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ORDINARY PARTITION RELATIONS
FOR ORDINAL NUMBERS

by
P. ERDOS and A, HAINAL (Budapest)

To RicHARD Rapo for his 65th birthday

§ 1. Introduction

The ordinary partition symbol invented by R. Rapo and first introduced
in [1] enables us to study systematically the possible generalizations of
RamsEY’s theorem.

Let «, B4, ...,f, be either order types or cardinals y an ordinal and
r a cardinal and assume that 3, . ..., 3, are cardinals if « is a cardinal. Then

(1.1) % (Bys---+B,) or equivalently = — (3,),_,

denotes that the following statement is true.

Let (S, <) be an ordered set; tp S(<) ==z or let Sheaset |S| =«
if # is an order type or « is a cardinal respectively. Let [S] = {X : X < SA
ATX|=r}=UI(r<y)J, be an arbitrary r-partition of length y of S.
Then there exist a subset S’ < S and an ordinal v <~ y such that

[S'T < J,
and tp S' (<) =g, if §, is an order type or |8’ | = B, if p, is a cardinal
respectively. x +> (B,....,f,)" denotes that the negation of the above

statement is true.

In [1], [2] and [3] several generalisations of (1.1) had been defined
and a general partition calculus had been developed. In [3] an almost complete
discussion of (1.1) is given in case the entries «, §, . . .., 3, are cardinals and
G. C. H. is assumed. In a forthcoming book of R. Rado and the authors this
discussion will be given without using G. C. H.

In this paper we will consider some special problems for the ordinary
partition relation in case the entries are ordinals. We will only consider the
case r = 2, and in most of the cases we assume y = 2 too.

Even the problems concerning these special cases are rather ramified.
In our paper[4] we gave a collection of typical unsolved problems. Here
we will consider only one type of these problems.
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We will investigate the problem
(1.2) % — (B, y)°

where =, B, y are ordinals. We will assume |[a | =N;, § >y . It is easy to
see that if in this case 8 = w, the problem (1.2) can be reduced to a problem
involving only cardinals. In case § <_ w, difficult problems arise which we
do not consider here. See Problems 10, 10/A, 10/B of [4]. We will consider
the problems where § > w, .

On the other hand with an easy SIERPINSKI-type argument one can
establish the negative relation

(1.3) %+ (05 + 1, Ng)? for every £ > 0.
Thus we will be interested in problems of the following tvpe
% — (8, k), g Bty E=0

w: +1 <<z <oy

There are many results and problems concerning (1.4) even in the
simplest case & = 0. We collected these results and problems in [4] 3.2 and
Problems 6 and 7. We only mention that one of the most difficult problems
(Problem 7) of [4] has been recently solved by CraxG!. He proved o — (@”, 3)°
but his proof does not vield

(1.4)

o” — (0%, 4) 2

All the positive results for (1.4) in case & = 0 make use of Ramsey’s
theorem
Ny —> (N[})}c T, k <.

This is the case with SPECKER’s result w? — (w2, £)%; k <~ . For references
see [4]. Thus in case £ >0 one of the first questions was if

% — (0, 3) holds or not?
See problem 13 of [4].
The second author proved recently the following result (see [5]):

(1.5) o} + (0} 3)°

provided § =7 + 1 and §, is regular.

On the other hand, P. Erpds and R. Rapo proved in [6] the following
result

Let £ be arbitrary, k, 7 <~ @. Then there is f(£, /) <~ ® such that

(1.6) wg. fk, 1) — (wg k. D2

1See . (. Cuaxwe, A theorem in combinatorial set theory (to appear). Using
Crane’s method E. MiLNER proved o — (@, k)? for all k<w.
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Our real aim in this paper is to push further the results (1.5) and (1.6)
for the cases & >0, to establish several consequences and to fill up some
of the gaps. We are going to state a number of related problems and results
which can not be formulated in terms of the ordinary partition symbol.

In certain cases we only outliné or entirely omit the proofs.

