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1. INTRODUCTION

A set mapping on a set $ is a function f from S into the set of
subsets of S such that v éf(x) (xeS); AcS is called a free set (for the
set mapping) if y ¢ f(x) forall x,yeA, i.e. An{(A)=¢. It was an old
conjecture of Ruziewicz (1] that, if [S)=m2 B, , and if |[f(x)|<n (xeS),
where n is a fixed cardinal less than m, then there is a free set of cordinal m,
D. L4zar [2] proved this in the case when m is a regular cardinal and Sophie
Piccard [3] proved the conjecture for those cardinals m which are the sums of
b o smaller cardinals. Erdds [4]) gave a solution of the complete conjecture
using the generalized continuum hypothesis, and finally Hajnal [S] proved the

result without this hypothesis.

It is very easy to see that the result is no longer true if the
hypothesis |f(x)| < n<m is weakened to simply [f(x)]<m (xeS).
For, let ¥, < X < i< ¥, < .. (veh) be a well ordering of S, where

A is the initial ordinal of cardinal m. If we put f(x',“) = {‘"v: vepl (pen),
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then f is set mapping on S such that [f(x)|< [S] (xeS) and there is no
free subset of S containing more than one element. It will be noted that in this
counter example, the order types of the image sets f(x) are not bounded below
. This suggests the following strengthening of Ruziewicz’s conjecture proved
by Erdds and Specker [6]. If A is an initial ordinal number and { is any set
mapping of order o (<A) ona setS of type A, then there is a free set of the
full type 4. The set mapping f has order o if the order type of f(x) is less

than « for all xe 5.

In this paper we shall consider set mappings on a well ordered set
S in the case when the order type of S is not necessarily an initial ordinal, In
particular, we examine the truth status of the following statement SM(at,2). If
f is any set mapping of order « on a set of type A, then there is a free subset
having the same order type 4. The Erd&s-Specker generalization of the
Ruziewicz conjecture asserts that 5M(«,%) holds if A is an infinite initial
ordinal and x < & . We only examine the problem for the case when A]l= R,
although some of our results hold more generally. * We will prove (Theorems
4, 5 & 6) that 5M(x,2) holds in the following cases: (i) «<w, and

ay+1 oy +1 w+l S i
A= kw0, < Wy (k finite); (ii) o= w, and

A= gy < W% (i) x<wy; A=w® , where @ is arbitrary. Note that the
form given for % in (i) is the most general for which SM(«,%) is true with any
*< Wy For example, s™m [u,m“:) is false if w<a<cw, . The condition

A< w:"*z is (i) and (ii) is also essential for we show (see Theorem 3) that

SM(w,M is false if wo 2% 2« W, .

There is a connection between set mappings and polarized partition

relations. The symbol

*This is the first of a sequence of forthcoming papers by the three of us. In these we
shall consider similar problems for types with higher cardinals. Many new phenomena
and new difficulties appear already for types of power R, which is why they will be
treated separately,
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-G o)
(1. 1) —
g Bo P4

first used in [7] means, by definition, that the following is true: If A,B are

ordered sets with types «,p respectively, and if AxB = K,U K, , then there
are L<2 andsets A;cA and B;CPB suchthat tpA;=«;, tpB;=p; and
A;xB; cK; . The negation of (1. 1) is expressed by replacing — by ~|—> in the

symbol.

We prove (Lemma 2) that SM(x,3) implies the relation

{z ] [a 3 ]
—_—
¥ L |
but we do not know if the converse implication is also true. Using the

B
continuum hypothesis 2 O 31 , we will show (Theorem 2), if w,%y and

y=2_(n<wly,, where 2<y,l< R, , then

3 w+{
AT
Wy 1 Wy

This easily implies that

S+

and hence that SM(w+1,y) is false. This confirms our remark about (i) above.

We will also prove (Theorem 3) that,

Wy w 1

(1.2) +

(B< Fes
ﬁ 1 ww+2 B “2

4

From this, it follows that

:

and hence that SM(w,p) is false. The relation (1. 2) is a little surprising for it

1

w P Ww+2
]-}-l[ pJ (0, "sPp<wy,),

is equivalent to the following seemingly paradoxical statement: If S is an
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ordered set of type B (p<w,) , then there are 8, subsets of type less than
w;‘”z (i.e. their order type is small compared with the order type of S) such
that the union of any 3%, of these subsets is the whole set 5. This is closely
related to the negative partition relation p — (1, “-’1"*’? ,..,)L proved by Milner

and Rado [8].

In contrast to (1. 2) we prove (Theorem 1) that

! [a s]
—
B ! P
holds if o<w,, B< w:”z and y is a finite sum of order types j +..+ g,

which are expressible as an ©,-sum of increasing ordinals, i.e.

¥, = 2(v<wdd;, with &<, ... (izk).

As an application of the set mapping theorems we shall prove the
following result about transfinite graphs (Theorem 7). If S is an ordered set
of order type w8 < 91“"2 , and if G is any graph on S, thein either there is an
infinite path in G or there is an independent set (i.e. a set containing no edges
of G) of the same type w®. To prove this we make use of (ii) above. We know
by (1.2) that (ii) is false for order types greater than or equal to w®*? , but it
is possible that Theorem 7 is true for arbitrary @

2. ADDITIONAL NOTATION

Greek letters denote ordinal numbers and capital letters denote
sets. The obliterator sign * written above a symbol means that that symbol is
to be disregarded, e.g. {xg,.--» L4} = {LP: <A} . We write
R T s }‘ to indicate that the elements of S are ordered so that
Xg <%y <...< %y ; similarly, {x;,..,%,}, means that x,#x, (pcv<n)d.
If S is an ordered set, then tpS denotes the order type of S. If X,Y are
subsets of S, then X <Y means that x <y holds for all teX and yeVY .

We write
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S--Sou 51um us,\ (<)

if S is the disjoint union of the sets S, (u<A) and )< S, < ... < 8, :

If S=AUB (<), then A,B are respecitvely called initial and
final sections of S; they are proper sections if non-empty. If xe¢S , the
section { yeS: x<y} is denoted by R(x). More generally, if XcS , then
R(X) = N(xeX)R(x) , Aninterval of S is a set I suchthat S=AUIUB (<).
The interval of ordinal numbers {v: x<v<B} isdenoted by [a,R).

A subset X of the ordered set S is cofinal with S if X<{a} is
false for all aeS . If X is not cofinal with S we write XES LIf tpS =,
then co(x) demnotes the least ordinal B such that tp B = p for some cofinal
subset B of S. Thus, if ot>0, then co(a) is either 1 or an infinite initial
ordinal, The ordinal & is indecomposalkle if the equation «= p+y implies
that either p=ot (and y =0) or y=a . It is well known that the
indecomposable ordinals are 0 and the powers of «w and that every ordinal
>0 has a unique representation as a sum (the Cantor standard form)

X =g h A

with n<w,o; Iindecomposable (i<n) and «xjy2o0,2...2«,>0.

