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AN EXTREMAL PROBLEM ON THE SET OF
NONCOPRIME DIVISORS OF A NUMBER

BY
P. ERD(S, M. HERZOG AND J. SCHONHEIM

ABSTRACT

A combinatorial theorem is established, stating that if a family 41, 4>, .., 4,
of subsets of a set M contains every subset of each member, then the comple-
ments in M of the A’s have a permutation Cy, Cy, .., C; such that C; o 4,.
This is used to determine the minimal size of a maximal set of divisors of a
number N no two of them being coprime.

1. Introduction and results

Many theorems on intersections of sets have been generalized for entities more
general than sets. A first such result is that of De Brujn, Van Tengbergen and
Kruijswijk [1]. They established a theorem on maximal sets of divisors of a
number N, no member of which divides another member. If N is square free,
this is equivalent to Sperner’s theorem on the maximal set of subsets of a given
set, no subset containing another one. Other results in the same direction have
been obtained in [2, 3, 4]. Two of us [6] generalized in the same sense the follow-
ing result of [5]:

THEOREM 1. If & = {A(,4,, -, A,} is a family of (different) subsets of a
given set M, |M| = n, such that

) A;NA; # ¢, for every i,j

then

a) mg2-1!
and for every n there are m = 2"~' such subsets.

b) if m <2""! then additional members may be included in <7 , the enlarged
family still satisfying (1).
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Remark 1. If m = 2""', then the set .# of all subsets of M is partitioned
into 4 = o/ UF, where F consists of the complements with respect to M
of the members of .

The result in [6] mentioned above is the following:

TueoreM 2. If @ = {D,,D,,--,D,} is a set of divisors of an integer N
whose decomposition into primes is pi'py - p?* and

(2) (D,,D))> 1, for every i,j

then, denoting o6ty -0, = @
o “
2 m < f(N) = 4 zmax{ IT s o I] dw}»
i v=1{ v=1

where the summation is over all subsets I = {ij,iy,,i,} of {1,2,--,n}, the
product corresponding to the empty set being comsidered as I, and for every N
there are f(N)} such divisars.

b) If
® ¥
(3) m<g(M=a—1+%Emiﬂ(H Ot;v;d/ﬂc{,v)
1

v=1 v=1

then additional members may be included in 2, the enlarged set still satis-
fying (2).

_Remarx 2. If N is square free this result is equivalent to Theorem 1. Then
Oy =0y = =0, = =1 and f(N) = g(N) =2""*

REMARK 3. The example of the divisors of 180 which are multiples of 5 shows that
for certain N’s g(N) is best possible. But 2={22-3-5-7;2-3-5-7;27-3-5;2-3-5;
22.3-7;2-3-7; 3-5-7; 2%-5-7:2-5:7; 3-5; 3-7;5-7} contains 12 members
while g(420) = 9, In both examples the number of membersin & is «, H",-;', (2, +1)
i.e. equals the number of divisors of N which are multiples of p,—and in the second
example not every member is divisible by p, = 7. In both examples the ;s arg
supposed to be ordered as in Lemma 1.

Remark 3 makes part 6 of Theorem 2 appear not too illuminating. This is
remedied in the present paper by establishing the minimal size of a set & which
satisfies the assumptions of Theorem 2 and cannot be enlarged. This is fermulated
in the following theorem:

TueoreM 4. If 2,|@| = m, is a set of divisors of N = pi*-- p¥",
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(4) 0202 2,

ne two members of the set being coprime and if no additional member may be
included in @ without contradicting this requirement then
=1
&) mza, [](e+1).
i=1
ReMARK 4. (5) is best possible, the right side representing the number of
divisors of N being multiples of p,. Two such divisors are clearly not coprime.
The final observation in Remark 3 shows that there are other sets of divisors
satisfying (5) with equality,
The proof of Theorem 4 depends on the following combinatorial theorem
and on Lemma 1.