We use the usual notation of set theorv. We mention that each ordinal
is considered to be the set of smaller ordinals. The notation w. and £.
mean the same (w, = w). We agree that w}7 denotes the ordinal power
while 87 denotes the cardinal power i.e. »” = g is a denumerable ordinal
while N{° is the cardinalitv and the initial number of the continuum.

§ 2. Some negative results using G.C.H.

First we introduce some special notation. Let %, be ordinals and f
a cardinal valued function with D(f) C o, . f(») =< w; for v € D(f). Put 4 =
=w; X0, 4, =w, X {p} for vew,, SE&.nHl={Xc4d:|XNA4,| =

= f(¥) for » € D(f)}.
We further put

S8(&m, % 8) = UA{f: | D(f) | = 0z A f00) = 0.} S 0. f).
We prove

THEOREM 1.2 Assume G.CH. Let £t =+ 1, 5 arbitrary. Put S, =
=8y +1,nn+ 1,79). Then there exists 1 C [A) satisfying the following
conditions:

a) X cd, [XPcl imply | X|<3
by Xc A XE€ES, imply (XP NI =0
Theorem 1 is obviously equivalent to
CoroLrary 1. Assume G.C.H. and ¢ <~ », ., . Then
W,y 0+ (@, .4 0, 3)

This should be compared with (1.3) and (1.6).
We will also prove the rather special result
CoroLLARY 2. Assume G.C.H, ¢ < @, . Then
g+ (@2, 3)2.
The proof of Corollary 2 will be given on p. 175.

*This result was already stated in [4] without proof. See the remarks concerning
Problem 13.
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Strangely enough this result does not generalize and e.g. it is not known if
6 4 (w5 | 3)*

holds for wj* < ¢ << w, . We shall return to this problem on p. 176.
Instead of Theorem 1 we prove the stronger

TeEOREM 1/A. Assume G.CH. Let £ =un + 1, n arbitrary. Put S, =
=8+ 1, 9,1 n). Then there exists I C [A) satisfying the following con-
ditions

a) Xcd, |X|=38 imply [XP<EI],

by Xcd4, |XNA,|=N8,, for somev o, and Y €8, for some

YcX

imply [XPNI+0,

c) For everyv < v' < w, and for every x € A, there is al most one y € A,
with {x,y} €1.

Theorem 1/a is obviously stronger than Theorem 1 since X < A4, X € 8,
implies both | X N 4, | = 8, forsome » <~ @, and ¥ € 8, for some ¥ < X

Proor of Theorem 1/A.
(1) Let {xm};{wTj+l = A be the well-ordering of A satisfving «, = (u,, v,)
for x << w, ,, and « <Z B iff either p, <~ p; or u, = pyand v, <~ v;. The type
of this well ordering is indeed o, ,, .

For every « < @, ,, we put

Z,={{p, ) 1y << p, A v >0} =p, X (co,i — (v, + 1)).

We are going to define a function f such that f(x,) c Z, for every a << o,
by transfinite induction on x. Our intention is to put

(2) I={{z, %} :p < Az €flz,)}

Bv G.C.H. there is a well-ordering {Y,}
W= T €8s LaiY.C &}
Assume that « <7 @, ., and f(a;) is defined for every f <« in such a
way that f(z;) € Z; and | f(zs) N 4, <1 holds for every » < o, .
Now we claim that there exists a set B satisfving the following con-
ditions

reag = 1 of type o, ., of ;. Put

BcZ,, |Bnd,|<1 for every » < o,,
(3)
BNY, =0 for every Y_€¥,

and z, ¢ f(x;) for every pair 8, y << a, 23 2, € B.
We only outline the proof of (3). By a well-known theorem of BERX-
sTEIN and hy |, | < N, the elements of ¥, can be represented in different
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A,s, i.e. For every v, << v <_ @, one can define a subset F, C 4,, | F,| = N,
such that for each Y_ €%, F,c ¥, for some v, < v <Z ,. Then by trans-
finite induction on », one can pick an element b, of ¥, in such a way that
b, e F, — U (' <v)f(b,), b, €Z, The set B= {b,} obviously satis-
fies the requirements of (3).