The cardinal of S is |S]. If m is any cardinal, we write
[S1"={xcsS: [Xl=m} and [S]*™={xcs: IX|<m} , Agraphisan
ordered pair of sets G=(S,E) with Ec [S]%. The elements of E are called
the edges of the graph. XcS is called in independent set if [X]zn E4¢ . An

infinite path in G is a set {10,...,3&”}* €S suchthat {x,,%,,4}€E (n<w).

The ordinary partition symbol
(2.1) o = ()
means that the following is true: If tpS = & and [S) = Kju ... UK, ,
then there are pu<2 and AcS suchthat tpA =o, and [A)c K, .If
oy =B (B<A), we write (2.1) in the alternative form o« —(@); . In this paper
we only require some special relations of the form (2.1) when r=1 . If n<w

and o« is indecomposable, then
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2.2) o <oty ;

if ncw and A<w , then
B+1

n

1
(2.3) Whes = (wgeq)y -
Also, we need the negative relation
1 :
(2.4) o -i-»(m;)mw if o<wgy -

The above results are all easy to prove, but details can be found

in [7].

The cartesian product of two sets A,B is denoted by Axg . If
AxB = Ky UK, inany partition, then we write
Fia) = {beB: (a,bdeK;} (aeA;i<2)
F.(b) is similarly defined for be B and i<2 .If DcA or DcB we define
F (D) = U Fe.
1eD

3. CONSTRUCTION OF SETS WITH PRESCRIBED ORDER TYPE.

We now describe a systematic procedure, which we follow in later
parts of the paper, for constructing a subset of a well ordered set so that this
subset has prescribed order type «,®, where @ is a fixed ordinal less than
©,,4. In the applications we are concerned only with the special case x=1 ,
but it seems worthwhile formulating the procedure in more general terms.

For a set S of type w,® we shall describe a standard sequence

I8 = (1,, Iis 00 ’fwﬂ) of intervals of S whose essential features are

that (i) every one-element subset of S appears as a term and (ii) if two intervals
IF-’ I, (pmev< Wy of the sequence overlap, then I,c lru . In the applications
the set Z of type w @ which we want to construct will have certain special
properties peculiar to the particular problem. What we do is to construct by
transfinite induction a sequence (Z,, Z,,..., i“a) of subsets of the given

set so that the terms have certain properties relevant to the problem and at the
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same time imitate precisely the order structure of the standard sequence I(S).
That is to say, the sets Z, are constructed sothat tpZ, =tpl, (v<wy)
and

Zy<9Z,e=1,< I)”'

}.l

hold for p<v<w, , where 9 denotes any of the binary relations <, >, ¢ or
C . This will ensure that, in addition to certain other properties, the set

Z =UC(lz,l =1)2, will have the required order type w,® .

We first make the trivial observation that, if 1<®<wy g »
then there is y = (®) <w, such that @ has a representation as a sum of

powers of w, ,
9%
(3.1) 0 =2 (E<x) wy

in which the terms are all strictly less than . We assume that x(@) is the
minimal value of ¥ for which there is such a representation (3. 1) for 6. Note

that x(wi} = cofcoz) if 1<p<ow . In general, however, x(®) differs from

of+1
co(@), e.g. x(wy2)=2.

Let tpS = w,® , where 1< @<y, ¢ . We assert that there is a

sequence of intervals of §, I($) = (Iyseees fw

) » and a regressive function

b= ¢$: [1,w,) = [0,w,) such that the conditions (3. 2) - (3. 8) are satisfied:

(3.2) Lyimi5

3.3) if xeS then {x}=1, for some v<wy:
(5.4 tpl, = m? (v <wy);

(3.5) I,clyey amd  tpl, <tplyyy (USv<wyd;
(3.6) llu.nI,,=¢ (PO < p <v<awy)d;

3.7 Iu<1, if wm<v and by = dwr;
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(3.8) tpip: ) <p<v; Gy = ¢t < xUtpIgy) (v < wy) .

For @ =1 this is obvious. We simply put
I,=5= {xo,x“..-,ﬁmd}, Li,={x,) (vewy) and ¢v)=0 (Usv<wy) .
In this case x(tpI)=w, and (3.2)- (3.8)all hold. We now suppose that

@ >1 and use induction.

By (3.1), if tpS=w, & , then

stous,u”.uéx (<),

i+
where x =x(8) and tp Sp=wgy Fe wy,® (¥ <yx). By the induction hypothesis
there are sequences I(SE) = (JEo g 3 '3\3%‘7 and regressive functions

gi)?: ¢.S (§<X) such that the stated conditions are satisfied. Let
§
fi {CEvY: Eex, vewy,l = (1,004)
be any bijection which satisfies

3.9) fcx,0) < £CE,0) (E< B <x),

(3. 10) fCE,v) < fLE.¥) (F<x; vevicwy).

(For example, .such a mapping is defined by putting
$C¥.,v) = 1+ (E+v), where t4iv denotes the natural sum.) Now put

(0 <v<wy). Also, if Ocp<wy and f"(y.)=(§,v),

Ip=$, Iy=J.a,
then we define ¢(u) =0 if v=0 and ¢cp) = f(56p(») if v>0 . This
defines the sequence I(S) = (ILgy,-.., fw“) and the regressive function

¢S = ¢ a

From (3. 10) we see that 1(5) contains each I(SE) (§<X) asa
proper subsequence. Therefore, since the sets SE are mutually disjoint, the
conditions (3. 2) - (3. 6) follow from the corresponding statements for

L(Sy) (t<x) . Similarly, (3.7) and (3. 8) hold when ¢v)>0 . Since (3.9)
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holds and Sy < Sy< i< éx, , it follows that (3. 7) and (3. 8) also hold when

$éCv) =0 . This proves our assertion,

Now suppose that I(S) and ¢ = ¢, have been defined in the
manner just described. If v<wy , put ¢ (v =v . Also, if k<w and ¢, (v)
has been defined and is positive, put ¢k+1c") = ¢ o0 3 if dpk(v) =0, then
b 4O is not defined. Then, since ¢ is regressive, for v <wy, thereisa
non-negative integer 1 =u(v) suchthat v= ¢ (v >, (v)>...>¢ () =0.

By (3.95) it follows that:

II’C Id)(V)C ! I¢L(v) = IO .

Now suppose that i< ¢ and ¢; ;(») >u > ¢;(v) . Then, by (3. 6)
I,n 1¢i—1(?’= ¢ and hence ynli, =¢ . Therefore, if pcvecwy , then
either 1< IF- or Ipc I, orI,c IP- . In fact, apart from one possible

exception, if I,c llu holds we can make the stronger assertion that

N
(3.11) .

This follows from the fact that, by (3.5), I, is a sub-interval of
IF of smaller type and so it cannot be cofinal with I}l unless tp(I,) is
decomposable. By (3.2) and (3.4) the only possible exception to the above

remark is when x(w,®)=d+1 , in which case Ic5+1 is cofinal with I.

