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Given two graphs G, , G2 , the Ramsey number R(G,, G2 ) is the smallest
integer m such that, for any partition (E1 , E2) of the edges of K,,, , either G 1 is
a subgraph of the graph induced by E1 , or G2 is a subgraph of the graph in-
duced by E2 . We show that

R(C„ , Cn) = 2n - 1 if n is odd,
R(Cs , C2,_,) = 2n - I if n > r(2r - 1),
R(C„,C2,)=n+r-1 if n>4r 2 -r+2,
R(Cn , K,) v nr 2 for all r, n,
R(Cn,K,.)=(r-1)(n-1) +1 if n>r2 -2,

R(Cn , K,+1) = t(n - 1) + r for large n .

1 . INTRODUCTION

We are here concerned with undirected graphs that are finite and have
no loops or multiple edges . Let G be such a graph ; we write V(G) for the
vertex set of G, and E(G) for the edge set of G ; I V(G)j is the order of G,
IE(G)I the size of G . If E' C E(G), E' will also denote the partial subgraph
of G with edge set E' . C„ denotes the cycle of length n, K,,, the complete
graph of order n, and K(r, , . . ., rt) the complete t-partite graph with parts
of cardinalities r I , . . ., rt ; when each r 2 = r this will be written K,t.

Let k be finite and let

m -> (G 1 , . . ., Gk)

signify the truth of the statement : for any partition (E, , . . ., Ek) of E(K.)
there is an i, I < i < k, such that Gi is a subgraph of Ei . It follows from
Ramsey's theorem that, for any collection of graphs G I , . . ., Gk , there is a
finite mn such that m -- (G1 , . . ., G k) . We denote the least such m by
R(G, , . . ., G k ) .
The Ramsey function R has been studied in detail for complete graphs

Gi , although exact values are generally unknown . Chvátal and Harary
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[3, 4] determined R(G, , G 2 ) for all G,, G2 of order at most four, and
Chartrand and Schuster [2] have shown that

6,

	

n = 3,IR(C„ , C3) _ 2n - 1, n > 3,

R(C6 , Cs) = 8 .

In this paper we investigate R(C., C,.) for arbitrary r < n. It was
conjectured by W. G. Brown that, for n > n o(r),

2n - 1

	

(C„ , C.,) .

We prove this (with n o(r) = 2(r 2 + r)) ; it follows easily that, for odd r
and n > 2(r 2 + r),

R(C.,,, CT) = 2n - 1 .

It seems likely that, for n > 3 and all r < n, 2n - 1 -* (C,,, , C,,), but we
can only prove at present that

2n - 1 - (C,a , C,,),

	

n > 3 .

We also show that, for n > 4r 2 - r = 2,

R(C.7z , C2a,) = n + r - 1 .

More generally we prove that, for n > n l (r, t),

R(C,, , KT+1) = t(n - 1) + r.

This implies that, for n > n 2(r) (= n,(1, r - 1)),

R(C„,K,)=(r-1)(n-1)+1 .

In fact we prove directly that the above holds for n > r 2 - 2. Finally we
show that, for arbitrary r and n,

nr 2

	

(C,, , K,.) .

2 . PRELIMINARY LEMMAS

Let G(rl , . . ., r) denote the complete graph of order Li-1 ri with edge
partition (E,, E2) such that E2 - K(r l ,, . ., rt ) .

6,

	

n = 4,
R(C,n , C4) = 7,

	

n = 5,
n+1,n >5,

R(C",QS 2n-1,n>2,
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LEMMA 1 . R(C,, , C2r-,) > 2n - 2 .

Proof. G(n - 1, n - 1) contains no C,, in E, and no C,,-, in E2 .

LEMMA 2. R(C,n , KT- 1) > t(n - 1) + r - 1 .

Proof. G where ni =n-1, 1,<i-<,t, and
si = 1, 1 < i < r - 1, contains no C, in E, and no K;}1 in E2 .

LEMMA 3 (Erdős and Gallai [5]) . If G is a graph of order n and size
at least 2((c - 1)(n - 1) + 1), then G contains a cycle of length at least c .

LEMMA 4 (Bondy [1]) . If G is a graph of order n and size at least
4(n 2

	

1), then G contains cycles of all lengths l, 3 C Z G (n + 3) .

LEMMA 5 (Erdős and Stone [6]) . If G is a graph of order n and size
at least án 2 (1 - 1/(t - 1) = E), where n > n(t, r, E), then G contains a
K,.t .

LEMMA 6 . Let (E, , E2 ) be a partition of E(K,,) such that E2 contains a
C., where m > 6. Then

(i) if E2 contains no K,, there is a cycle of length c, m - 2r + 3
c < m, in E, (provided m > 2r),

(ü) if E2 contains no C, there is a cycle oflength c', m - 3 C c' < m
in E, (provided m > r) .