We now put f(x,) = B for a set B satisfying (3). Then f(z,) C Z, and
| flxe,) N 4, ] <1 for v <Z @, hence f(x,) is defined for every « << w,,, -

We prove that the I defined by (2) satisfies the requirements a), b)
and ¢). Assume X c 4, | X | =3, [XPc I. We can put X = {z, x5 =,}.
We can assume that », = min {»,, 5, »,}. Then, by (2), (3) and by [X]* C I,
we must have z;, 2, € f(z,) C Z,. Thus u,, g, < p,, and as a corollary f,y <7 a.
Then, by (3), z; 4 f(z,), x, ¢ flzs) hence by (2), {x; «,} § I. This contradicts
[X* < I and a) follows.

Let now X c 4, v <w,, Y X be such that [X N4,] =N,
and Y €8, .Y €8, implies that there are ¥, — ¥ and p < w,,, such that
Y.<Z, =, =(u»). By |XNA, |=p,., there is « >t with =z, ¢
€XNA,and gy, >p. Then v, = », henece Y _c Z andthus Y, € ¥,. By (3),
flz) N Y, 5= 0 and, by (2) this means [XJ* N I == 0. This proves b). ¢) follows
from (2) considering that, by (3), |f(x,) N 4, | < 1 for every v < w,.

To prove Corollary 2 we need the following result often cited as the
MiLNER —RaDO paradox [7]. In terms of (1.1) this can be expressed as follows

Vo < vy

MiLNER—RADO THEOREM. Let x >0, ¢ < w, ., . Then

(2.1) ¢ + (7))

n<we*

To prove Corollary 2 we apply (2.1) in its first nontrivial instance x = 1.

Proor of Corollary 2.

Let now ¢ < @,. Let B, U ...U B, be a disjoint 1-partition of o
establishing the negative relation (2.1). We can assume | B, | = N, for every
n < w, and that the B, are disjoint.

By Theorem 1, there is an I < [¢]° such that
i) Xcoe, |X|=3imply [XP«¢l,

(i) Xco, [XENI=0imply | XN B, | <N, for all but finitely many
n < .

Put 9, = [0]> — I, §, = I. Then the partition [¢]* = I, U J; establishes
o 4 (o], 3)%
By (i) it is sufficient to see that
X co [XPcd, imply tpX (<) < wf .

By (ii) [X]? < J, implies that X =X, U...U X, UY where |Y [ < N
tp X, (<7) < ! for i << n w? being indecomposable this vields tp X (<) < w®.
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Remarks and problems.
ProsrLEM 1. Assume G.C.H. Is it true that

w; + (o), 3)* ?
Is it true that
o+ (w, 3)F for wi' < o< w,?

This would be a straightforward generalization of the special result
stated in Corollary 2.

ProsLEM 2, Assume G.C.H. Is it true that
0,0 + (@y @, 3)° 7

Is it true that x ©w = (x w, 3)* for every cardinal @ <7 o < aq, ¢f(x) =
where o, is the first cardinal = for which x, +» (%, . %,)* ?

The first part of Problem 2 was already stated in [4] Problem 13. 1t is
obvious that a positive solution of the first part of Problem 2 would imply
a positive solution of the first stronger part of Problem 1. It is easy to see
that ey — (x40, 3)2 holds. Tt is intrigueing that we have no information for
any smaller cardinal with ¢f(x) = w. We mention that as a generalisation of
Specker’s result ©®* — (w*, £k)? for k C o we can prove

THEOREM 2. Let o be a sirong limit cardinal (i.e. 2V < a for 3 < x)
and assume cf(x) = .

Then aw — (% w, k) holds for I < w.

The proof can be carried out using the canonization method described
in [3], Lemma 3 and applving o — (0® k)®. We omit the details but we
mention that the argument breaks down if we want to apply it for the
proof of

G.CH = o — (w,, 3)

and we can not decide if this relation holds or not.
As to the second part of Problem 1 we mention that assuming G.C.H.