We make one additional minor remark, From the inductive manner
in which we defined 1(5) and ¢ = d:s, it is apparent that, if tp S = w0 > wy ,

then

(3.12) I, =8, if ¢y =0 and 12 v<wy-

In the special case when tp S = w, , (3.12) does not hold.
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4, POLARIZED PARTITION RELATIONS

In this section we establish some positive and negative polarized
partition relations. The positive result (Theorem 1) will be used to establish
the set mapping theorems in the next section. The negative relations
(Theorems 2 & 3) show that Theorem 1 is best possible in certain senses and
they also show that the set mapping results (Theorems 4 & 3) cannot be
improved.

We say that y is an increasing w,-sum if y=y +y,+ ...+ 'ﬁu’
and 505 1 PR 391 .

2
THEOREM L. If x<w 5 Beewy 5 §= §o+ -+ ¥ >

where k<w and each y; is anincereasing w -sum, then

o L)

Theorems 2 and 3 show that the conditions placed upon § and ¥
in Theorem 1 cannot be relaxed. We use the continuum hypothesis to establish

Theorem 2, but this is not needed in Theorem 3.

w

! A
THEOREM 2. If 2 ° = R, oand y=g,+---+y , where

25lxn|é a‘ (n(l’.\))ythen

¥ w+i ¥
(4.2) [ ]-i-*

oy w 1
4.9 [ J+[ i |
B 1w,

As we remarked in the introduction, Theorem 3 is equivalent to

the following statement: If tpS = p<w, , then there are N, sets
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FF_CS (p<cwy) suchthat tpF, < w,‘r‘"z and such that the union of any ¥, of

these %'\’1 sets is the whole set S.
PROOF OF THEOREM 1. We first prove that

W, o 1
]—v[ ] (ot<wy; Adw+i)

wf 1 w?‘

(4.4)

which is weaker than (4. 1).

Let A,B be ordered sets with types w, and w} respectively.
Let AxB = Kju K. Inorder to prove (4.4) we shall assume that

tpﬁ(a)cc.;:‘ for all ae A and deduce that tp Fplb) 2 for some bebB.

Case 1. A<w . Let N be any subset of A of type «. Since
tp Flad< w] for aeN , it follows from the partition relation (2,3) that
tp(UctaeN) Fa)) < w": .

Therefore, thereis beB - U(aeNd Fi(a) and tpF,(b) 2 «

since Nc FO(b).

R
Case 2, 4= w . In this case, there are Ae[A]) ' and n<w
such that tpF,(a)<w; (aeA,) and the result follows from Case 1.
Case 3. A = w+1 . We may write B=B,uB,u... U §w1 <),
where tpB8,= w‘: (v<w,). Since tp F,(at) < w?“ for ae A , it follows that

there are plad)<w, and n(a)<w such that

tp (F,(a)NB,) < c.)'.:wu‘i (ptar<v<w,)

There is A1e[A]u1 such that n¢a)=n for all aeA, . Let N
be any subset of A, of type «. There is u<w, suchthat uta)<pu for aeN

and, as in Case 1, there is

be BH' UcaeN)F(a).
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This implies that N<Fy(b) and hence that tp F,(b)20a . This
proves (4.4).

We now extend (4.4) slightly and prove

&) o i
(4.5) [ :»J_'[ .rJ (x<wy; &<y ).
w 1 w

We may write ¢ = w,A+p , where A<w+f and p<w, . If
¢ =0, then (4.5) is the same as (4.4). Now assume ¢ >0 and use induction
on ¢.

There are ¢, <¢ (n<w) such that W = 2 (n<w) o.:?" . Then if
tpB = of, Boa BgU-'-Uéw , where tp B, = w?r.j" (n<w) . Let tpA-wT

and let AxB = K,UK, . Suppose that tp F,(a)<w’ (aeA).

Then for each aeA there is ntad<w such that

tp (FiCa) N By qy) < tp Beqy - Thereare Aqe [A]“‘ and n<w such that

ntad)=n(aehy).

Applying the induction hypothesis to the partition induced on

A,x B, , it follows that there is be B, such that tpF,(b) 2 and (4.5)

follows.
The main step in our proof of Theorem 1 will be to strengthen
(4.5) to
Cd| ol mi B i
(4.6) = . (xcws wiew, .

Let tpA=w,, tpB = w’ and consider any partition
AxB = K uK, . We will assume that tp F,(b) <« for all beB and deduce
that there are A,c A and B,c B suchthat tp A, = w,, tpB, =" and

Ax By K,

If w”<w, the result is obvious. Simply put B,=8B and
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A, = A-U(be B) Fy(b) . Therefore, we may assume that o = w,8 , where

@ is indecomposable and less than w‘fﬂ

Let C be any subset of B whose order type is a power of w, say

3

C=w . Then there is a countable set D(C)c A such that

<R,
4.7 tp(C-Fy(DN = tpC for De[A-D))

For, if there were no such set D(C), then there would be an
uncountable sequence of countable sets Dj< D,<...< f)w1 such that the

order type of each of the sets

E, = C= Fp(D,)  (vewy)

is strictly less than tpC . Applying (4.5) (with ¢ = ]u) , it follows that there
are beC and Nc[0,w,) suchthat tpN=« and b¢ E, (veN). This
implies that Fy(b) N D, # ¢ (veN) and hence that Fy(b) 2 tpN = & .
This contradiction proves the existence of a countable set D(C)c A such that

(4.7) holds.

Now let I(B) = (Ig, ..., 'iw1) and b= ¢, be as defined in §3.
We are going to define sets ZPC B and elements Q€ A (pew,) such that
the conditions (4.8) - (4. 11) hold:

(4.8) tpz, = tpl

B p
4.9) ZP_ﬂ Z?1=> IP'Q 19 (o< p),
where 4 denotes <, > or E §
(4.10) ZuNFylag) = ¢ (gep)d;
(4.11) aHeA—D(ZP)u U(Qc,u.)({a?}uD(Z?)).
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Put Z,=B and choose a,e A-D(Z;). Nowlet 0<v<cw, and
suppose that Z‘Wo.}’l have already been chosen for m<v so that (4.8) - (4.11)

hold. We want to define Z,,a, so that these relations remain valid with

Since ¢(vr< v , it follows from (4. 10) that
A
Zomy N FO({% J “'=°'|b(v)}) =0.

Also, by (4.11), {ad:(v) ,-..»a,} is a countable subset of
A-D (ZQ’WJ) and therefore
(4.12) tp(Zyey - Rl{ag, Ay = tpZye,y -

If @ ={}L= dCv) = drpd <:u_-<v} , then

Upe@d Ly« I,

by (3.7). By (3.5) and (3. 11) it follows that If,.g 11,(\,) (ne@Q) and therefore,

by (4.9),

N
ZP'C Zq,(” C}LQQ).
By (3.8), tpQ<x(tplyeyy) = coltp Zgyy) » and hence

(4.13) 2= Uie@d 2y & Zypyy -
From (4. 12) and (4. 13) we see that there is Z, such that
2'<2,E Zyeyy - Folian, .. &,1) and tpZy=tpL, (<tp Iy, = tp Zoey).
It is obvious that (4.8) and (4. 10) hold for p=v with this

definition of Z,. We now verify that (4. 9) also holds.

