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In the present paper I discuss some problems in number theory which I
have thought about in the last few years; computational techniques can be
applied to some of them.

1. On Prime Factors of Consecutive Integers

Let (k) be the smallest integer with the property that the product of f (k)
consecutive integers all greater than k is always divisible by a prime greater
than k. A well-known theorem of Sylvester and Schur (see Erdds, 1934)
states that f(k) < k. [ proved (1955)

¢, log k log, k log, k/(logs k)* < f(k) < ¢ k[log k.t

Recently Ramachandra (1969 and to appear) proved f(k) < (1 + o(1))
kflog k. It seems to me to be very difficult to prove that for all ¥ > k, we have
S(k) < n(k), though I have no doubt that the conjecture is true. In fact it
seems likely that f(k) is not substantially larger than

’il = max(Pr‘rl == pr)l k < P: < Prér < 2k.

In fact I cannot even disprove f(k) = A, for all sufficiently large &, though
it seems likely that f(k) > A, for all large k. A well known theorem of Pélya
and Stérmer states that if ¥ > wuy(k) then u(u + 1) always contains a prime
factor greater than k, thus f(k) can be determined in a finite number of steps,
and an explicit bound has been given by Lehmer (1964) for the number of
necessary steps. It is known (Utz, 1961) that f(2) =2, f(3) =f(4) =3,
f(5) = ... =f(10) = 4.

Selfridge and I conjected that if m > 2k then (:') has a prime factor

< m/2, the only exception being (;) This conjecture was recently proved by
Earl Ecklund. '

t+ We write log log k = log; &, etc.
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Selfridge and 1 proved that there is an absolute constant ¢ > 0 so that if
m > 2k then (:‘

The proof is very simple. Assume first m > 2k'*%, put / = [k°] + 1. It
follows from the theorem of Hoheisel-Ingham (see Ingham, 1937) that for
sufficiently small ¢ > O there is a prime p satisfying

) always has a prime factor less than m/k°.

m—k
p>

_!> 7 > k.

m
k
Assume next m < 2k'*¢ Let

Clearly this prime divides ( ) and this proves our assertion if m > 2k!*e,

5= 3m]+l
ol :

It follows from the Hoheisel-Ingham theorem that there is a prime p satis-
fying

m-—k

s—1"

m>>
SP

Clearly

p‘(?) (sinoe-g-<n;:lk<p<kamdm—k<(s—l)p<sp<m)

which completes our proof. The simplicity of our proof is caused by the fact
that we have not determined ¢ explicitly.

Selfridge and I conjectured that if m > k?* then (r:) has a prime factor

7
< mfk; (3

nection with this problem we asked: Determine or estimate the smallest
integer g(k) so that all prime factors of (ggc)) are greater than k, (it is easy

) is certainly an exception, and this may be the only one. In con-

to see that such integers exist).
It is perhaps true that, for k > ko(g) and m > k'™, (';) always has a

prime factor greater than k' ** — k. Ramachandra (1969) has ‘some results
which point in this direction. More generally let /(k) be the largest integer $0

that if m > h(k) then (’”

X ) always has a prime factor greater than h(k) — k.
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I am sure that i(k) > k€ for every ¢ > 0 and k > ky(¢); (k) > cklogk is
easy and Ramachandra’s result will no doubt give h(k) > (1 + o(1)) k log k.
Denote by p, the least prime greater than 2k. Faulkner (1966) proved that

for m = p,, ( ;\n) always has a prime factor > p;. except for (3) and (10).

3
Thus h(k) = py + k for k > 3.

It is easy to see that A(2) = 4, i(3) = 6. I(4) = 16 (i.e. the product of 4
consecutive integers > 13 always has a prime factor > 13). It is difficult to
compute h(k) but by the effectivisation results of Brown this can be done in
a bounded number of steps. Lehmer (1963) showed A(7) = 43.
m
k
d < m. This is easy to see if k¥ = p*. Schinzel (1958) proved that in general
it is incorrect, e.g., it is false for k£ = 15, m = 99125. He further proved that
it is true for all integers k < 34 except 15, 21, 22, 33. Schinzel now conjec-
tures that it is false for all k > 34, k # p* This conjecture has been verified
for k < 150. I proved (see Schinzel, 1958) that my conjecture is false for
infinitely many k # p*.

