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1. Introduction. For any arithmetic function £(n), we denote its
iterates as follows:

£100 = £ £ = &g M)  (k>1).

Let o(n) and o"(n) denote, respectively, the sum of the
divisors of n, and the sum of its unitary divisors, where we recall
that d 1is called a unitary divisor of n 1if (d,n/d) = 1. Makowski
and Schinzel [3] proved that

0, (n)
lim inf —— =1,

and conjectured that

(n)

lim inf

<o for every k.

This is not proved even for k = 3. On the other hand, Erdds [2]
stated that if we neglect a sequence of density zero, then

ok(n)

Uk_lini

(1 + o(1))k e log log log n.

This implies, in particular, that

a,(n)
EITET -+ O

on a set of density unity.
In contrast to this, we show here the following result.

Theorem 1.

G;{n)

+ 1 on a set of density unity.
*
oy (n)



2. Some lemmas. The proof makes use of the following lemmas.
Throughout what follows, h, g, r, r,., r, represent primes, and €,
n small positive numbers. Almost all n < x will mean: all but
o(x) integers n < X.

Lemma 1. For almost all n < x, every p < (loglogx) 1-€ satisfies
p " (n).

Lemma 2. For almost all n < x and for any given g, We have
I ien
. P
p|0* (n) 1+¢€
p > (log log x)

where ¢ = €(n) >0 is sufficiently small.

Lemma 3. For almost all n <x and all p <t (t fixed but
arbitrary),

p%|0* (n)
for every fixed o.

We only outline the proofs of the lemmas and the theorem.

Proof of Lemma 1. For a given p < (log log,x)l"‘ for which

p|u;(n), n < x, it is enough if we show that there are at least two
primes . T, such that

ry, =r, = -1 (mod p),
and
2 2
rl1n, rlln, 1’.’2|n.I rzln.

For this purpose we use the Page-Walfisz-Siegel formula for primes in
arithmetic progression (Pracher [6], p. 320) which states that if
m(a,d,y) denotes the number of primes =a (mod d) and =y, then
for (a,d) = 1,

ﬂ(a;d;y) = (1 + O(l)}mr%gy-

uniformly in a and d for d < (logyr)t for every fixed t. Hence,

for primes r such that r|n, r = -1 (mod p), we have



2 > cl(loglog x) .
r = -1 (mod p)
loglogx <r < x

Hence we easily obtain by the sieve of Brun or Selberg that the
number of integers n < x which are divisible by just one prime is
less than xexp(-c(log logx) ‘} . There are fewer than (log log x) Lt
primes < (log log x) 1", and (log log x) 1 exp(-c(log logx) &) = o(x),
and the number of integers which are divisible by the square of a
prime > loglogx 1is 0(1'6-9_1%')' Thus these numbers can be

ignored. Thus Lemma 1 is proved.
Proof of Lemma 2. We consider the sum
z 1
o

1 plo* (n)
p > (loglog x)

w
I
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For a fixed p, we see that every prime r such that
r £ -1 (mod p), r|n, contributes a facter p to o*(n). Since the
number of integers n < x for which r|n is [%], it follows that
for a given p the number of times the term = occurs in the sum §
corresponding to each prime r = -1 (mod p) 1is less than [%]. Also,
on using the Brun-Titchmarsh estimate for primes in arithmetic pro-
gression [6, p. 320] we have

X qcxloglgx_
r =-1 {Eodp) [t] i

Hence

S < cxlog logx 2

1
;2‘ = o(x).
p > (log log x)

1+¢

Proof of Lemma 3. Givena p < t, Wwe see, on using the sieve of
Eratosthenes and the fact that




that the number of integers n = x such that n is divisible by at
most j primes q of the form g = -1 (mod p), each of them occur-

ring to the first power in n, is o(x), Jj being an arbitrary
positive integer. Hence the number of such integers n £ x 1is o(x).
Since for each such n we have pj|c*{n), the lemma follows at once.