Let p<v . Case l. loq¢ I4¢y) . Then Iyp,y<l, , where <
N
denotes <, > or ¢ . Therefore, with the same meaning for «, we have both
I,41, and Z,42Z, since 1, and Z, are respectively subsets of Iy,

and Zgc,. Case 2. Iy C Iy - Then either (i) ¢ =¢v) or (i) Iocly for
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some ceQ (seethe remark preceeding (3.11)). If (i) holds, then I, ¢ I,
and, by the construction, Z,& 24, = Zo . If (ii) holds, then Ioclg<I,
by (3.7), and by (4.9) with w=¢ and the definition of Z,,, we also have
ZoCZg<Zy - This shows that (4. 9) holds with p =v.

Finally, we choose a, € A-D(Z,)uU(g<v){ag}uD(Zy)
so that (4. 11) also holds with u=v.

Since (4.8) and (4. 9) hold, it follows that the set
B,=U(lz,/=1)2, has the same order typeas B =U(II,l =1)1,,
i.e. tp B, =7 . Also, by (4.11), A, = {a, ,...,&91}* has type w,.

The proof of (4.6) will be complete if we show that A,x B, c Ky.
Let p,»<w, , and suppose that [z,|=4 . If p<v , then (4.10) shows that
ZynFylayd)=¢ . If v=p , then by (4.11), a,eA -D(Z,) and so

tp(Zy-Folap) =tpZ, =1,

i.e. Z,nFylay) = ¢ . This implies that A,xB,c K, .

The generalization from (4. 6) to (4. 1) is straightforward. First
we extend (4. 6) to

-0 )
(4.14) —> (& <y Pp<wy 2
p 1 p

To see this, let tpA=w1,th=§,AuB=KouK1 and
assume that tp Fy(b)<o« for beB . We may write B =B U...u B _4(<),

where n<w, tpB;=f; and
P=PRotPit--+PBpnq

in the standard decomposition of P as a finite sum of non-increasing
indecomposable ordinals. Applying (4.6) we find successively sets
A;,B) (i<n) suchthat A,DA,2..DA ,, BicB;. tpA;=cw,,
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tpB; = Pp; and A;xB;cK, . Theset 8= 8,U...u B}, hastype B and
A, xB'ck, This proves (4. 14).

2

We now show that if w<w,; p<w) ~ and y is an increasing

w-sum, then

[s} {u X]
(4.15) - )
p 1 p
Let tpA=y,tpB=B, AxB = K, UK, and suppose that

tp Fo(bd<ot (beB) . We may write A=A, U...U ,101 (<) , where
tpAy, =y, and O0< y =y, < ...s§w143 . Comsider the partition

[0,0)%B = KyuKj.

where (v,b)e K, if and only if Fy(b> nA,#¢ . Then, for beB,

} = »
Fo(b) = {v<w,: (mbleKy}

has type less than or equal to tp Fy(b), i.e. tp Fy(bd <« . It follows from
(4.14) that there are Nc[0,w,) and BcB suchthat tpN=w,, tp8'=p
and Nx B'c K} . Thisimplies that A'xB'c K, , where A =U(veN)A,.
This proves (4. 15) since

Finally, (4.1) follows by a finite number of applications of (4. 15).

This completes the proof.

PROOF OF THEOREM 2. Let tpA = y, B=[0,w;) . By the
hypothesis, we may write A= A U... uﬁw (<> , where tpA, =¥, (n<w).

Since 2<]y,|< 81 , it follows from the continuum hypothesis that there are

2“0 = ¥, sets CcA suchthat tpC = w and [CnA, 121 (n<w) . Let

Cor Cqoenen 6601 be a well ordering of all these sets G.

Let teB andlet {= f,{. be any mapping (not necessarily 1-1)

from [0,w) onto [0,¥+1) . Since each set Cpegy (g has a non-empty
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intersection with infinitely many of the A, (n<w), there is an increasing

sequence of integers n,<n,<...  such that C,JF(?,ﬂA,,e +¢ (pcw). Put

Then F,(%) is a subset of A of type w and
(4. 16) Fo(ii)ﬂcq#:qi (n<k).

Now consider the partition AxB = K,uU K, inwhich (u,¥)eK,
if and only if peA, e B and e Fy(¥). Suppose that A, is a subset of A
of type ¥ and that B,e [B]H* . Then there is m<w, such that C,! c Ay . Also
there is §e B, suchthat n<¥ and (4.16) shows that A ;x B, ¢ K, .
Since tp Fy(¥)<w+1 for Y eB , this proves (4.2).

PROOF OF THEOREM 3. In order to prove (4. 3) it is enough to
show that if tpB = p<w, , then there are B, sets F,(¥) < B (¥ <w,) such

that tp F (%) < w?"z (¥<w,) and the union of any ¥, of these sets is the
whole set B. (4.3) follows from this result by considering the partition
AxB = KoUK, , where A=[0,w,) and (},p)eK, ifandonlyif weF,(¥).

There is no loss of generality if we prove the result stated in the
last paragraph only for the case when P = mﬁ <w, . If y<w+2, the result is
obvious, we just put F,(§) =B (§<w,;) . Now assume that w+2 < y<w,

and use induction on ¥,

Case 1, co (w‘,).:w . Then B = E’O G gw (<), where

to B, = mﬁ“ < w“: (n<w) . By the induction hypothesis, there are sets
w+2

F;(n,%)cB, for n<w and ¥eA such that tp Fi(n,E) < e, and
UCkeN) F,(n,E) =B, for n<w and Ne [A] %o . The sets
FE) = U Fin,E) (§eA)
n<w

clearly have the required properites,

Case 2, co(co?) =w, . In this case we may write
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A ¥ by
B =Byu..UB, (<), where tp B, = wl'cw) (u<w)) . Bythe
induction hypothesis, there are sets F1 (F,,‘g) c B.'"" (zu"wﬁ e AD such that
tp Fy(p§)<wi*” and

N
UGEeNI F(p,5) = By Nel[A)?,

By the partition relation (2.4) of Milner and Rado, there is a
partition of BP* (pecwy),

Bu=UB

n<w Ph !
in which tp B, < m: (pecwy; ncw) .
For O<p<w, , let [O,pn) = {9‘#0, vJM e ;:"""’} (the v}m are
not necessarily different). Then, if ¥< Mo there is some integer n=n(pm,¥)

such that ¥=v, . Now define

F(5) = U Fu,¥)u U U B
1 }.u.s’g 1 § Fopcwy nen(p,¥) e
for $¢ A . Clearly,
tp R S T tp R, + P w < 0P (§eA).
ps§

Also, if N is any infinite subset of A, then N contains an

A
increasing sequence §,,%, ..., %, of ordinals with limit E*: lim§, < wy .
If pe £%, then < §,, for some m<w and
UCEeNIF(E) D Ulmsicw)Fcu,§)=By,.
If w2 %", then the integers n(p,%;) (i<w) are all defined and
distinct and therefore

UseN)IF () U L B~ By
RS nencu ¥y F0 K

This shows that U(teN)F,(¥)=B and the proof of Theorem 3

is complete.
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5. SET MAPPINGS

Let SM(x,p) denote the following statement: if tpS =p and § is
any set mapping of order « on S, then there is a free subset of S of the full
type p. Lemma 1 establishes a simple connection between SM(x @) and the
polarized partition symbol. Note that, if x>1 , then SM{x,p+1) is trivially
false and so it is only necessary to consider the statement SM(«,p) in the case

when p is a limit number.

