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Given two graphs G,, G,, the Ramsey number R(G,, G,) is the smallest
integer m such that, for any partition (E; , E,) of the edges of K, , either G, is
a subgraph of the graph induced by E,, or G, is a subgraph of the graph in-
duced by E, . We show that

R(C,,C)) =2n—1 if nisodd,

R(Cp, Coyy) =20 —1 if n>r@2r—1),
RC,,Cop) =n+r—1 if n=4—r+2,
R(C,,K) < nm? forall r n,
RC,,K)=—1Dn—1D+1 if n=r —2,

R(C,, K" =t(n — 1) +r for largen,

1. INTRODUCTION

We are here concerned with undirected graphs that are finite and have
no loops or multiple edges. Let G be such a graph; we write V(G) for the
vertex set of G, and E(G) for the edge set of G; |V(G)| is the order of G,
|E(G)| the size of G. If E' C E(G), E’ will also denote the partial subgraph
of G with edge set £'. C, denotes the cycle of length n, K, the complete
graph of order », and K(r, ,..., ;) the complete f-partite graph with parts
of cardinalities r, ,..., 7; ; when each r; = r this will be written K,*.

Let & be finite and let

= (Gl 3rees Gk)

signify the truth of the statement: for any partition (£, ,..., £;) of E(K,,)
there is an i, 1 << i =C k, such that G, is a subgraph of E; . It follows from
Ramsey’s theorem that, for any collection of graphs G, ,..., Gy, there is a
finite m such that m — (G, ,..., G;). We denote the least such m by
R(Gy ..., Gi).

The Ramsey function R has been studied in detail for complete graphs
G, , although exact values are generally unknown. Chvétal and Harary
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[3, 4] determined R(G,, G,) for all G,, G, of order at most four, and
Chartrand and Schuster [2] have shown that

6, =3,
RC, OO =3 1 153
6, n=4,
R(Cﬂa Cil) = 75 = 5:!
n-1,n =25,

|

HE. ) =0~ L 2
R(Cﬁ N Cs) = 8.

In this paper we investigate R(C,, C,) for arbitrary r << n. It was
conjectured by W. G. Brown that, for n > ny(r),

S— 5160,

We prove this (with ny(r) = 3(r® + r)); it follows easily that, for odd r
and n > }(r2 4+ r),
R(C,,C)=2n—1.

It seems likely that, for n > 3 and all r < n, 2n — 1 — (C,, C,), but we
can only prove at present that

2n—1—(C,, C,), n >3,
We also show that, for n > 4r2 — r - 2,
RC,,Cy) =n+r—1.
More generally we prove that, for n = m(r, 1),
R(Cp, KEY = t(n — 1) + 1.
This implies that, for # > ny(r) (= m(1, r — 1)),
RC,,K)=(@—1Dn—-1)+1.

In fact we prove directly that the above holds for n = r? — 2. Finally we
show that, for arbitrary r and n,

nr2—(Cy , K,).

2. PRELIMINARY LEMMAS

Let G(r,,..., r;) denote the complete graph of order Z:=1 r; with edge
partition (E; , E,) such that E; ~ K(ry ..., ).
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LemMA 1. R(C,, Cory) > 21— 2.

Proof. G(n — 1, n — 1) contains no C,, in E, and no Cy; in E,.

LemMA 2. R(C,, K'Y >tn — 1) 4r — 1.

Proof. G(fy ey Hyy Sy seey Sp_y), Where n;=n— 1, 1 <<i<1t and
s;=1,1<i<r—1,contains no C, in E; and no K*' in E, .

LemMA 3 (Erdos and Gallai [S]). If G is a graph of order n and size
at least 3((c — 1)(n — 1) + 1), then G contains a cycle of length at least c.

LemMma 4 (Bondy [1]). If G is a graph of order n and size at least
3(n® + 1), then G contains cycles of all lengths I, 3 < I =< {(n + 3).

Lemma 5 (ErdGs and Stone [6]). If G is a graph of order n and size
at least n*(1 — 1/(t — 1) - €), where n = n(t, r, €), then G contains a
K:r

LemMa 6. Let (E;, E;) be a partition of E(K,) such that E, contains a
C,., where m = 6. Then

(1) if E, contains no K, there is a cycle of length ¢, m — 2r + 3 =
¢ < m, in E, (provided m = 2r),

(i1) if E, contains no C, there is a cycle of length¢',m — 3 < c' <m
in E, (provided m = r).

