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In this note I discuss problems in number theory most of which have a
combinatorial flair. Section 2 is a joint work with A, Sark&zi and E. Szemerédi.

First we introduce some notations which will be used frequently in this
paper. The sequence a, a,, ..., will be denoted by 4, A(x) =Y, <. 1. The
limit, lim,, ,, 4(x)/x, if it exists, is called the density of A4 (the upper density
is the lim sup of the same expression). The term ¥{(n) denotes the number of
prime factors of n, and ¥(n, I), the number of prime factors of n not exceeding
! (in both cases multiple factors are counted multiply). The symbols ¢, ¢y, ...,
will denote positive absolute constants not necessarily the same at each
occurrence; ¢, 4, n denote positive numbers which can be chosen arbitrarily
small. The letters a, b, t, I, ... denote integers; p is a prime; P(f) is the greatest
and p(t) the least prime factor of t.

1.

Denote by f(k, x) the maximum number of integers ¢; <*-*<a, < x
so that no k of them have pairwise the same common divisor. I have proved
[6] that for every k if x > xy(k)
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log x 3f4+e
(1) exp(e:,c log_log-a_t) < flk,x)<x , Wwhere.exp z = ¢€".
It was conjectured in [6] that the lower bound seems to give the right order of
magnitude for f(k, x).

Denote by F(k, x) the maximum number of integers g, <+ <a, < x s0
that no k of them have pairwise the same least common multiple. I con-
jectured that F(k, x) = o(x) for every k = 3. Recently, I proved that for k = 4
this conjecture is certainly false. At present I cannot disprove this conjecture
for k = 3.

The falseness of the conjecture will easily follow from the following
result which is of independent interest:

Theorem 1. The density of integers having three relatively prime divisors
satisfying b, < b, < by < 2b, exists and is less than 1.

I have proved [7] that the density of integers having two relatively prime
divisors b; < b, < 2b; is 1. The proof has not been published and is quite
complicated, but we will not need this result here.

Let us assume that Theorem 1 is already proved. Then consider the
integers x/2 < @; < *** < a; < x no one of which has three pairwise relatively
prime divisors b; < b, < by < 2b;. By our theorem s> cx. Now we show
that there are no four a’s, say a; < @, < a; < a,, satisfying
2 [a;,a]]=T, 1fi<j=4

To see this assume that (2) holds. Put T'/a; = b;, 1 =i < 4. Clearly b, | g
for j#i and (b;,b))=1, 1Si<j=<4 Finally from x/2<a,<a,<a;
< a, < x we obtain b, < b; < by, < 2b,. Thus @, would have three divisors
b, <by <by<2b,,(b;, b)) =1,2 £i<j< 4, which contradicts our assump-
tions. Hence F(4, x) > cx as stated.

Thus we only have to prove Theorem 1. First we show the following:

Lemma 1. Let 1 <u, < -+ be any sequence of integers. Denote by d the
density, and by d(uy, ...) the upper density of the integers having at least
one divisor amongst the w’s. Assume that for every & > O there is a k satisfying

3) d(thysss --.) <&
Then d(u,, ...) exists and is less than 1.
A theorem of Behrend [2] states thatifa; <:-- <a,and b, <--- < b, are
any two sequences of integers then
@ 1-d@,....a, by, ..., 0) 2 (1 —day,...,a))1 —d(by, ..., b))
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From (3) and (4) we obtain by a simple limiting process that
® 1—du,..)>0 —n)(1 —du,,...,u)).

Inequality (5) easily implies Lemma 1. (The term d(, ..., %) clearly exists
for every finite set u;, ..., u;.)

Now let u; < +-- be the sequence of integers which can be written in the
form

©) byby by, by < by <by <2by, (b, b)=1,15i<js3

To prove Theorem 1 it suffices to show that the u’s satisfy (3). Denote
by my < --- the integers which are divisible by at least one u;, i >k; we
have to show that for k > k(e) the upper density of the m’s is less than e.
A theorem of mine states [8] that for every & and § there is an / such that the
density of integers n which for some ¢ > / do not satisfy

(1 —-38)loglogt < ¥(n, ) <(1+ &)loglogt

is less than g/2. Thus to prove that the u’s satisfy (3) it will suffice to show that
for sufficiently small é and k > kg(e, &, /) the upper density of the m’s satisfying

)] Vim;, ) < (1 + d)loglog ¢

for every t > [/ is less than g/2.