LEMMA 1, SM(«,p) implies

i

PROOF, If x =1 , then (5. 1) certainly holds. Therefore, we may

assume that o >1 and that p is a limit number.

Let tpB =f andlet BxB = Kou K, . We will assume that
tp{xe B: (x,b)eKgt <o forall be B and deduce that there are sets
B,,B,c B which both have type p and are such that B,x B,c K, .

Consider the set mapping f defined on B by putting
#b) = {xeB: x#b, (x,bde Ky}t (beB).

By assumption { is a set mapping of order « and the hypothesis
SM(x,p) implies that there is a free set B' of type B. Since p is a limit
number, 2P =B and therefore B’ is the union of two disjoint sets B, B,
eachof type . If b,e B, and by€B, , then by#£ b, and b, ¢ {(b,).
Hence (b,,b,)e K, . This proves the lemma,

We do not know if SM(a,p) and (5. 1) are actually equivalent., If
¥ =Yt -+ ¥, - where k isfiniteand y; = mc:"" < w;‘”z (igk),

then it follows from Theorem 1 that

b ¢ ¥
g (o< w1).
'y 1 ¥

L
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In Theorem 4 we show that the corresponding set mapping
statement SM(«,y) is true.

THEOREM 4. If x<w,; x< m:‘”z and y is a finite sum of

ordinals of the form c.:a?q'1 » then SM(«,y) holds.
In particular, Theorem 4 implies that
(%) SM(, ") holds if &<, and o< w.

If 1<y<w, , then the conditions on y stated in Theorem 4 are
necessary for SM(w,y) to hold for any x<w, . From Theorem 2 we see that if

§ is an ordinal of the form § = Yo+ g+ + §, With 0<y, <w, , then

W+

and this implies that SM(w+1 ) is false by Lemma 1. For example, in
contrast with (%) the last remark shows that SM(w+1,4,) is false. As a special
case of Theorem 5 we know that SM(w,w;) holds and this result is best possible

in the sense that w cannot be increased.

THEOREM 5. SM(w,w,y) holds for any y<; -

2
If w; "<y<w, , then

A

by Theorem 3. Therefore, SM(w,y) is false if w; "<y <w, . This shows
that the condition y < c.)'f"?' in Theorems 4 and 5 is necessary. For set

mappings of finite order n, we have a very general positive result.
THEOREM 6. If n<w , then SM(n,0®) holds for arbitrary @.

PROOF OF THEOREM 4. Let tpS =y and let } be any set
mapping of order o« on S. We want to show that there is a free set S¢S
having the same type ¥%.

Case 1. y = u?c w‘:
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The set mapping f induces two auxiliary mappings ¢ and h
defined by putting
gCx) = fyefd: yexi, hao ={yefur: xeyl.

Thus, for any x¢ S , we have
(5.2) gx)<{x}<h(x)

The set mappings ¢ and h are also of order « and it is
convenient to consider these separately. We will show that there are sets
$,C€S and S,¢ S, suchthat tpS,;=tpS,= w} S, 1is free in the set
mapping g and S, is free in the set mapping h. This will give the result
since we then have $(S;)nS,=¢.

n

1 and

We first show that there is S,¢ S such that tp S, =w

(5.3) Song(SO) = ¢.

If n=0 then (5.3) holds with S; =%, for in this case S has a

single element. We therefore assume that n>0 and use induction on n,

We begin by showing that there is a set S'c'S of type w] such
that

(5.4) tp(s'-g'(x)) = w  whenever XCS'.
9 1

Suppose there is no such set S'. Then we define sets X, }"_— S
and Y,c S for v<w, in the following way. Let w<w, and suppose we have
already defined X,,Y, for v <u . Since the sets X, (v<u) are non-cofinal
with S and m<w,, there is a proper final section T of S such that X,<T
(v<pm) . By our assumption, (5.4) is false with S'= T and hence there is

n

N
XPCT such that tp(T- g“‘cxp)) < w, . Since T is a proper final section of

S, this implies that

— ~A4
.5) ¥, = 8=g X,

also has type less than o{. This defines the sets X,.Y,c S for m<w,.
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Note that, by the construction, X <X, < ... < iw1 » tpYy < @]  and (5.5)
holds.

By (4.4) we have

Wy { ot L
(5.6) 3 wt « (k<w)

i e,

Therefore, since Y}_lc w'; (Ju. <w,) the polarized partition
relation (5. 6) implies that there are x¢ S and Nc[0,w,) such that tp N =«
and

gy

u CueNd.

According to (5.4) this means that gG) N Xy # ¢ (ueN) and
hence tp g(x)= tpN = o« . This contradiction shows that there is a set $'c $

of type w) such that (5.4) holds.

We now define non-cofinal subsets Cyof S'. Let n<w, and

suppose that we have already defined C,E S for vep . By (5.4)
tp(S'- g (U< w)Cy)) = )

N )
and therefore thereis (, CS'- g™ (U(v<p)Cy)) suchthat C,<Cp (v<p)
and tp c;,‘,_l = w';'“ . By the induction hypothesis, there is a g-free set CP = C,.L
having the same type ™' . This defines the sets C,, for v<w, . Clearly

A

Sp # L Cyu... v, (<)

@,

has order type w';. If vsp<w, ,then G, N g(CF) = gb by the construction.
Also, by (5.2), 9(Cy) < Ca"' . This shows that (5. 3) holds.

We now consider the set mapping h restricted to S,. First we
observe that, if T is any non-cofinal subset of S, such that tp T = wy
with m< n , then there is a proper final section F(T) of S, such that T<F(T)

and
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(5.7) tp(T-h'(D)) = tpT whenever D & F(T).
Suppose this is not the case. Then since R(T) is a proper final

section of S, , there is Dog R(TY such that tp(T- h'*(‘Do)) < wT . More
generally, if M< W, and Dy,..., DF- have been chosen so that D‘,g S, hep),
then R'= R(Tyu U(v<pu)D,) is a proper final section of S, and, by the

N -
assumption that (5.7) is false, there is D,uc R' such that

(5.8) tp (T-h YD) <y .

A

In this way, we define sets Dy, (u<w,;) sothat D;<D<...< Dy,

and (5. 8) holds. The relation (5. 6) applied to the sets T-h™'(D,) (u<w,)
shows that there are Nc [0,w,) and xeT suchthat tpN=x« and

1L T- h-1(DP') (peN) . Therefore, h(x)n DF' +¢ (e N) and

tp h(x)z ot o This contradiction proves that there is a final section F(T) of 5/
such that (5. 7) holds.

We want to prove that there is a set 5,C 5, of type wr,: such that
(5.9 510 h(51)=¢;.