Proof. Let C = (x;,..., X,;) be a cycle of length m in G.

(i) Consider the vertices x;, X3,..., X3, . Since E, contains no
K, , some pair (x; , x;) of these vertices must be joined by an edge of E, .
Then E; contains the cycle (X, X ,..., X;, X, Xjiq »ens Xre) Of length at
least m — 2r 4 3.

(i) Some (x;, x;.5), (x;, Xi43) or (x;, X;,4) must be in E,, for
otherwise it is easily seen that E, contains a C, . It follows that E, contains
aC,43,aCh,0raCy,.

LeMMA 7. Let (E,, E,) be a partition of E(K,) such that E, contains a
cycle C of length m, but no C,, . If E, contains no K, , then every vertex
x ¢ V(C) is joined by edges of E, to at most r — 1 vertices of C.

Proof. Let C = (x,..., X,,) and suppose that x ¢ V(C) is joined to
vertices X; ..., x; of C (where ij < iy < -+ <i,). Then (x; , X; 1) € E;
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for all j, k, 1 =<j <k <r, since otherwise E, would contain the
m — l-cycle

(xj. EEAL ] xij—l 3 xik—l ’ xik—2 A xh » X, x"k » x{k+1 ] xm)'

But this contradicts the hypothesis that E, contain no X, .

3. MaiN REsuLTS

THEOREM 1. R(C,, Cyy) =2r— 1 ifn = r(2r — 1).

Proof. By Lemma 1, R(C,, Cy—,) = 2n — 1. We prove the reverse
inequality. Consider a partition (E, , E,) of E(K,,_;) and assume that
there is neither a C,, in £, nor a C,,_, in E, . It follows that, by Lemma 4,
| E5 | =< 3(2n — 1)2, and hence that

B> (1) - 2 — 1

But then, by Lemma 3, E, contains a cycle of length at least # — 1. By
Lemma 6(i), E, contains a cycle C of length # —2 or n — 1. Let
S = V(Ks,_1) — V(C). Since | S| = n, there are vertices x; , X, in S with
the edge (x, , x,) in E,. Choose further vertices xy ,..., x, of S. Now, by
Lemma 7, each x; is joined by edges of E; to at most 2r — 2 vertices of C.
It follows that there are at leastn — 2 — r(2r — 2) vertices of Call of which
are joined to each x; by edges of E,. But n > r(2r — 1) by hypothesis,
So E, contains a K(r, r — 1) plus an additional edge, and this in turn
contains a C,,_; .

THEOREM 2. 2n — 1—(C,, C,) if n = 3.

Proof. Let (E;, E,) be a partition of E(K,,_;) and suppose, without
loss of generality, that | E, | = | E, |. Then

12n—1
E1=3(", )
and so, by Lemma 3, E, contains a cycle of length at least n.

We first show that if one of E; and E, contains a C,,., then one of E;
and E, also contains a C,, (r > 2). For suppose that (x;,..., X5,) is a
C,,.; in E, and that neither E, nor E, contains a C,, . Then, taking indices
modulo 2r + 1,

(xwi 3 x€+]_) € El ]

= (X, X)) € By,
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since the 2r-cycle (xg , X seees Xis Xivz » Xiga seees Xor) € By,
= (X;,I,j+4)EE1, Oéfé?‘r,
since the 2r-cycle (x;, X;y4 , Xitg »eeer Xip) € Bz,
= (xi ’ xa’+3) € EE ’ 0 i< 2?’,

since the 2r-cycle (x;, Xiigs Xirg seees Xica s Xiga s Xeo1) € £ . But then £,
contains the 2r-cycle

(X3r—1 5 X1 5 X5 50ee» X2r—5 3 Xor—2 s Xor—g 2ees Xz 5 Xop 5 Xzr_3)-

Now suppose that one of E; and E,, say E,, contains a C,,(2r > n)
but that neither £, nor E, contains a C,,_; . (Clearly if this is never the
case then, by the above remarks, either £, or E, contains a C, as desired.)
Let (x; ,..., Xg;) be this Cy, . Then, taking indices modulo 2r,

(x§1xi+1)EE]s léfg_zh

and so, as before,
(s Xip2) EEs 1 <i<2r.