Showing that this statement is true will be the main difficulty of our
proof. First of all observe that for k > ko(/) (6) implies that every m; has a
divisor of the form

®) bbby, <2 <b <by<by<2*%(b,b)=1,15i<j<3.

We now prove

Lemma 2. The upper density of the integers m; satisfying (7) and having a
divisor of the form (8) is O(1/s**°).

Since )' 2, 1/s'* converges, it immediately follows from Lemma 2 that
the upper density of the m’s satisfying (7) is less than &/2. Thus to complete
the proof of Theorem 1 we only have to prove Lemma 2. Some of the ele-
mentary computations needed in this proof, we will not carry out in full
detail.

Clearly every m; satisfying (7) can be written in the form

©) bib, batyt,, P(t) < 2°*2, p(t;) > 2**2
where the b’s satisfy (8) and
(10) V(byb; by ty) < (1 + 29)log s,
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It easily follows from the sieve of Eratosthenes and the well-known
theorems of Mertens that the upper density of the integers of the form (9)

and (10) is at most
4 1
1- 1) < ‘-; Y

(R Z b bz byt p<1:!” ( P byb;y bst,

where the prime indicates that b, b, b, satisfies (8) and b,,b;, b5 t, satisfies (10),
Thus to complete the proof of Lemma 2 we only have to prove that for
a sufficiently small ¢

4 1 1
1 — L _of).
(12) ) bib, byt O(SC)
Now clearly (in ¥, V() =r, t <2°*2)
(13) ):l‘:( b i,)/r!<(logs+cl)"/r!.
r it pe<ie+2 p

A well-known theorem of Hardy and Ramanujan states [13] that
r—1
(19) Bx)<ex ao(grk_,gl:; !41-0‘:;2: ’
where IT.(x) denotes the number of integers t < x satisfying V(1) =r.
From (14) we obtain (in },'V(b) =r, 2° < b < 2°*?)
(108 s+e)!
(r—1!s

(15) Z' 1120 <

From (13) and (15) we obtain
"1 111

1
s Ebbbr"z(zblébngag )
where in Y ry4r;+ry+r,<(l+28)logs. Using (13) and (15) we
obtain by a simple calculation that the terms of the inner sum on the right
side of (16) are maximal if
an ri=0+o1))3}+3/2logs, i=1273,4

From (13), (14), (16), and (17) we easily obtain by a simple computation
(ri=(1 +0()X3 + 6/2)log s, n = n(J) tends to 0 as & — 0)
(18)

' 1 (log 5)*¢ .+ (logs)"
b1b2 ba‘, 3 33 =1 l";!
(log s)¢ & (log s)”'e' ot

20 4(1 +0(1))(1 +23) log s < .!_
53 i=1 rlﬂ 82 5°
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for sufficiently large s if & and n = n(d) are sufficiently small. Relation (18)
proves (12) and thus the proof of Theorem 1 is complete.

It is easy to see that by our method we can construct a sequence 4 of
positive upper density so that there are no four integers a; € A which have
pairwise the same least common multiple. On the other hand, it is easy to
see that if x > x4(c, k) then

1
(19) Y —>clogx
aj<x G;
implies that there are k a’s which have pairwise the same least common
multiple, In fact (19) implies that for x > x(c, k) there is a ¢ such that

(20) t=a;p

has at least k solutions. To see this observe that if (20) had fewer than k
solutions we would have

kY 1> ¥ i b -1->clogxloglogx,
t<xal ai<x Q;p<x P
an evident contradiction.

I do not know how much (19) can be weakened so that there should always
be k a’s every two of which have the same least common multiple. This
question seems connected with the following combinatorial problem: Let
& be a set of n elements, 4, = &, 1 £i < m(n, k). What is the smallest value
of m(n, k) for which we can be sure that there are k A’s which have pairwise
the same union? An asymptotic formula for m(n, k) would also be of some
interest.

Before concluding this section I would like to say a few words about
equation (20). Assume first that our sequence is such that (19) has only one
solution for every t, in other words the integers a,/p;, p;|a; are distinct for
all i and j. It is not difficult to prove that in this case

x
exp((c + o(1))(log x log log x)1/?)"

The proof of (21) uses methods similar to those in [9] and will not be
discussed here.

By the methods used in proving Theorem 1, it is not difficult to prove that
there is a sequence A of positive upper density such that (20) has for every ¢
at most two solutions.

It would be of some interest to obtain best possible (or at least good)
inequalities on Y ,, <, 1/a; which ensure that (20) has at least k solutions for
some f.