If n=0 , (5.9) holds with S, = Sp - We shall therefore assume

that n>(0 and use induction on n,

Let 1(S,) and ¢ = q:so be as described in §3. We are going to

define sets Z,<C S5, (v<w,) suchthat (5.10) - (5.14) hold for v< w, .

(5. 10) tpZy, = tpl,;

(5.11) Zg2Z *=’Iv"le (g<v),

g

N
where <« denotes <, > or C;

*Here R(T) = {fyeS,: T<iyl}.
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(5.12) Z,0h(Z)=9 (v#0);

N
(5.13) Z,c N(0<gevIF(Zy) if $(») =0;
(5. 14) 9(Z,)NZy=¢  if g<v and  I,<I,.

Put Z,=5, . Nowlet 0<pu <w, and suppose that Z, has been
defined for v < so that (5. 10) - (5. 14) hold, We want to define Z‘rtl so that

these relations remain valid with v =p.
Let K={c: ¢(ui<o<p; $6)=0F.

Case (i) ¢ff*) =0.If O«< VR, then by (3.5) there is some
6eK suchthat I,cI, . Therefore, by (3.7), I, cls < 1}.L . Since (3. 11)

N N
holds, I,cC I, . Therefore Z,cC Z, by (5.11) and F(Z,) is a proper final
section of Z,=5,. By (3.5) we have that tp I.},L <tpl,= @7 and therefore

Z’ can be chosen so that
N
ZCN0<v<cpu)F(Zy)

and tpZ'=tpl, . Since tpZ'=tp Li™ wl'; < w'; , it follows from the

IN.
induction hypothesis that there is an h-free subset Z, of Z' having the same

order type. With this choice for Z,, it is clear that (5. 10) - (5. 13) hold with
V=g, In this case (3. 14) holds vacuously for v=p , since Iq < IF (94}.1.) .

Case (ii) $(ur>0. Let A = U(geK)Z,. Since K is countable
and, by (5.13), qu F(ZMH-)) (gek) , it follows that A 2 F(ZM}J—)) E

Therefore, by (5.7),
(5.15) tp (Zgguy-h ' (AD = tpZgp,y -

Let L = {v: ¢ = ¢(u) <v<p}. By (3.5) and (5. 11) we have
N
I,<c Ig(uy and ng Zpy for ve L and therefore
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N
(5.16) B = U(\’EL)Z.‘,C Z#(P).
It follows from. (5. 15) and (5. 16) that ZF- can be chosen so that

N
B “Z.F_C Zb(F_)— |’1_1(A>

It is clear that (5. 10) and (5. 11) both hold for v = p with this
definition of ZF' Also (5. 12) holds since Z#C 24,(#) and Z¢(,u) is h-free, In
this case (5. 13) is satisfied vacuously when v =p . It remains for us to verify

that (5. 14) also holds for v=p , i.e. we have to show that

(5.17) h(ZF,JﬁZQ =¢ if ¢<p and IP" I?.
If O<v<w, then, as we observed in §3, there is an integer
¢(v) such that v = $o(v) > §,(v) > ¢(¥) > > (») =0 . Put
dCv) = ¢L_1(v). Then 0< ¢(V)_iv, LG lscv) and &(4v)) = 0. Note
that, since ¢(u)>0, we have d(uw)<p .
Let ¢ < u and suppose that IP'< I? L If 5(9) =$(p), then Zo
and Z}u are subsets of Z&P] and_(S. 17)_holds since Z‘T"P) is free by (5. 12).
Therefore, we can assume that ¢Cg) # pu). If dle) < $(p,) , then
I$(?)< 15(}0 by (3.7) and this contradicts the fssumption_that I'f' < I?
(for Ipc 15(,;) and I, c I$Ce) . Therefore, ¢(pcp)) = d(pw)< drg> and
Id’(’nc 15(” < 1‘3(?) - If $Cg) < ¢(p), then

9(24’(,&)) ] Z$Cq)= )

since (5. 14) holds with v = (), and this lmplies (5.17) since Z,C Z¢(¢U-)
and Zo € Z(oy - If, on the other hand, $(pu><(g) , then $(greK and
ZgC Z&?)cA and (5.17) holds since Zyn h™'(A)=¢ by the definition of Zy-

e



This shows that there are sets Z, (v<w,) satisfying all the
conditions (5. 10) - (5. 14).

By (5.10) and (5. 11), it follows that
S, =UZ,l=1; vewy)Z,

has the same type as S,= U(I1,l=1)1, . To complete the proof of Theorem

4 for Case 1 it remains to show that 31 is h-free.

Let u,v<w, and suppose that 12}&]:]11,1:{ and Zy<Z,.

In view of (5.2) it is enough to show that
(5.18) h(ZP,)nZ\, =¢.

If Z,CZgcy)» then (5. 18) holds since ¢vy+0 and Lyevy 1s
h-free by (5.12). Therefore, we may suppose that &(v) 4 b and Z, < Z(y) -
If §(v)<p , then h(z’“) nz;,(v) =@ by (5.14) and this implies (5. 18) since
2,CZgpy - If p<dCv) , then by (5.13), Z,¢C ZFeyst F(Zy) . Therefore,
by (5.7),

tp(ZF_— h-1(1$(\,))) = tp ZP' 5

But since tpZy =1, this simply means that h'*(Z&vQ is
disjoint from Z m and (5. 18) follows, This completes the proof of (5.9) and Case
1 of the Thebrem.

w+1
Case 2. y= w,

To prove the Theorem in this case we require the following

lemma.

LEMMA. Let tpS = o?*' and let T,,T,,... be cofinal

1
subsets of S such that tpT, = 0™ (n<w) . Then tp U(n<w)T,= oy’

PROOF. For M<w, we may write = c,o’J\(‘u,)i-r(P,), where

’)\(p)ﬁ}.& and r(p)<w . We define non-cofinal subsets SJ“ of S for M<wy in
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N
the following way. Let p<cw, and suppose that S ,c S has been defined for
V< . Since Trc,u) is a cofinal subset of S of order type c.:r,l(‘“}M , there is a

non-cofinal subset S, of T_ with type co:(?“) such that S, < 5}"' holds for

[ad (p)
vep . Then

tp(Un<wdTy) z tp(Ulpecw S,""j =Z(,¢¢w17w:(p= c.J:JH.
This proves the lemma.

w1

Let S be an ordered set of type w, and let { be a set mapping

on S of order x(<w,). We are going to define sets T,,5,€ S for n<w

such that

(5.19) T, iscofinal with S and tpT, =",
(5. 20) Spe1>TnC S

(5.21) Ty B ECS ) =B

(5.22) FT AT, US4 )=¢.