Proof. Let C = (x, , . . ., x,n,) be a cycle of length m in G .

(i) Consider the vertices x, , x 3 , . . ., x2r-1 . Since E2 contains no
K, , some pair (x i , x;) of these vertices must be joined by an edge of E, .
Then E, contains the cycle (x, , x 2 , . . ., x i , x; , x;_ 1 , . . ., x,,,.) of length at
least m - 2r + 3 .

GO SOme (x i , xi+2), (xi , xi+3) or (xi , x-i,,) must be in E, , for
otherwise it is easily seen that E2 contains a C, . It follows that E, contains
a C,-,, a C,,,-2 , or a C,,-, .

LEMMA 7 . Let (E, , E2) be a partition of E(Kn) such that E, contains a
cycle C of length m, but no C,,, + , . If E2 contains no K, , then every vertex
x 0 V(C) is joined by edges of E, to at most r - 1 vertices of C.

Proof. Let C = (x, , . . ., x„Z) and suppose that x 0 V(C) is joined to
vertices xi, , . . ., xi, of C (where i, < i2 < . . . < i,.) . Then (xit -, , x27,_,) e E2
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for all j, k, 1 -<-j < k < r, since otherwise El would contain the
m + 1-cycle

(xl , . . ., x'.-1 ' xik-1 ' xik-2 , . . ., xi . , x, xilc , xik+l , . . ., X .)-

But this contradicts the hypothesis that E2 contain no Kr .

3 . MAIN RESULTS

THEOREM 1 . R(C,, , C2r-1) = 2n - I if n > r(2r - 1) .

Proof. By Lemma 1, R(C„ , C2.r _,) > 2n - 1 . We prove the reverse
inequality . Consider a partition (E,, E2) of E(K2 ,n -1) and assume that
there is neither a C,, in El nor a C2a.-, in E, . It follows that, by Lemma 4,
E2 <

4(2n - 1) 2 , and hence that

IE,I>(2n 2 1 ) -
4(2n -1 )2 .

But then, by Lemma 3, El contains a cycle of length at least n - 1 . By
Lemma 6(ü), El contains a cycle C of length n - 2 or n - 1 . Let
S = V(K2,,-1) - V(C) . Since I S j > n, there are vertices xl , x2 in S with
the edge (xl , x 2 ) in E2 . Choose further vertices x 3 , . . ., x .r of S. Now, by
Lemma 7, each xi is joined by edges of El to at most 2r - 2 vertices of C .
It follows that there are at least n - 2 - r(2r - 2) vertices of C all of which
are joined to each x i by edges of E, . But n > r(2r - 1) by hypothesis .
So E2 contains a K(r, r - 1) plus an additional edge, and this in turn
contains a C2r-, .

THEOREM 2 . 2n - 1 - (Cn , CJ if n > 3 .

Proof. Let (E,, E2 ) be a partition of E(K2r -l) and suppose, without
loss of generality, that I El > E2 I . Then

IE,I > 2(2n 2 1 )

and so, by Lemma 3, El contains a cycle of length at least n .
We first show that if one of El and E2 contains a C2r+, then one of El

and E2 also contains a C2r (r > 2) . For suppose that (x o , . . ., x2 .r) is a
C2r+, in El and that neither El nor E2 contains a C2 , . Then, taking indices
modulo 2r + 1,

(xi , xi+1) E El ,

	

0 < i < 2r,

(xi 9 xi+2) E E2 0<i<2r,
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since the 2r-cycle (xo , xl , . . . , xi , xi+2 , xi+3 • • •,

x2r) 0 El ,

(xi , xi+4) E El ,

	

0 < i < 2r,

since the 2r-cycle (xi , xi+4 , xi+s , • • •,

xi-2) 0 E2 ,

(xi , xi+3) E E2 ,

	

0 < i G 2r,

since the 2r-cycle (XI , xi+3 , xi+4 , , xi-2 , xi+2 , xi+1) 0 El . But then E2
contains the 2r-cycle

(•x2r-1 , xl , x3 , . . ., x2r-5 , x2r-2 , x2r-4

	

x2 , x2r , x2r-3) •

Now suppose that one of El and E2 , say El , contains a C2r(2r > n)
but that neither El nor E2 contains a C2r-1 . (Clearly if this is never the
case then, by the above remarks, either E, or E2 contains a Cn as desired .)
Let (x1 , . . ., x2r) be this C2r . Then, taking indices modulo 2r,

(xi , xi+1) E El ,

	

1 < i < 2r,

and so, as before,

(xi , xi+2) E E2 ,

	

1 < l < 2r .