3. Proof of the theorem. Let n be chosen arbitrarily small and
then keep it fixed. We shall then choose t and g = al(t) suffi-
ciently large so that

(3.1) ﬂ (1+;J-'& <1+ q
p <t

and

(3.2) ﬂ (1+;]-'§)€1+ﬂ.
p =zt

The latter inequality is possible because of the convergence of

e+ ).

Since almost all n < x satisfy Lemmas 1, 2, 3, we have for
almost all n,

a% (n)
(3.3) E?{Ws 1 (1+;‘%) ] (1+;12-)~

p st p>t
3l ()
(log log x) S p < (log log x) Le
on noting that
(3.4) Y, Lonm

= P
(log log x)l € & p < (log logx)l“

for a suitably chosen € = €(n).

Combining Lemma 2 and the result (3.4), we get

ﬂ (l+%)c1+n.

pl\jcr?{:l)

p%{0* (n)



It then follows from (3.3) that for almost all N
values of n with density =zero,

i.e., except roxr

o3 (n)

<1l+n,
al* (n)

and the proof of the theorem is complete. OQur theorem implies that
o&(n)Xn has the same distribution function as a{(n}/n.

4. Some remarks and problems. Let ¢*(n) be the unitary analogue of
Euler's totient function (see E. Cohen [1]). Then «*(n) has the
evaluation

¢*(n) = lT (> - 1).
p?|n

Following the method of proof of Theorem 1, we can show that

@3 (n)
E%TFT 41 (el = ¢*(m)

except for a sequence of values of n of density zero. We shall not
give the details of proof.

Let R = R(n) be the smallest integer such that wR(n) =1,
This function was first considered by S. S. Pillai [5] who proved that

log (n/2) logn
Teg 3 + 1 = R(n) = Iog 3 + la

Others who considered this function include Niven [4], Shapiro
[7] and subbarac [8].

Let
T(n) = wlfn) + uz(n} i e e wR(n).

Since wztn) = o(wl(n)) for almost all n, and wj(n} is even for
j 21, we easily obtain that for almeost all n

T(n) = (1L + o(1))e(n),

so that T(n) <n for almost all n.



There are many problems left about T(n) and we state a few of

them below.

Denote by F(x,c) the number of integers n =< x for which
T(n) >cn. For every 1 <c < 3/2 we have for every t >0 and
€ >0, if x >x, =X (c,t,€),

t X
(4.1) s (log log x) ~ < F(x,1l+4c) < T
log X (log x ) €

This follows easily from Theorem 1 of [2]. Further we have

X
(4.2) F(x,1) = (c + o(l)) Tos T Tos g s -
The proof of (4.2) can be obtained by the methods used in this
paper and by those of [2].

It seems likely that for 1 < ¢, <e, 4% i

lim F{x,l+cl)/F (%, l+c2) =0,

X
Put

Lzllmg-(nm—

Trivially L <2 (L =2 if there are infinitely many Fermat
primes). It is easy to show that

Tim Z(2n) _ 4

2n *

We can show that T(n) >§iﬂ for infinitely many n, which

implies L =2 -g- We cannot show that L >%.

Equation (3) of Theorem 1 of [2] implies that for c¢ >
every € >0,

and

|

F(x,c) = G(T;;':ﬁ}_—c).

Probably,

F(x.-g-} = o(l—c%—x—).



1zs5

but we have not worked out the details.
Some other guestions that are still unanswered are the following:

(i) Does %églﬁ have a distribution function?

(1i) Does %ég%; approach a limit for almost all n? If this
Ry ; Gl 1 1
limit exists is it equal to Tog 2 or T ?
Similar questions arise in the case of the function R¥* = R*(n)
defined as the smallest integer such that pr* (n) = 1. Here ¢*(n)

is the unitary analogue of the Euler totient, introduced by Eckford
Cohen [1], which is defined as the multiplicative function for which
w*(pk} = pk - 1 for all primes p and all positive integers k. We
do not even know of any nontrivial estimate for R*(n). Probably
R*(n) = o(nc) for every € > 0. It is not clear to us at present if
R*(n) < clogn has infinitely many solutions for some ¢ > 0.
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