(21 max A(x) =
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Let a; < --- be a sequence of integers no one of which divides any other.
I proved [10] that there exists an absolute constant ¢ such that

1
7 a; loga

(22) <c

and Behrend [3] proved that
1 clogx
2w (log log x)"/?"
Alexander [1] and later Sark&zi, Szemerédi, and I strengthened [22] in the

following sense: There is an absolute constant ¢, such that if @, < --- is any
sequence such that

(23)

(24) at=a;, () > a
is unsolvable, then
1
2 .
( 5) T atlog at<CI

Inequality (25) easily implies that if a sequence of integers satisfies (24) then
it also satisfies
1
(26) Y —=o(log x).
am<x 4
Now we show that (26) is best possible. In other words if f(x) = o0 as
slowly as we wish there always exists an infinite sequence satisfying (24)
such that for infinitely many x

_1_} log x
a<x 4y f(x) '

Equation (27) is indeed very easy to see. Let x; < x, < - - tend to infinity
sufficiently fast. Let our sequence A4 consist of the integers in (x;'/2, x;) which
have no prime factor less than x;_; but have a prime factor greater than
x;'/2. A simple argument shows that our sequence satisfies (24), and if x; - o0
sufficiently fast then it also satisfies (27) for x = x;.

We can now ask, if ¢, < -+ < g; < x satisfy (24) what is the value of

1 1

i
A IOg X a<x Q;

(27)

where the maximum is taken over all such sequences? The maximum is
clearly less than 1.
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It is well known that the upper density of any sequence of integers no
one of which divides any other is less than 4 and any number a < 4 can be
the upper density of such a sequence [4]. Similarly one can show that the
upper density of any sequence satisfying (24) has upper density less than 1
and any B < 1 can be the upper density of such a sequence.

It is well known and is easy to see [10] that if a4, < -+ < g, < x is such
that no a divides any other then

max A(x) = [

X+ 1]
7|
Now let g, <:++ < a; £ x be a sequence which satisfies (24). We outline
the proof that

X
CXP((IOS x)l/Z +o(l))‘

We can in fact easily write down the sequence 4 = {g, < - < g, £ x}
which maximizes /. ;€ Aifand only if a; = p(, p3, ..., p;, Py £ -+ S pjand
Py Py SX<py o piPj+r Where pyo is the least prime greater than p;.
Our sequence clearly satisfies (24). To show that it maximizes /, let 4’ =
{a,' < -+ < ay < x} be a sequence of integers satisfying (24). It suffices to
show that if 4’ contains r integers not contained in 4 then A contains at
least r integers not in A'. To see this let u; < -+ < u, be the integers not in A.
There clearly is a p' > p(x;) so that u; p' € 4. Now these integers must be
all distinct. To see this observe that

(29) u;py # u;p, where p; > p(u;), p, > p(uy).
To prove (29) observe that we can assume p; # p,. Thus without loss of

generality we have p, > p,. But then if (29) did not hold we would have

P, | u; which contradicts p, > p; > p(i;).
Now it is easy to prove (28). On the one hand consider all the integers n

satisfying

(28) max A(x) = x —

X
< exp(2(log x)'/?)’

It is easy to see that none of the integers (30) belong to A4 and a simple
computation gives that their number is greater than x/exp((log x)***) for
every ¢ > 0 if x > x,(¢).

To prove the opposite inequality split the integers not in 4 into two
classes. In the first class are the integers n with P(n) < exp((log x)'/2). By the
results of de Bruijn [5] and others the number of these integers not exceeding x
is less than x/exp((log x)'/2*°))_If n is in the second class we have P(n) >
exp((log x)'/%). But then since n is not in 4 we miust have nP(n) < 2x, or
n < 2x/exp((log x)'/?), which completes the proof of (28).

(30) n p(n) < exp((log x)'/?).
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3.

In this section we investigate some properties of the divisors of n. Let
1=y <+ <uy, =n be the net of all divisors of n. Denote by 4, the set
of those n for which ¢ can be represented as the distinct sum of divisors of n.
Clearly if n is in 4, then any multiple of n is also in A4,, and it is easy to see
that every integer in A, is a multiple of an integer in A4, not exceeding t!.
Thus it easily follows that A, has a density d, . It is a little less easy to see that
d,— 0 as t = 00. To see this we split the integers of A, into two classes. In
the first class are the integers which have a divisor in (t/(log f)?, t). I proved
[11] that the density of these integers tends to 0 as t — oo (in fact the density
is O(1/(log t)°*). The integers of the second class have no divisor in

(t/(log 1%, 0),

Thus if t is the sum of divisors of » we must have (d(n) denotes the number
of divisors of n not exceeding ?)