Moreover (xi , xi+2k) E E2, 1 < i < 2r, 1 < k r- 1 . For if (xi , xi+2k) E E,,
then

(xi-1 , xi+2k-2) E E2 ,
since the 2r - 1-cycle

(xi , xi+2k , xi+2k+1 , •`•,

xi-1 , xi+2k-2 , xi+2k-3 ,

•••,

xi+,) 0 El ,

and also
(xi+l , xi+2k+2) E E2 ,

since the 2r - 1-cycle

(xi , xi+2k , xi+2k-1 , •••,

xi+1 , xi+2k+2 , xi+2k+3	

xi-1) 0 El

But then E2 contains the 2r - 1-cycle

(xi+1 , xi+3 , •••,

xi-1 , xi+2k-2 , xi+2k-4	

xi+2k+2),

a contradiction .
We now have the following situation : the sets

X1 - ixl , x3 , . . ., X21-1b

	

and

	

X2 - {x2 , x4 , . . ., x2r}

each span complete subgraphs in E2 . Every edge from X, to X2 is in E,,
except that all but two edges incident with one vertex may be in E2 . If
n is even then, since E1 contains a K(r - 1, r) with 2r > n, a fortiori El



RAMSEY NUMBERS FOR CYCLES IN GRAPHS

	

51

contains a C,, ; so assume that n is odd. Now it is clear that no vertex in
V(K2,,_,) - X, - X2 can be joined to both a vertex of X, and a vertex of
X2 by edges of E, , for then E,, would contain a C„ . It follows that every
vertex of V(K2 .n_,) - X, - X2 must be joined by edges of E 2 to all of X,
or to all of X2 . Since there are 2(n - r) - 1 vertices in V(G) - X, - X2 ,
at least n - r of these vertices must be joined by edges of E 2 to every vertex
of either X, or X2 , say X, . But then E2 contains a C., and the theorem
is proved .

Together with Lemma 1 this implies the

COROLLARY . R(C.., C„) = 2n - 1, if n is odd.

THEOREM 3 . R(C„ , Kr+') = t(n - 1) + r, if n > n,(r, t) .

Proof. By induction on t . We first prove that, for n > n,(r, 1),

R(C,,,Kr2)=n+r-1 .

The method is similar to that of Theorem 1 . By Lemma 2 it suffices to
show that R(C,, , K,2) < n + r - 1 . Let (El , E2) be a partition of
E(Kn+,_,), and assume that there is no C,, in El and no K,.2 in E, . By
Lemma 5, I E2 1 < 2E(n + r - 1) 2 , for n > n(2, r, E), and hence

I E, I > Icn 2 , for some positive constant c and all n > n(2, r, E) . It follows
from Lemma 3 that there is a cycle of length at least cn in E, and hence,
by Lemma 6, a cycle C of length less than n but at least c'n, for some
positive constant c' . Since there is no Kr2 in EZ there is no 'K2r in E2 ,
and, applying Lemma 7, we find, when c'n > 2r 2, r vertices of
V(K,,+,._,) - V(C) joined by edges of EZ to r vertices of C. Hence, putting

2r2

	

)n,(r, t) = max c	 , n(2, r, E) ,

we obtain the desired contradiction .
Suppose the theorem is true for t - 1, and let (E, , EZ) be a partition

of E(Kt(,_,)+,,) . By the same argument, if there is no K,t.+' in E2 , then there
is a cycle of length less than n but greater than c,n in E, . By the induction
hypothesis, there is a K,.t in EZ , disjoint from this cycle . Applying
Lemma 7, if c,n > tr((t + 1) r - 1) + r, we find a K,+' in E2 .
Theorem 3 can be strengthened to

R(C,, , K(r,, . . ., rt+,)) = t(n - 1) + r,

	

if

	

n > n,'(r, t),

where r2 = r, 1 < i < t, and rt+, = E(r, t)n . We omit details .
It is worth noting that Theorem 3 does not hold for all r < n, even in

the case t = 1 . For R(Cn , &2) > 3(n - 1) as is seen by the graph
G(n-1,n-1,n-1).
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Using more care in the proof of Theorem 3 we obtain the

COROLLARY. R(C„ , C 2 .r) = n + r - 1, if n > 42 - r + 2 .

Proof. By Lemma 4, we can assume that I E2 I < 11(n + r - 1)2 and
hence that

E >, n+ r- 1

	

1 n+ r- 1)2 .E,

	

2

	

)

	

4 (

It follows that, applying Lemma 3, there is a cycle of length at least
1(n + r - 3) in E, and therefore, by Lemma 6(ü), a cycle of length less
than n and at least 2(n + r - 3) in E, . By Lemma 7, if ?(n + r - 3) >
r(2r - 1) + r, that is, if n > 42 - r + 2, there is a K,2 in E2 and hence,
a fortiori, a C2r in E2 .