G+ (5" 3)°

holds for o <Z @d*. This is connected with a possible generalization of (2.1).
To be able to formulate this we define another symbol.

(2.2) DerFmNiTioN. Let «, §, »,. 0 be ordinals r a cardinal, z — [5];,3
denotes the following statement. If [x]" — U (v < y) §, is an arbitrary r-parti-
tion of length y of x then there are

BiEw, 4 e




ERD(S, HAJNAL: ORDINARY PARTITION RELATIONS 17

=

such that tp D(<7) =4, tp B (<) = 8 and
[BFcU(eD)d,.

For the definition of this symbol see [3] and [4].
o} being indecomposable (2.1) can be written in the following form.
Let « >0, o< w,,, then

(2.3) o+ [0], , for every n < o.

In the proof of Corollary 2 we applied that o +s [w]], , holds for
every n > 0 and for o < w,

A straightforward generalisation would be the following assertion.
Aseume G.C.H. Then

(2.4) 0+ [0 ]

holds for v <7 @, , 0 <7 w3 ?

We have discussed this problem in [4], see Problems 19 —21/A. We
know that (2.2) is true for o <Z w, . As we have mentioned in [4] for ¢ = @}
(2.4) seems to be independent of the axioms of set theory. Obviously, if for
a given o there is a positive answer to (2.4) then this together with Theorem 1
gives a positive answer to the second part of Problem 1.

We did not investigate if Problem 1 is equivalent to the corresponding
case of (2.4) or to any of the known unsolvable problems. Finally we discuss
a further possible refinement or Theorem 1 by stating some results without
proofs.

TaEOREM 3.
A) Assume G.CH. Let £ =1, 5= 0. Put

S, = U{f: D) Co A D) = 0 AV kE <o In(o>fn)>k)} 81,0, /).
Then there is I < [A) satisfying the requirements
a) X cd, | X|=3imply [XPql,
b) Xcd, |XNA4,| =uw for somen <o
and ¥ < X for some ¥ €8, imply [X]* N1 == 0.

B)Let =1, 5=0Lk< o and let I < [AT salisfy the condition a)
of part A). Then there is X C A satisfying the following conditions. There are
Y.Z X with Y €S(1,0,f), Z € S(1, 0, g) where

[D(f)| =1 flrn) =wy for n€ D(f)
IDig) | =w, gin)=F% for n € Dig) and
[XPPnI=0.
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We formulated Theorem 3 because parts A) and B) together give a
surprisingly sharp result.

Part A) can be proved quite similarly to Theorem 1/A. In § 4 we are
going to establish a weaker result than part B). We will not prove the existence
of Z — X but we will do it generally for § = 5 + 1, 5 arbitrary.

The proof of B) is quite tricky but we omit it because it is very special.
We mention that we can generalize neither Part A) nor Part B) of Theorem 2
for the case £ =2, n = 1. The proofs already break down in the most
special cases.

§ 3. Consequences of the negative result (1.5)

First we state (1.5) in a slightly stronger form and using the notation
of the previous §. For this stronger form see also [5].

THEOREM 4 (HaINaL). Assume GC.H. Let § =y =1, + 1 and assume
N; is regular. Put S; = S(C + 1.0+ 1, L + 1, L + 1). Then thereis I — [A]?
satisfying the following conditions:

a) XcA (X |=3imply [XP<I,

b) Xc A XeS; imply [XPPNT =0,

c) for every v << v <Z w, ., and for every x € A, there is al most oney € A,
with {x,y} €1,

Q) [AFNI=0for v <o,

CororLLaRY 3. Assume G.C.H. and let X. be regular, £, < w.
Then
i PEED o (wkf, t 4+ 2)2.