This will prove the theorem for Case 2 since (5.20), (5.21) and
(5.22) imply that T= U(n<w)T, is a free set for the mapping f and (5.19)
1
and the lemma imply that tpT= cof* .
Put 5,=5 . Nowlet n<w and suppose that a subset S, of S
w+1

has already been defined so that tp S, = w; . We want to show that there

are sets T, and S, suchthat tp S co‘f” and (5.19) - (5.22) are

n+l =
satisfied.
Since t o ite 5. = P, U P
ince p5n=co1 , we may write S, =k, U... U r,‘,1(<),
7 L+ Lo
where P =P uU...UP,, (<) and tp P =w (vecwy; icwd.

n+1

Put A=U(v<w1;f,$n)l3w-‘ and let B:SH_A.Then tpA = w, and
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tpB = w‘;’” . Consider the partition AxB = K, UK, , where (a,b)e K,
if and only if a € {(b) . By Theorem 1 we have that
rw?” o m;“”

e
Wi w1
() i W,

Therefore, since tp Fy(b) < tpf(b) <ot (beB) , it follows
that there are sets A'CA and B'c B such that tp A’ = w:”, tp B’ = w‘f”

and AxB'c K, ,i.e. A'nf(B) =¢.

Now consider the partition A'x B'= K, U K, , where (a,b)eK,

if and only if be f(a) . Again by Theorem 1, we have

w4+ wi
ca1 =4 Wy
—_
n+i y n4-1
t.-.)1 C-.')1

and this implies that there are sets A"c A’ , B"c B’ such that

tpA" = I*!, tpB'= "' and $(A")NB'-¢ . By Case 1 of the present
theorem, there is a free set T, c A" of type w?”. Now (5. 20) - (5. 22) hold
with this choice for T, and $,,4=8" T, is cofinal with A since it is a
subset with the same ordinal number and similarly S, is cofinal with S.
Therefore, (5.19) also holds since, by definition, A is cofinal with 5,. It
follows by induction that there are sets S,,,T, satisfying (5.19) - (5.22) and
the proof is complete.

o +1 &+ 1
Case 3. y=w,° +--.+w1“ , where k<w and ¢; < w

(Lek).

Let tpS = and let { be a set mapping on S of order . We
want to show there is a free subset of S of type y. If k=0 , this follows from

Cases 1 and 2. Now assume that k>0 and use induction on k.,

& +1
We have S =S$,US, (<) , where tp S, =2 (ick)w, = %4
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6 +1
and tp S, = co1“+ = ¥, . By the induction hypothesis, there are f-free sets
S, =S, and S;cS, suchthat tpS: = tp$S; (i<2) . By Theorem 1, the

ol ok
L3 : %1 ¥o 1 Yo
hold and by succesively applying these in an obvious way we conclude that
y; and S; US|

relations

there are sets S; ¢ S; (i<2) suchthat tpS;

is {-free. This concludes the proof of Theorem 4.

2
PROOF OF THEOREM 5. Let tpS = w < w‘f+ and let { be
any set mapping of order &> onS. Then {(x) is finite for xeS . We want to
show that there is a free set which also has type w,y . If y=1 thisisa

consequence of Theorem 4 and so we assume y > 1.

We observe first that whenever ACS and the order type of A

is a power of w,, then there is a countable set C(A)c S such that

<%
(5.23) tp (A-£7(D) = tpA whenever Del[S-CC(AY) °

If this were not so there would be disjoint countable sets
D, (v<w;) suchthat tp (A- f_{(Dv’) <tpA (v<w,) . Thisleadstoa
contradiction since, by (4.4), there are xe A and an infinite set Nc [0, w,)

suchthat x ¢ (A-§7'(D,) (veN) , i.e. () is infinite.

This shows that there is a countable set C(AYC S such that

(5. 23) holds.

Let 1(S) = (5.1, ) and ¢ =g be as described in §3.
We shall define by transfinite induction sets Z,C S (v<w,) such that the

following conditions hold for v«<w,:

(5.24) tpZ, = tpl, -
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(5. 25) Z,4 Z MI,,“I? Co<v)

9

N
where « denotes <, >, or cC.

(5.26) Z,nC(Zg) =9 (0<g<v).
(5.27) 2,n$(Ze)=¢ if g<v and |Z]| = 1.
(5.28) Z,cl, if ¢Cv) =0.

Put Z ;=5 . Let u>0 and suppose that Z, has been defined fo
v<p so that the above relations hold. Put U = U(vep; [Z,] =1Z,,
V=U(0<v<pIC(Z,) andlet K = {v: d(») = p(ur<vepl.

Case 1. ¢(F.) =0 . By (5.28) and (3. 7) we have in this case that

Z,C Li<X (ve k).

M

Since tp S > w, , the remark (3. 11) applies and therefore

Z, = Ly- fW-v

has the same type as IP because U and V are both denumerable sets, It is

easy to see that (5.24) - (5.28) hold for v = 2 with this choice for Z;“'

Case 2. ¢(pn) >0 . Inthis case, I,< IPC [NP) (veK) by
(3.5) and (3.7). Also, tp K <y (tpIpeuy) = coltplycyy) by (3.8). By
(5.25) we have that Z, E ZM#) (vekK) and hence Z'= J(veK) ng Zcb(,u)'

Since U and V are denumerable and tp wa =tplp) isa

power of Wy, there is a set ZF‘ such that

N
Z« ZyC Zpu - HWI -V

- 356 -



and tpZ, = tp I, C<tp INP-?) . It is obvious that (5, 24), (5.26), (5.27) and
(5. 28) now hold with v =p and routine to verify that (5.25) also holds. This

defines the sets Z, for v< w,.

By (5.24) and (5. 25) we see that Z* = U(v<w1; [l =43 2,
has the same type as S = U(II,{=1)1, . Also " is a free set. For, if
O<p<vecw , and 12?|=|Z‘,1=1,then

{(ZQN‘.Z, =¢
by (5.27) and
since tp(Z,-$7"'(Zg) =tpZy=1 by 5.26. This completes the proof of

Theorem 5.
PROOF OF THEOREM 6,

Let tp S = wa and let { be a set mapping of order n (<w)

on S, We have to show that there is a free set of type wo.

Case 1, wo is indecomposable. By a theorem of Erd8s and de
Bruijn [9], S is the union of 2n-1 free sets. Since w« is indecomposable it

follows by (2. 2) that one of these free sets has type wet .

Case 2. w« is decomposable, Let wa = o(y+ ... + ot be the
Cantor standard representation for wot as a finite sum of non-increasing
indecomposable ordinals. Then k 24 and «; is indecomposable. We shall
give details of the proof only for the case k=1 ., The general result follows

by an obvious extension of the argument.

Then S = SDU S, (<) , where tp$; =«; is indecomposable
and infinite (v<2) . By case 1 we can assume that each S; is a free set.
Since x, is infinite, S, is the union of n disjoint sets A; (i<n) each
having the same type o,. Then for x €S, there is an index L(xy<n such

that f(M N S;c,y=¢ . Put B = {xeS,: ) =101 .

Then there is L.,< nh such that B

B Lo has type «, and
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A, NFCBL) = ¢ .
Applying a similar argument to the sets A‘:o and B; = we find that
there are sets A'C Aj  and B'C B such that tpA'= o, tpB’ = o, and
FCAYNB = ¢ .

Then A’UB' is a free subset of type oty +ol, .

6. GRAPHS WITHOUT INFINITE PATHS.,

In this final section we apply the results of this paper to prove
the following theorem.

THEOREM 7. Let S be an ordered set of type w@®< w‘;”z and let
G =(S5,E) be any graph on 5 which does not contain an infinite path. Then
there is an independent set S'C S with the same type w8.