In view of the failure of my conjecture one can try to investigate the great-

I conjectured that, for every m = 2k, ( ) has a divisor d with m — k <

est factor of (T) not greater than m. | would now conjecture that the

m
k
fortunately I can prove no non-trivial result.

This question leads me to the following one: Is it true that for every & > 0
there is a k, so that, for k > kg, k! is the product of k integers all greater
than (k/e) (1 — &). It easily follows from Stirling’s formula that if

greatest prime factor < m of ( ) is greater than c¢m for some ¢ > 0. Un-

k! =

a

:rr

iy < .S 4.

1

then a, < k/e, thus our conjecture if true is best possible.

Recently Selfridge and I proved that the product of consecutive integers
is never a power (that it is never a square is due to Rigge, 1939); our proof
is not quite easy and will be published elsewhere (for a weaker result see
Erdds, 1955b). In fact we prove a somewhat stronger result. We prove that

for every /> 1, k > | the product f] (m + i) contains a prime p > &k 1o an
exponent which is not a multiple {‘Jf"j’.1 We conjecture that if /= 2and & = 3
then ﬁ (m + ) contains a prime p > k to the exponent one. The only excep-
tion i‘g:lS .49 . 30. For k = 2 there are infinitely manyv exceptions. This con-
jecture if true is very deep.
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Put (p*|m means p*lm, p**1 t m)
AfM=Tp*, plm+i), p<k
It is not difficult to prove that tor k > Ay(z)

min 4™ < (1 + e)k.
1=isk

Probab:iy very much mere is true, in fact perhaps

o] .
lim — max min 4™ =0.

k= 0sm<wxw | €igk

2. Covering Congruences

A svstem of congruences g; (mod »z), m, < ... < m, is called a covering
svstem if every integer satisfies at least one of the congruences a; (mod m;).
I was lead 1o the problem of covering congruences by a letter of Romanoff
who asked if there are infinitely many odd integers not of the form 2* + p
(as is well known Romanoff (1934) proved that the lower density of the in-
tegers of the form 2* -+ p is positive).

The simplest covering system is 0 (mod 2), 0 (mod 3), 1 (mod 4), 1 (mod 6),
11 (mod 12) and the system 0(mod2), 0(mod3), 1(mod4), 7(mod 8),
11 (mod 12), 19 (mod 24) shows (Erdds 1947-51) that the answer to
Romanoff’s question is positive, in fact there is an arithmetic progression
consisting entirely of odd numbers no term of which is of the form 2* + p.

The following question seems very difficult: Is 1t true that to every c there
xists a covering system g, (mod m;) ¢ < m; < ... < m,? This is known for
¢ <9 (see Churchhouse, 1968) but the generai case seems very difficult. A
positive answer would imply that for every r there is an arithmetic progres-
sion no term of which is the sum of a power of 2 and an integer having at
most r prime factors.

Schinzel recently investigated the question whether, for fixed r, there is
an arithmetic progression no term of which is of the form 2% + 22 4 ... +
2%+ p; already for r = 2 the question seems difficult. Schinzel (1967) recently
applied covering congruences to the study of reducibility of polynomials.

There are many further interesting problems on covering congruences, €.g.,
is there a covering congruence all whose moduli are odd, or is there a cover-
ing congruence in which no two moduli divide each other? Schinzel (1967)
and Selfridge observed that the two problems are connected.

Call an integer m covering if one can find a covering set whose moduli are
all divisors of m; m = 12 is clearly the smallest covering integer. Clearl)_r 'all
multiples of a covering integer are again covering. An integer is primitive
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covering if it is covering but all its divisors are not covering. Clearly we obtain
the covering integers by taking the set of all multiples of the primitive cover-
ing integers. [ can prove using the results in ErdSs (1948) that the covering
integers have a density. One could try to estimate the number of primitive
covering integers not exceeding x.

I expect that for every ¢ > O there is an m which is not covering and for
which ¢(m)/m > ¢, but I could not prove this (perhaps I overlook a simple
idea).