CoroLLARY 4. Under the conditions of Corollary 3
w(éﬁ)(kﬂ)ﬂ e (m.i&:{ +1. 84 2)2_

Proor of Corollary 3. We prove the statement by induction on £.
For ¢ = 0 the statement

is trivially true. Assume that ¢ >> 0 and the statement is true for { — 1:

D ED = . k],
Put briefly
c=o%Y, g =0}, r=0.0. Byt>0
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we have [¢ | = | p | = N, _, . Moreover there are sets

B, < ...< B, such that?

(1) t:BOU...UE and tpB, (<) = o for x < p.
Let now C4, ..., Ga,‘ , be a reordering of type w,,, of the sequence
By sco v B By Theorem 4, there is I c [7]* satisfying conditions a), b),

c), d). 4 replaeed by 7= and A, replaced by C, respectively.
By (1)} and by the induction hypothesis, for every x < ¢ there is a
2-partition of length 2 of B, ,

(2) [B,J? = & U 8 establishing ¢ + (wf'}, t + 1)%
Define the 2-partition of length 2 of 7, [¢]* = §, U J, as follows
B db=U@<AHFU ([P — U (= < o)[B.T) - I),

Hh=U<o UL
By (2), this is really a 2-partition of 7.
Let now X c 7, [XPc§, . Put N = {» <w.,:C, N X =0}. By (2),
(3) and d) we have |C,N X | <<t + 1 for v € N. By (3) and a) we have
| N | < 2. Thus we may assume N = {»,»'}, v << v'. Then, by c¢), we have
|C,, NX| <1 and thus | X | <<¢ 4+ 2.
Next, let X < 7, [X]* < 3. Put

M={p<w: | XNC,| >N}

By (3) and b) we have | M | < N;.
On the other hand, by (3), [XP < d, implies [X N C,]? ¢ & for the
x satisfying B, = C,. Hence, by (2), tpX NC, (<) < wfi} for every
y <@gy -
Put
X,=UGeMC,NX, X,=U(€w., — M)C, N X.

We have X = X, U X, . By the definition of M, tpX, (<) < ot} because

of i} — (w”“’)s and
tpX,; (<) < off] < wkf} because of ¢ = wf’l.

of '} being indecomposable we have tpX (<) < wf;}. Thus the partition
defined by (3) establishes 7 +» (0¥1%, ¢ + 2)2

ProoF of Corollary 4. Put 7 = of[P¢V71 ¢ = o P**D  Then
there are By < ... < B, such that 7= ByU...U Ba,,

tpB, (<) =90 for » <w, ;.

3X < Y means that x < 4 for x€ X, ¢ Y.

2 Periodica Mat. 1 (3)
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Thus, by Corollary 3, there are partitions [B,]?= & U 3] establishing
g+ (053 t + 2)2 for v <, .
Put f=U@p <o, )9, Jy=[tF—3
Then [7]2 = §, U §, . obviously establishes
T+ (05241, £+ 2)2

REMARK. Though Corollary 4 is a trivial consequence of Corollary 3 it
gives a best possible result in the first nontrivial case { = 1 for every L < w.
We will discuss this after having established some positive results.

§ 4. Some positive relations

Let now S be a set and I < [S]2. As usual we may consider the pair
§ =<8, I> as a graph where S and I are the set of vertices and edges,
respectively. We will put

I(x) = {y: {«, y} €I} for x €8.

I(x) | is the valency of the vertex x in §.
We will now state a lemma which in spite of its trivialitv has some
sharp consequences.

LeEMMA. Let (S, <) be an ordered sef, » >0, g | <7 w,. Assume
1\,‘ = ‘S‘U U o U SQ ¥ }SO e e jé‘o
and assume that 1 C [ST is such that

1S, — Uz €eS) ()| >0,

or every o <~ p and for every 8" S, |8 | < w,.
Then there is X < S satisfying the following conditions:

(4.1) [XPNI=0; | XNS8, >, for every 6 <o
and as a corollary tpX (<) > w, . p .