Tueores 3. Let A and M be sets, Ac M. Denote A=M-—A. If
F = (A, A,,-, A} is a family of sets satisfying

(i) AjcM,i=12 -3

(i) Xcd,» XeF
then there exisfs a permutatuion C,Cy,-,C, of Ay, Ay, A, such thai

Dermition. A family of sets & = {4,.4,,--, 4.} has the property (M) if
(i) and (i) hold.

LemMa 1, Let M be the sei M = {1,2,-,n}and let n, 2 0, 2 - 2 a, be
positive integers. Denote a = oty 0,, A =M~ A.
If F is a family of sets having properiy (M) and if

® AeF o A¢F,
then
{7 O 2o o 0y ety § % orfory o, e 0,

where the summation is over {iy, i e % .
2. Proofs

PrOOF OF TuroreM 3. For s = 1,2 the theorem is frue, Let s = 5, > 2 and
suppose by induction that it is true for s £ s, — 1. Let a be a fixed element con-
tained in at least one member of & . Denote by BY, B, -, B, the members of &
containing the element a, then B, = B! —a, I = 1,2,.--,r are also members of
. Denote by B,y B, By, the other members of %, if any. Since
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5 = 2r + ¢ the families By, B,,--+, B, and B, B,,::, B, have fewer members
than s,, and since both have the property Z(M), by the induction hypothesis,
there is a permutation of &, 8,;,---, B, say C,,C,,»-,C, and a permutation’ of
B, 8,,-,B,,,say D{,Dy,~,D,,, such that C;> B, (i = 1,2,---,7) and D, o B}
(i=1,2,,1r+q). Itfollowsthat D; > B{(i = 1,2,-,r), C; ~a > Bi(i =1,---.r)
and since C; = B, implies C;--a = B]
Dy, D;,++D,,Cy~a,,C, = a,Dypy 5.+, Dyyy

is the required permutation of the eomplements of the members of &.

Proor oF LemMMa 1, By Theorem 3 each term of the first sum in (7) divides
a corresponding term of the second sum. Moreover, by (6) each such factor is
proper and therefore by {4) sach term may be multiplied by «,.

ProoF OF TueoREM 4. Define & = {(jpjz, s j,)] pg:...pf:e@ for some
B;>0,i=1,--,k} and let .# be the set of all subsets of M = {1,2,---,n}.
Then by the maximum property of 2,

m= 2 ®j %y~ Xjn
&

where the sumination is over {j,,j,, >, ji} €7, and

|| = 2""* by Theorem 1.
Furthermore, since &/ cannot contain a set and its complement, the set & of
all complements of members of & has no member in common with &7 and
(8) M o= AVF
is a partition of . It follows also that

m= Xty = Lol e,
o P

where the second summation is over {i;,i,,---i,} e F# . We have to prove

=1

) Zoafe, ey, moa, [] (2,4 1),
F a=1

if p,e 2, (9) holds obviously with equality, while p, ¢ 2 means-ne 5 . Denote
by &7, and by &, the families of ssts in & and F respectively containing n, and
by F* the family obtained by deleting n from each member of F,. Denote also
by &' and F' the families of sets in 7 and % respectively not containing n.

m= Lala, a0, + X afau, o,
" “



412 P. ERDJS, M. HERZOG AND J. SCHONHEIM Israel J. Marth.,

and since

n=1
Toafa, e, v oo e, =, [](+ 1),
F F_

i=1
in order to show (9) it is sufficient to prove

z a/ai,...ai' _2- 2 o,
F ¥,
Le.

Z E/au ai 23

J AR Y Y A
’.

Qbserve that (10) .ﬁfeg‘(M) and hence F*e P(M-n). For (10), let Be #
then by (8) Be &, so Z < B implies X € #. The assumptions of Lemma 1 are
satisfied by Z#*. It follows that

p2 (“/‘1;)/4:."'“1, 2 ey X O, et 0 2Oty z Ay oen
s F

'l
and the proof is complete.
Final remark

It would be of intetest to determine all sets & satisfying the assumptions of
Theorem 4 with m = o, []72} (o + 1).
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