist a P„(x), n < 1
In

c satisfying (9) and

(26)

	

max I P„(x)
I
= D.

1<x<_1

From these assumptions we have to derive a contradiction for sufficiently
large D. Assume that P„(x o ) I = D, - 1 _< x o <_ 1 (i .e . I P„(x) I assumes its
absolute maximum in ( - 1, + 1) at xo ) . Put cos 0, = x o , and let B < t < T
where T is sufficiently large and will be determined later (T is independent of
in) . By (25) and (8) (since (25) holds the rl in (8) can be left out)

(27)

	

N,,, (~t ) > (1 - a)

N,„(-~ denotes the number of the x, in {cos 0 0 , cos 0+
m
t)~ . On the other

rat

hand T„ (x) has at most

(28)
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7r
t 11

m + 2 < (1 - 2 ) N, (~n)

roots in I
G
t) if e = s(c) is sufficiently small .m

Denote now by - 1 5 y 1 < . . . < y v _<_ 1 the roots of T„(x) outside
T T

	

T T
I ( - -, - and our x i in I - -, - . By (25) and (27), N = n + 0(1)m m

	

to In
where the error term 0(1) depends only on T. Denote by SN _ 1(x) the poly-
nomial of degree at most N - 1 which coincides with P„(x) on the x ; in

I ( - t, t and is 0 on the other y's . By the Lagrange interpolation formulam m
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N
W(x)	 ,

	

= 11 (x

	

.Yk),(29) SN- 1(x) -

	

P;,(xi) 1k(x), ik(x)
_
-
w'(3'k) (x

	

COW- .Yk)

	

k = 1

where in -'k runs over the yk (i .e . the xk) in I
(-l12

t,
l71

t
. By (25) Lemma 1

can be applied for the 'k(X) of (29) and we obtain for every - 1 < x < 1

I SN-1(x) I < C(il, T) E' I P,,-1(xi) I •

By (25) the number of summands in E' is less than 2T hence by (9)
q

(30)

	

SN- 1(x) < 2 C(n, T),

	

-1 < x <_ 1 .

Choose now D = 6T Q1, T) and put
n

(31)

	

R,„(x) = P„(x) - S,-,(x), n i = max(n, N - 1) = n + O(t) .

R„,(x) vanishes at the N,,, ( _ T T) X'S in I ( - T Tl . Thus by (31)in

	

111

	

n1 77 J7

(27) and (28), (12) (of Lemma 2) is satisfied by R,,(x) with B = t 1 , T= tz and

1
1-c/2

= 1 + e 1 . At xo we have by (26), (29), (31) and the choice of D

(32)

	

I R,,,(x o ) I > 2 max I R„(x)

1<_x<1

but this contradicts Lemma 2 for sufficiently large T. Hence the proof of
Theorem 4 is complete and we showed that (4) is a sufficient condition that (3)

should imply (1) .
To complete the proof of Theorem 1 we have to prove the necessity of (4) .

In other words we shall show that if (4) is not satisfied then (3) does not imply
(1) . To show this it will suffice to show that the conditions of Theorem 4 are
best possible. In other words we shall prove

Theorem 5. Let A be an arbitrary positive number, ri = q(A) is suf-
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ficiently small, e > 0 is fixed and 6 < e/2 is arbitrary . Then there is a

B = B(A,q,e,5) so that if

- 1 < x i < . . . < x ,n < 1,

	

m > mo(A, q, e, b, B)

is any sequence satisfying for some 0 <_ a < a + B < 7r
m

(33)

	

N„') (a, x +
B

) < B(1 - r) .
m

Then there is a polynomial P„(x), n < m(1 - 6) satisfying

(34)

	

I
P„(x ;) I< 1,

	

max I P„(x) I>A .

To make the idea of the proof more intelligible we first assume instead of

(33) the stronger condition

(35)

	

N,,, (a, a + B) < B(1 - e)
111

and deduce the existence of a polynomial satisfying (34) from (35) . It will
then be easy to modify our argument to show that (34) follows from (33) too .