It has been observed by Gyárfás that n + r - 1 (C,,, , C2r) does not
hold for all 2r < n when n is odd. In fact we see from G(2r - 1, 2r - 1)
that

4r - 2

	

(C,, , C2 .,),

	

if n is odd .

Note that, by Theorem 3,

R(C,t,K,) =R(C,Z,Klr)=(r- 1)(n-1)+1

if n is large enough . We now strengthen this .

THEOREM 4 . R(C,, , K,) _ (r - 1)(n - 1) + 1 ifn > r 2 - 2.

Proof. By induction on r . Trivially R(C,,, , K2) = n . Suppose the
theorem is true for r - 1 and let (El , E2) be a partition of E(K,U), where
N = (r - 1)(n - 1) 1 and n > r 2 - 2, such that there is neither a
C,, in El nor a K, in E, . Then, by Turán's theorem [7],

I E2 I <
N2(r-2)
2(r - 1)

and hence
El I

>
N _ N2(r - 2)

	

N((r - 1)(n- 2)+1)
( 2

	

2(r - 1)

	

2(r - 1)

By Lemma 3, there is a cycle of length at least n - 1 in E, . Since E,
contains no C„ , by Lemma 6(i) there is a cycle C of length c,
n - 2r + 4 < c < n, in E,, . Choose c so that it is as large as possible,
subject to these bounds. Then e > n - 2r + 4 > (r - 1) 2 . Since
c < n - 1, 1 V(KN - Q > (r - 2)(n - 1) + 1 and so, by the in-
duction hypothesis, E2 - C contains a K,-,, with vertices xl , . . ., x r _ 1 .
Clearly, because E2 contains no K,, , each vertex of C must be joined by
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an edge of E, to at least one x i . It follows that some xi is joined by
edges of E, to at least r vertices of C. But, by Lemma 7, this is impossible .
The theorem follows .

For arbitrary n and r we have the following result :

THEOREM S . nr2 -> (Cn , K,.) .

Outline ofproof. Let (E, , E2) be a partition of E(Knr2) and assume that
E, contains no Cn and that E2 contains no K,. . Let K be the largest
complete subgraph in E2 , of order p < r. Then each vertex not in K must
be joined by an edge of E, to at least one vertex of K. It follows that some
vertex x of K is joined to a large set S (with I S I = rn) of vertices by edges
of E, . In the subgraph spanned by S, E2 contains no Kr and so, by Turán's
theorem [7], 1 E, I > Irn(n - 1) . By Lemma 3, E, contains a path of
length n - 2 in the subgraph spanned by S. This path, together with the
edges from its end-vertices to x e V(K) gives us a Cn in E, .

4 . COMMENTS

We have not been able to evaluate R(G,, . . ., Gk ) for k > 2 even in the
case of cycles . It is easy to see that, when Gi - Cn , 1 < i < k, and n is
odd,

R(G, , . . ., GJ > 2 -1(n - 1) + 1 .

On the other hand we can show that, in this case,

R(G, , . . ., G,) < (k + 2)!n .

Also of interest would be to find R(C,, , Cr), R(C,, , K,.), and R(C., Kr2)
for all values of n and r . Since, by [4], R(C,, K,,) = 10 it is possible that

R(C,, , K4) = 3n - 2,

	

for all n > 3 .

And R(C,, Cs) = 8 leads to the conjecture that

R(C2n , C2n) = 3n - 1,

	

for all n > 2 .

Note added in proof. There has been considerable development in the theory of
Ramsey numbers since the writing of this paper. R . J. Faudree and R. H. Schelp [8]
and, independently, V . Rosta [9], have shown that, except for R(C , C3) and R(C,, Q,

2n-1,for3< m< n,modd
R(C,,Q= n+(m/2)- 1,4< m<n,m,n even

max{n + (m12) - 1, 2n - 1}, 4 < m < n, m even, n odd .
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Faudree and Schelp have also shown that

R(P, , P„) = n + [(m + 1)/2] for 1 < m < n,

and that
2n + 1, 3 < m < n, m odd,

R(C., P..) = n + (m/2), 4 < m < n, m even,
m+[(n+1)j2]-1,1<n<m,meven >4,
max{m+fn+1/2]-1,2ná-1),1<n< m,modd,

where P. is a path of length n . T. D . Parsons [10] has evaluated R(C,, P„) and R(K„,,
P„) . ([8] R. J . Faudree and R . H. Schelp, All Ramsey numbers for cycles in graphs,
submitted to Discrete Mathematics. [9] V . Rosta, submitted to J. Combinatorial
Theory . [10] T. D. Parsons, personal communication .)
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