A system of arithmetic progressions g; (mod m;), m; < ... < m, is called
disjoint if no integer is in two of them. Denote by f(x) the maximum number
of pairwise disjoint arithmetic progressions whose difference does not exceed
x. Stein and I conjectured that f(x) = o(x); Szemeredi and I (1968) recently
proved this. The sharpest results for f(x) are

x exp(—c,(log x log, x)¥) < f(x) < x(log x)™,

perhaps the lower bound is close to the true order of magnitude.

Stein conjectured that if g, (mod m;), m, < ... < m, are k disjoint congru-
ences there is an integer < 2* which does not satisfy any of these congruences
Selfridge proved this conjecture. I conjectured that if a; (mod m,), m; < ...
< m, are any k congruences which are not covering then there is an integer
< 2* which does not satisfy any of these congruences (Selfridge, Crittenden
and Van der Eyden recently proved this conjecture).

It is not hard to see that the density of integers not satisfving any of the
disjoint congruences a; (mod m;), m; < ... < my is > 1/2* and that this result
is best possible. The same result probably holds for any k& congruences which
are not covering (Erdds, 1962).

I would like to state one more problem on arithmetic progressions: Let
a; (mod m;), m, < m, < ... be an infinite sequence of arithmetic progres-
sions. Is it true that the set of integers not satisfying any of these congruences
always has a logarithmic density? Special cases of this conjecture were proved
by Davenport and myself (1936 and 1951).

3. Some Problems and Results on the Addition of Residue Classes

Heilbronn and T (1969) proved that if a, ..., @, k = 3(6p)* are distinct
residues mod p (p prime) then every residue (mod p) can be written in the
form

k
Y ea, g=0o0rl.
i=1

We conjectured that the same holds for & > 2./p and that this is best pos-
sible. Olsen (1968) recently proved this conjecture. We further conjectured
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that the number of distinct residues of the forma; + a;, | < i <j <k, isat
least 2k — 3; as far as [ know this conjecture is still unsettled.

Let now m be composite and a4, ..., @, be k distinct residues mod m. We
conjectured (Erdés and Heilbronn, 1969) that if kK > ¢/m then

k
Y ga, = 0(mod m), g=0o0rl
i=1

is always solvable (probably k > v'2m + o(\/m) will suffice). Ryavec (1968)
proved a slightly weaker result and our conjecture was recently proved by
Szemeredi (his paper will appear in Acta Arithmetica). Szemeredi'’s proof
works for every abelian group of order m: perhaps the result holds for non-
abelian groups too.

Eggleston proved the following result: Let G, be an abelian group of m
elements, m < n + k - 1, ay, ..., a, are n elements of G,, where at least k of
the a's are distinct. Then (e is the unit element of G,,)

a®, g=0o0rl
1

k
=
is always solvable.

Eggleston and I conjectured that m < n + k — 1 can be replaced by m €

n+ { f: ): this if true is easily seen to be best possible (it suffices to take G,,
-
to be the additive group modm and thea's 1, ..., k. I, ..., 1).
We proved this conjecture if m > mgy(k} (unpublished), also we were led
to the following question which seems to be of some interset. Let f(k) be the
largest integer with the following property; let a;. .... g, be k distinct elements

of G,, and assume that no product

equals the unit of G,,; then at least 7(k) distinct elements of G, can be rep-
resented in the form

k
[[a* &=00rl.
i=1

We showed f(2) = 2./(3) = 3. /() =8, f(k + 1) = f(k) -+ 2. Szemeredi
showed f(k) > ck?. It does not seem to be easy to determine f(k) or even to
give an asymptotic formula for it. These problems can be stated for non-
abelian groups too.
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4, Miscellaneous Problems, Results and Conjectures

Denote by =n(x) the number of primes not exceeding x. Is it true that
n(x + y) < n(x) + n(y))? This conjecture, if true, is certainly extremely
deep. It is not hard to prove for small values of y, I do not know for how
large values of y it has been proved and I also do not know for how large
values it has been checked.