REMARK. In our proof of Theorem 7 we employ Theorem 5 and
this explains the restriction on the size of S (i.e. tp S< w:‘“z . While
Theorem 5 is false for larger order types (of cardinal ®,), we suspect that

Theorem 7 holds for arbitrary @ but we are unable to prove this,
PROOF OF THEOREM 7.

We shall prove the theorem in three stages,

Casel. 6 = W, ¥
We claim that if T is any subset of S, then there is an element
x = x(T)eT with finite relative valence, i.e. such that

(6. 1) E(x)nT is finite,

For suppose this is false for some TcS ., Then we construct an
infinite path in T as follows. Choose x,¢e¢T . If n<w and %, has been chosen

then, since E(x,)NT is infinite, we canchose x, ;e E(x, Y NT~{x,,...,x }.
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Then x,,x,, ... is aninfinite path contrary to the hypothesis.
Hence there is % = x(T)eT such that (6. 1) holds.

Now define a well ordering of the elements of S in the following
way. Put a, = x(S), a,=x(S-{a,}) , etc. This process must terminate
after A steps for some ordinal % <w, . We then have S = {'ao,a.v“,, &,‘}* .
Now define a set mapping on S by putting f(ap) = Ea,)n 10-};*-1 wrgbhin b
Then, by (6.1), { is a set mapping of order w and, by Theorem 5, there is a
free set S'c S of the same type w,y . The set S’ is also independent in the
graph G. For, if ay,a,eS’ and u<v , then {au,a,} is not an edge of G
since a, 4 f(ay) .

Case 2, B < W, .

In this case we shall apply the construction described in §3. Let
A
I(8) = (Iy,---, L) and ¢ =g be as defined earlier.

If T is any subset of S of type w'2 w , then there is a finite set
F(T)cS such that

<R
tp(T-E(X) = tpT forall XelsS-F(MY °

For, if this were not so, there would be infinitely many disjoint
finite sets X, X4, ... suchthat tp(T-E(X_ ) < tpT (n<w) . Since
w“-y(wm)L holds for any finite k, it follows that there are elements
Xn€ X, (ncw) suchthat tp(T-E(x, N< @™ . Bach x,, is joined by edges
of G to almost all the points of T (all but a set of type less than w") and hence
tp E({L;.xj}}nT =w' for i,j<w . Now define integers n; and elements
y, (i<w) as follows, Put n, =0, n, =1 and choose y & E({xg, %4}) .
If 1<k<w and n; (L2k), y; (L<k) have been defined, choose n,
and y, so that

.x.“k“*. {anii i<kiu {Lj‘;f i<k} =2y
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and y, € E (xp > xnknl - Z) - Then the graph G contains the infinite path
Xn,»Ygr *n,» Yqo - 2 @ contradiction.

Put Z,=S . We are going to define sets Z;C S (i<w) such that

the following conditions hold:
(6.2) tpZ; = tpl;,

(6.3) Zl-‘dzj(:blidlj (i< 62,

) N
where <4, as usual, denotes either <,>, C or c .

a.
(6.4) Z;NnF(ZP=¢ if j<i and tpZj = 0’20,

(6.5) Z;NE(Z)=¢ if j<i and lz;1 =1,
(6.6) Z;cl; if éci>=0 and w® is decomposable.

Condition (6. 6) is rather special and is introduced only to take
into account the case when w® is decomposable. But, in this case, by the

definition of I(S), we have

S=1Lul,u...Vuly (<),
where y = y(w®) is finite, and we define

Zi= Li=FlLd v E(I,;)

fir L<x . With these definitions, it is clear that (6.2) - (6. 6) hold for L<y
We can now assume that n>0 (and n>y if X is finite)and that Z; has
been defined for L<n so that the above conditions are satisfied. From our
assumption we have that tplgc,y = tpZ 4(n) is indecomposable. We want to
define Z,, so that (6.2) - (6. 6) remain valid.

Let K={i: €)= pm<ci<n}, Z’=U(ieK)Z; .Then
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N N ;
I, CIlpnys ZiC Ly (LK) and, since tpZyen, is indecomposable and

N , A
K is finite, Z'C Zg(yy- Put J = {j<n: tpZ;j = w!zwl,
L= UGecon,1Z51=1Z;, M=U@m<jen, |Z;1 =112 .
By (6.5), 24,(")0 E(LY=¢ . By (6.4), M is a finite subset of 5-—F(Z¢(h))
and therefore

tp(Zgny - ECLUMY = tp Zyp(py

It follows that there is a set Z,, having the same type as I,
(< tp Z¢(n'}) such that
N
¥ . i
2'< 2,CZgcny=- E(LUMI - U(jed) F(Z).

With this choice for Z it is obvious that (6.2), (6.4) and (6. 5) hold, and routine
to verify that (6. 3) also holds for i = n. (6. 6) holds vacuously for L =n (from

our assumption about n).

From (6.2) and (6. 3) it follows that $'= U(1Z;1=1)Z; has the
same order typeas S. If [Z;|=1Z;l=1 and j<i , then Z;n E(Z)) =¢
by (6.5). Therefore, S’ is an independent set of type w@.

Case 3. w® = w,y+wpP, where 0 < y< m‘,'l”z and 0<B<w,.

Let S=AuB (<) , where tpA =w,y and tpB = wp . In view
of cases 1 and 2 we can assume that A,B are actually independent and the
edges of G join points of A to points of B. We want to show that there are sets
AcA and B'cB suchthat tpA'= w,y and tpB’ = wp and A'U B’ is
independent.

We shall assume first that y is indecomposable. Consider a new
graph G’ = (B,E" in which two points b,b’¢ B are joined by an edge if and
only if E(b)NnE(Y') is infinite. If G’ contained an infinite path b,,b,, ...
then we should be able to find distinct points a,,a,,... in A such that
a,€eEbINECD, ). Then by, a,,by;aq, ... isaninfinite pathin G

contrary to the hypothesis of the theorem., Therefore, G’ contains no infinite
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path and, by Case 2, it follows that there is a set B,c B of type wp which
contains no edge of G'. This implies that E(b) n E(b") is finite for every
distinct pair of points b,b’e B, . Therefore, since [B,| = ¥, , the set
Ay={aeA: |E(@)NB,]22} iscountable and hence A} = A-A, has type

w,y and each point of A{ is joined to at most one point of B,.

Since tp 31 =wp and 2.w=w, it follows that B1 is the union of
two disjoint sets B}, B, having the same type wB. Let
Al ={oeA;: E(a)nB;=¢} (i=1,2) . Then A=A UA’, and, since j
y - Then AGu B;

is indecomposable, there is i¢{{,2} such that tpA’ = w,

is an independent set of type w,y + wp -

Now suppose that § is decomposable. In this case we have that
A=A UAU...UA (<) , where k<w, tpA;=cw y; and y is
indecomposable. Applying the previous argument k times we find sets A c A;
and B'C B suchthat tp A} = w,y; (i<k), tpB'=wp and A U...UALUB
is independent. This completes the proof.
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