MOI‘&OVE!‘ (xg - x¢+2k) EEz 2 1 g f‘ x<,~ 2.", [ Q k é = l. FOI lf(x‘ Y x5+2k) EE]_ )
then
(Xi—1 s Xirar-2) € Ep,

since the 2r — 1-cycle
(% 5 Xiyor » Xiporrr seoes Xica s Xigor—g s Xivor—g seees Xiz1) E By

and also
(41 5 Xerorte) € Es

since the 2r — 1-cycle
(% > Xisor » Xipor oos Xiga > Xiszksz s Xivokea s Xim) € £
But then E, contains the 2r — 1-cycle
(¥is1 s Xisa reees Xicy » Xiporo2 » Xipokt o--es Xisario)s
a contradiction.
We now have the following situation: the sets
Xy = {55 X5 sces Xapea s and Xy = {5 Xggeies Xps}

each span complete subgraphs in E, . Every edge from X, to X; is in E,,
except that all but two edges incident with one vertex may be in E, . If
n is even then, since E, contains a K(r — 1, r) with 2r > n, a fortiori E;
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contains a C, ; so assume that n is odd. Now it is clear that no vertex in
V(K,,_1) — X7 — X, can be joined to both a vertex of X] and a vertex of
X, by edges of E, , for then F; would contain a C, . It follows that every
vertex of V(K,,_;) — X; — X, must be joined by edges of E, to all of X}
or to all of X, . Since there are 2(n — r) — 1 vertices in V(G) — X; — X,,
at least n — r of these vertices must be joined by edges of E, to every vertex
of either X; or X, , say X, . But then E, contains a C, , and the theorem
is proved.
Together with Lemma 1 this implies the

CoroLLARY. R(C,,C,) =2n— 1, ifnis odd.

THEOREM 3. R(Cy, Ki*Y) = t(n — 1) -+ 1, if n > m(r, 1).
Proof. By induction on ¢. We first prove that, for n > n(r, 1),
R(CﬂsKrz) :n+f— 1.

The method is similar to that of Theorem 1. By Lemma 2 it suffices to
show that R(C,, K,®) <n+r— 1. Let (E;, E;) be a partition of
E(K,.,—,), and assume that there is no C, in E, and no K,? in E,. By
Lemma 5, |E,| <%}e(n+r—1)% for n >n(2,r €, and hence
| E, | = ten®, for some positive constant ¢ and all n > n(2, r, €). It follows
from Lemma 3 that there is a cycle of length at least ¢n in E; and hence,
by Lemma 6, a cycle C of length less than » but at least ¢'n, for some
positive constant ¢’. Since there is no K,? in E, there is no K,, in E,,
and, applying Lemma 7, we find, when c¢'n = 2r% r vertices of
V(K,ir—1) — V(C)joined by edges of E, to r vertices of C. Hence, putting

2
H]_(r, t) = max ('%_: n(2: v, E)),

we obtain the desired contradiction.

Suppose the theorem is true for + — 1, and let (£, , E,) be a partition
of E(Ky(n_1)+r)- By the same argument, if there is no K} in E, , then there
is a cycle of length less than » but greater than ¢z in E, . By the induction
hypothesis, there is a K,* in E,, disjoint from this cycle. Applying
Lemma 7,ife;n Z (0 + D — 1) +r, wefinda X' in E, .

Theorem 3 can be strengthened to

R(Co, K(ry sy i) = ta =D 41, if 1 >n(r, 1),

where r; = r, 1 <i < 1t, and r,; = €(r, {)n. We omit details.

It is worth noting that Theorem 3 does not hold for all ¥ << u, even in
the case ¢t = 1. For R(C,, K;?) = 3(n — 1) as is seen by the graph
Gn—1,n—1,n—1).
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Using more care in the proof of Theorem 3 we obtain the

COROLLARY. R(C,,Cy)=n-+r—Lifn>4r" —r+2.

Proof. By Lemma 4, we can assume that | £, | < }(n + r — 1)* and
hence that

. —1 1
IE1|>(”+; )=z r—1e

It follows that, applying Lemma 3, there is a cycle of length at least
i(n + r — 3) in E, and therefore, by Lemma 6(ii), a cycle of length less
than » and at least 3(n +» — 3) in E;, By Lemma 7, if (n +r — 3) =
r(2r — 1) + r, that is, if # > 4r® — r 4 2, there is a K,* in E, and hence,
a fortiori, a Cy, in E, .