Following Hardy and Littlewood (1923) put

p(¥) = lim sup (n(x + y) — n(x))

x=o

Probably lim p(y) = oo. Hardy and Littlewood conjectured that for y > y,

then p(y)y> y(log y; this if true is certainly very deep. Using Brun’s method

they proved p(¥) < cy/log y (as far as I know this is the only time they used

Brun’s method). Denote by A,(k) the number of integers m < x < m + k

which are not divisible by any prime less than or equal to k. Hardy and

Littlewood conjectured that p(k) = max h,(k). It seems probable that
m

lim (7(y) — p(»)) =

=0

’ All these conjectures seem hopeless at present. Perhaps the following ques-
tions deserve some investigation. A sequence m < a, < .. <ag <m-+ k is
called complete if (g, a) =1,1<i<j</ butforevery m<n<m+ k.
(n,a;) > 1 for some 1 < j < [ Denote by f(m, k), respectively, F(m. k) the
smallest (largest) value of /. It is easy to see that min f(m. k) = 2 (m = k! — 1)

m
but it seems very difficult to determine or give a good estimation for

maxf(m k), min F(m, k) ormax F(m, k). Clearly all three functions tend to in-
ﬁmty with &, perhaps max F(m k) = n(k) + 1 (clearly max F(m,k) = a(k) + 1,

to see this observe that the n(k) + 1 integers k! + I, k! +p [p runs
through the primes not exceeding k] are pairwise relatively prime). F(m, k) <
ckflog k trivially follows from Brun’s method. For small values of & it is easy
to compute all these functions.

One could try to estimate f(m, k) and F(m, k) if both m and k tend to in-
finity e.g. is it true that if c is a sufficiently large constant then f(m,(log m))
tends to infinity together with m? This question is connected with the prob-
lem of the difference of consecutive primes and seems very difficult.

The sharpest known inequality for large differences of consecutive primes
is due to Rankin (1938) and states that for infinitely many n we have

Pn+y = Py > clogp,log, p,log, p,/(log; p,)*.

Denote now by a,) < a,'”? < ... the sequence of integers which have at
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most r prime factors. I proved (Erdés, 1955¢, 1956)

lim sup (a,; ‘¥ — a/*)/logk > c;
k==
perhaps this inequality holds for every r and perhaps the lim sup is in fact
infinite, but I cannot prove this even for r = 2.
Let g(m) be the smallest integer so that at least one of the integers m,
m+1, ..., m + g(m) divides the product of the others. It is easy to see that
g(k!) = k and, for m > k!, g(m) > k. I can prove that for infinitely many m

g(m) > exp((log m)*~¢).

I have no good upper bound for g(m). g(m) < c+/m is easy but probably
g(m) = O(m°) and in fact perhaps g(m) = O(exp((log m)*“)).

Denote by u, < ... < u® < m the integers not exceeding m all whose
prime factors are < m®. g(m) = O(m*) would follow if we could show
a;,; — a; = 0(m"), but this seems hopeless at present.

Put f(m) = Y p (this function has recently been investigated from a
pim
different point of view by Mohan Lal, 1969). Denote by F(x) the number of

distinct integers of the sequence f(m), 1 < m € x. I can prove (unpublished)
¢y x/log x [] logex < F(x) < ¢; x/log x [] log, x, 4.0
k=3 k=2

where 1 < log, x < e. Analogous questions have been investigated for the
functions a(m), ¢p(m) and d{m): see Erdds (1935, 1945) and Erdss and Mirsky
(1952).

The same function which appears in (4.1} occurs in a completely different
question. Let 1 € @; < ... < @, < x be a sequence of integers so that all the
sums

k

Y gla, g=00rl,

i=]

are all different. Put max A& = f(x). Then

ey xflogx T logy x < f(x) < ¢; x log x [ ] log, x. (42)
k=23 k=23
The proof of (4.2) is not published. »
Finally I state a conjecture of the 16-year old Hungarian mathematician
I. Ruzsa.
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Let f(m) be a multiplicative function whose values are elements of a group
G. Let g be an element of this group, Is it true that the density of integers m
for which f(m) = g always exists? This conjecture if true must be very deep
since it would imply the theorem of Wirsing (1967) that every multiplicative
function which only assumes the values < 1 has a mean value.
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