(31) dn) > (log 1)
But clearly
(32) ild,(u) <y X< 2xlogt.

From (32) we obtain that the number of integers n < x satisfying (31)
is less than 2x/log t, or the density of integers of the second class is not
greater than 2/logt. Hence d, -0 (and in fact d, < 1/(log #)°* for ¢t > t,.
We can prove that for t > 1y, d, > 1/(log £)°*. Perhaps

(33) d, = (1 + o(1))c3/(log )%,

but (33) if true may not be quite easy to prove.

An integer n is said to have property P if all the 2¢™ distinct sums formed
from its d(n) divisors are distinct. One’s first guess might be that the integers
having property P have density 0. But we prove

Theorem 2. The density of integers having property P exists and is positive.

The proof will be similar to [12]. Clearly if m does not have property P
then all the multiples of m also do not have property P. Let m; <mj, <---
be the sequence of integers which do not have property P but every divisor
of them has property P. (m; = 6.) n has property P if and only if it is not
divisible by any of the m’s. Thus to prove Theorem 2 we have to show that
the density of the integers not divisible by any of the m’s exists and is less
than 1.
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If we could prove that
w 1
—<
(34) izt m; ®

then as in [12] it would follow that the density of integers having property P
exists and is greater than 0. Inequality (34) is quite possibly true but I cannot
prove it. Thus we have to argue in a more roundabout way. We split the
m's into two classes. In the first class are the m,"’s satisfying

(35) V(m ") > (1 + e)log log m*.

The m,*’s of the second class do not satisfy (35).
Now we prove (see [3])

(36) dom®, my®, .. ) =a <1
and
(7) d(my,®, m®, .. )= < 1.

Using (4) (as in Section 1) we obtain from (36) and (37) that d(my, m,, ...)
exists and satisfies

(38) 1 —d(my, my,..) 2 (1 —a)1 =) >0.

In other words the density of integers having property P exists and is positive.
Thus to prove Theorem 2 we only have to prove (36) and (37). Expression
(36) indeed follows from my result in [8] as in Section 1. Expression (37)
will follow as in [12] from
(39) : < o0
m;” ’

To prove (39) it will suffice to show that

“ E =)

To prove (40) we split the m,” < x again into two classes. In the first
class are the m," satisfying

(@n P(m,") < exp(log x/(log log x)?).

It is well known [12] that the number of integers m," < x satisfying (41)
is O(x/(log x)?).

Thus henceforth it suffices to consider the integers of the second class
(not satisfying (41)). Consider the integers m;"/P(m,"). They are all less than
x(exp(log x/(log log x))) ™" = x/L.
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Now we prove that for every t < x/L the number of solutions of
(42) m"/P(m;") =t

is less than exp(log x/2(log log x)*) = L,.

Suppose we already proved that (42) has fewer than L, solutions; then
we evidently have (in Z’, m;" belong to the second class, i.e., they do not
satisfy (41))

(43) Yi< "L-E‘. = 0(x/(log x)2).

Expression (43) completes the proof of (40) and hence of Theorem 2.
Let

44) m, [Pm, ) =1, r=1,..,5s

be the set of all solutions of (42). Put P(m,")=p,, r=1,...,5 These s
primes are clearly all distinct. By our assumptions t has property P but the
integers

m;" =1tp,, r=1,...,8

do not have property P. Hence for every r there are divisors d,\” of tp,
satisfying

and in the sum (45) at least one d;'” must be a multiple of p, (for otherwise
all the d;"” would be divisors of t and t would not have property P). Thus
for every p, there is a sum (different from 0) satisfying
r) = (r) =
46) ;Eudu =0(mod p,), dJ’|t, E,= +1.
Now since m;" does not satisfy (35) we have V(1) < (1 + g)log log x. Hence
the number of sums (46) is less than

@7 340 < JROTIRIEX - axp((log x)!7E).

Each of the sums (46) has fewer than log x prime divisors, thus from (46)
and (44) we have

s < log x exp((log x)! ) < L,

which completes the proof of Theorem 2.

By the same method we can prove that the density of integers n for which
n is the sum of distinct proper divisors of n exists and is between 0 and 1.
Several other related results can be proved by this method,
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