(4.1) can be proved by an obvious zig-zaguing so we omit the details.
As a corollary we have

CororrLaRrY. For every [ and for every £,k < o
(4.2) ol DL (i ER f 2P,

(This should be compared with Corollary 4 of Theorem 4.)
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Proor. By induction on 7. For 1 = () the statement
wf 7} - (. 2
is trivial.
Assume ¢ >> 0 and the statement is true for / — 1. Put p = D¢ +H-1
and let 7 < [y]* be such that

(1) Xcy [XPclimply | X|=2t+ 2
Then, by (1), for every x € y we have

(2) YcIx), [YPcI imply | Y | <4 1.
We have to prove, that there is Z v such that

(3) [ZPNI=0 and tpZ (<) = wfi}.

By (2) and by the induction hypothesis we may assume that tpl(z) (<)
< 0V for every x €y otherwise (3) holds.

Considering that

FHL L gyletd

L+1

? - o wf(!'
and that wé(ﬁllp—l (w‘”‘ D+1yL !

(3) follows trivially from (4.1).
Corollary 4 and (4.2) together determine the smallest ordinal = for which

ol + (1, 4 2)?

holds in case m # 1 (mod ¢ - 1).
In case m # 0 (mod ¢ 4- 1) corollary 3 and the following result give a
complete discussion.

TaeOREM 5. Let L be arbitrary, k < w, 1 <t < w. Then
& FED (4, b+ 20 for every u < wiE.
For the proof of Theorem 5 we need some preliminaries.
LemMA. Let I be arbitrary m <~ ©, » + 8 = m;
A=, f=ai,y, y=0l,, v<wp,;
«=DBeU...UB, By<<...< B, tpB, (<) =B for o <.

Let F be a function such that D(F) = x and, for every x € «, F(x) 7,
tpF(x) (<) < v moreover if x¢€ B, then o ¢ F(x) for every o <y, x € .
Then there exists X < = with the following properties

tpX (<) = a.
For every x,y € X, y € B, implies g ¢ F(z).
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In [8] we proved the following result.

TaeoreM. (Erpds, Hasnar, MiLNer). Lel  be arbitrary, m < o,
o=l ,v<w;.Letfbea set mapping defined on a with tpfl(z) (<) < v
Jor x € a. Then there exists a free subset X C o of type «. (X is free if for every
pair z,y € X, z 4 f(y)).

This Theorem is obviously equivalent to the special case r — 0, s = m
of the Lemma. Its proof is quite lengthy. Considering that the Lemma can
be obtained with a routine modification of the proof of our Theorem, we
omit it.

Using the Lemma we prove the following

TrEOREM. Let {, m, r, 8, o, B, v, By, ..., B, have the same meaning
as in the Lemma. Assume moreover that v >0 and let I < [S] be given in
such a way that

(i) tpl(x)(<) << p for every x €8 for a fixed y << ol{3
(i) tp((z) N B,) (<) < B for every x € B, x €S, ¢ < 7.
Then there is ¥ C a, tp Y(<) > ofl] such that
(4.3) [¥PNI=o0.

Proor. Put F(x) = {o < y: tp (I{x) N B,) (<) = B} for x €S. By (ii),
x € B, implies ¢ ¢ F(x) for x €, ¢ <7 y. Thereis v < w, ., such that p << 8 . ».
Then, by (i), tpF(x) (<) <7 v for every = € x. By the Lemma there is Z C «,
tp Z(<C) = « such that o ¢ F(z) for y € B, «,y € Z.

Hence, for every z €Z and for every p <<y Z [ B, >0 implies

tp((z) N B,) (<) < B.
Using g — (ﬁ):.f, (4.1) implies the existence of ¥ < Z satisfying the
requirements of (4.3).

Proor of Theorem 5. By induction on f.

Case 1. t = 1. Put o = 0}%"™ we have to prove o — (u, 3)2 where
p < wfti. Assume this is false.
Let I c [«]* be then such that

(1) Xca, [XPc T imply | X | < 3 and

(2) X ca, tpX (<) = u imply [XEN T 0.
(1) and (2) imply

(3) tpl(z) (<) < u for z € «.
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Let 8 = o{l. We can set

a=ByU...UBp By<<...< By tpB, (<) = f for ¢ < 8.