First we define an auxiliary polynomial Q„(x) . All the x i in (a, a + B are
m

roots of Q„(x) (the interval cos fl < x < cos y will be denoted (/3, y)) . In

(
01 +

ni
t -

s
10 , 0 and in 7r, a +

BWi ~)
all the roots of T, .(, - ,, ),(x)

are roots of Q„(x) . By (33) and 6 < s we obtain that the degree of Q„(x) is less
than m(1 - (S) . Thus by the theorem of M . Riesz [6] Qn(x) assumes its absolute

B(r; - S)
maximum in ( - 1, + 1) in a( + B(e

	

, a + Bm (1 -
e
10
- 5

, say attom

xo = cos 00 .

Our polynomial P„(x) is obtained from Q„(x) as follows : All the common

roots of Q ,,(x) and T, -a»(x) ~In a, a + Blom a) are moved to cosa and,.~~~
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all the common roots of Q(x) and T,,,, ( , a) ,(x) in (a + B(1 - E10
	 6

)' a
+ rB

)

are moved to cos (a +
B
in

Thus
B(e - b)
	10 + O(1) roots are moved away from x o in both directions .

We now show that P„ (x) satisfies (34) . First of all P„(x,) = 0 for all the x,
in (a, a + B/m), thus to complete our proof it will suffice to show that

(36)

	

I Pn(xo) I /I Pn(zo) I> A, I P„(z 0 ) I= max I P„(x) I

where in (36) the maximum is taken over the x in (-1, +1) which are not in

a, a + B-1 (since (36) clearly implies I P„(xo) I > A max P„(x,) which ism
(34)) . By assumption we have I Q„(xo) I >_ I Q„(zo)

I,
hence (36) will follow if we

can prove

(37)

The proof of (37) is almost identical with the proof of (17) and can be left
to the reader. This completes the proof of 'Theorem 5 if we assume (35) .

To complete our proof we now have to show that a polynomial P„(x),
n < m(1 - 6) exists satisfying (34) if we only assume (33) (instead of (35)) .
Choose rl = 2/1rA . By (33) and the definition of N;,';t (see the introduction)

there is a subsequence xi,, x,,, r < B(l - e) of the x,'s in (a, a + Bin
satisfying

2arccosx, . +l - arccosx, >	
rrAtn ~ nA

so that for every x„ in (a, a + B ) there is an x ij satisfying

Q (xo) > A I Q zo)

2
(38)

	

Iarecosx„-arccosx, .I <	
'

	

nAin
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In view of our previous construction there is a polynomial P„ (x) , n < m(1- 6)
satisfying

(39)

	

max I P,,(x) I = A, P„(x i .) = 0, j = 1, . . ., r
-1<_x<_1

and

(40)

	

max I P„ (x) I < 1

where in (40) the maximum is taken over the - 1 <_ x <_ 1 not in (a, a + B
In

A well known theorem of Bernstein [2] states that if fn(O) is a trigonometric
polynomial of degree n satisfying max IL(0) I = 1 then max If', (O) I < n,

0<8<2n

	

0<B<_2n

(thus from this theorem of Bernstein we easily obtain from (38) and (39) that

for every x„ in a, )c + B)
In

(41)

	

I
P,'(x„)

I
< 1 .

(39), (40) and (41) prove (34) and hence the proof of Theorem 5 is complete,
but this also finishes the proof of Theorem 1 .
Finally we state without proof

Theorem 6 . To every A however large there is an e > 0 so that if
n > n a(A,e), m = [(1 + e)n], then for every - 1 < x l < . . . < x n, < 1 there is
a P,(x) satisfying

P„(x,) 1< II i = 1, . . •, m

	

and

	

max I Pn(x) I >A .
-1<x<1

We do not give the proof of Theorem 6 .
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