It has been observed by Gydrfds that n + r — 1 —(C, , Cs,) does not
hold for all 2r << n when #n is odd. In fact we see from G(2r — 1, 2r — 1)
that

4r — 2~ (C,, Cs)), if n is odd.

Note that, by Theorem 3,
R(C,,K)=R(C,,K") =(r—1Dn—1)+1
if n is large enough. We now strengthen this.

TueoreM 4. R(C,,K) =@ — Dn— 1)+ 1ifn=r* — 2.

Proof. By induction on r. Trivially R(C,. K,) = n. Suppose the
theorem is true for » — 1 and let (E; , E,) be a partition of E(Ky), where
N=(@—1)n—1)-+1 and n=r*— 2, such that there is neither a
C, in E, nor a K, in E, . Then, by Turdn’s theorem [7],

N(r— 2)
|E2|ém

and hence

N\ N(r—2) N—Dmn—2)+1)
B> (5) - =1 A —1) '

By Lemma 3, there is a cycle of length at least # — 1 in E; . Since E;
contains no C,, by Lemma 6(i) there is a cycle C of length ¢,
n—2r-+4<c<n, in E;. Choose ¢ so that it is as large as possible,
subject to these bounds. Then c¢=n—2r+4>( — 1)%. Since
c<n—1, |V(Ky—C) =@ —2)(n—1)+1 and so, by the in-
duction hypothesis, E, — C contains a K, ;, with vertices x; ,..., X, .
Clearly, because E, contains no K, , each vertex of C must be joined by
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an edge of E; to at least one x,. It follows that some x; is joined by
edges of E; to at least r vertices of C. But, by Lemma 7, this is impossible.
The theorem follows.

For arbitrary » and r we have the following result:

THEOREM 5. nri—(C,, K,).

Outline of proof. Let (E, , E,) be a partition of E(K,,z) and assume that
E, contains no C, and that E, contains no K,. Let X be the largest
complete subgraph in £, , of order p < r. Then each vertex not in K must
be joined by an edge of E, to at least one vertex of K. It follows that some
vertex x of K is joined to a large set S (with | S | = rn) of vertices by edges
of E; . In the subgraph spanned by S, E, contains no K, and so, by Turdn’s
theorem [7], | E; | > 4rn(n — 1). By Lemma 3, E; contains a path of
length » — 2 in the subgraph spanned by S. This path, together with the
edges from its end-vertices to x € V(K) gives us a C,, in E, .

4. COMMENTS

We have not been able to evaluate R(G, ,..., G.) for k > 2 even in the
case of cycles. It is easy to see that, when G, ~ C,, 1 <<i <k, and nis
odd,

R(Gy s Gi) 2 260 — 1) + 1.
On the other hand we can show that, in this case,
R(Gy 5.0y Gy) < (kK + 2) 10

Also of interest would be to find R(C, , C,), R(C,, K,), and R(C, , K,?)
for all values of # and r. Since, by [4], R(C,, K,) = 10 it is possible that

R(C,, K) = 3n— 2, forall »n > 3.
And R(Cy, C,;) = 8 leads to the conjecture that

R(Csy , Cyp) = 30— 1, forall n > 2.

Note added in proof. There has been considerable development in the theory of
Ramsey numbers since the writing of this paper. R. J. Faudree and R. H. Schelp [8]
and, independently, V. Rosta [9], have shown that, except for R(C; , C;) and R(C, , C,),

2n— 1,for 3 < m< n, modd
R(Cp,Cp) = {n+ (mi2y — 1,4 < m < n, m, neven
max{n + (m/2) — 1, 2n — 1}, 4 < m < n, m even, n odd.
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Faudree and Schelp have also shown that

R(Py,Py)=n+[(m+ 1)2]forl < m< n,
and that
2n 4+ 1,3 < m< n,modd,
R(Cp,P,) = ) n+ (m2),4 < m< n, meven,
m-4[m+D21—1,1<n<m meven > 4,
max{m + [n +1/2] — 1,2 + 1}, 1 < n < m, m odd,

where P, is a path of length n. T. D. Parsons [10] has evaluated R(C, , P,) and R(K,, ,
P,). ([8] R. J. Faudree and R, H. Schelp, All Ramsey numbers for cycles in graphs,
submitted to Discrete Mathematics. [?] V. Rosta, submitted to J. Combinatorial
Theory. [10] T. D. Parsons, personal communication.)
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