By (1), there is B, — B,, tpB, = f such that tp (I(x) N B;) (<) < B
for € B,. Hence we may as well assume that
(4) tp(I(x) N B,) (<I) < B holds for ¢ << B, = € B,
(3) and (4) imply by (4.3) the existence of a ¥ C a, tp ¥ (<) = ofi} >pu
with [Y]2 N I = 0. This contradicts (2).

Casg 2.t >1. Put & = of[{"¢*" and assume the result is true fors — 1.

Let I — [x]* be such that X c =, [XPPc I imply |X | < ¢+ 2. By
the induction hypothesis we may assume tpI(z) (<) < o}V for every
x €.

Considering x = of%7? - wff] and P — (i), by (4.1), we
then even have a

Yca [YENI =0 with tp¥ (<) > of{f >p.

Note that in cases m = 0,1 (mod ¢ + 1) we do not know a best possible result
for 07, — (a,t + 2)%
The following seem to be the most interesting unsolved problems.

ProBLEM 3.
0 > (0, 7,4) for o <7< 0, ?
0} - (wir, 42 for o < 7 < o, ¢

Note that, by (4.2), w? — (w,, 4)* and this easily implies ©] — (0} .7, 4)2 for
7 < w. On the other hand ®} +» (w?}, 4) follows from Corollary 3 which even
implies
o + (03, 4)2.
We establish one more positive result relevant to Corollary 1 and
Problem 2.

THEOREM 6. Let <  { + 1. Then
. o, — (@, 4 .2, 3) for x < o,
This should be compared with Theorem 2/B.

Proo¥. It is obviously sufficient to prove the theorem for regular w,.
The special case t = 0, £k = 0 of Theorem 5 yields this for y = { 4+ 1. We
assume 5 <~ {. We use the notation introduced in § 2 with £ ={ + 1. Let
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I < [A7 be given, let < be the usual antilexicographies! ordering of 4 and

assume
(1) XcA [XPcIimply | X ] < 3.
We prove the following statement: there is
(2) ¥ isd, Bl (&)=t % [T L=
We assume (2) is false. Then by (1), we have
(3) tplx)(«) < w-.; .2 for x €4.
By w;., — (w;,y, 3)" and by (1) we may assume
(4) [4,PNI =0 for y < w,.
Put

Fay={vr <o, |Ix)N4,]| =0;.4}.

By (3), we have
(5) tpH(x) (<7) <7 2 for o € 4.

By | 4, | = w_. ;. by the regularity of w, and by (5) for every » <~ 0,
there are 4] C A, and 7(r) <7 w, such that

6) |A; | =, and F(x) C {v) for € 4.

Then, by transfinite induction, one can choose a subset N < o, such that
for everv v << v': v, " €N, x € A] we have

{7) v' ¢ Flx), and |[N| = o,.

We prove:

Thereis N' c N, |[N’| < w, such that forevery M c ¥ — N', | M <o,
there are M <~ {»}, » <~ @, and B < A4/ such that

(8) Bl=w; ,and MN F(x) =0 for x € B.

If (8) is false define by transfinite induction a sequence M,,.... M.
of subsets of ¥ so that for every o <o, N,=U (o <o) M,; M,= M
is a counterexample for (8) when N’ is replaced by N .

Then My < ...< M, and there is » with U (¢ << a) M, < {»} and
there is x € A, with F(z) N M, =0 for every g =~ . This contradicts (5).

Using (8) one can define by transfinite induction a subset M c— N,
IM| =, and 4 for v € M such that

(9) 4] ' =w; 4, Ay c A, for v e M

and for every »,v' € M, v<_v', z € A, we have v { F(x).
By (4), (7) and (9), it follows from (4.1) that there is YA tp ¥ (<7) =

= w; ., . 0, [YT?N I = 0. This contradicts (2) and proves the theorem.



1] P.
2] P.
(3] P.
[4] P.

[5] A.
(6] P.

[7] E.

[8] P.
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