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§ 1 . INTRODUCTION

In his paper [ 7] T a y 1 o r introduced a generalization of chromatic
number of graphs and stated several interesting problems. In this note we
will be interested in one of his problems we will state below . We are going
to formulate several possible generalizations and quite a few related ques-
tions. Our main aim is to formulate the problems but we will write down
some partial results we obtained trying to clear the problems up .

Let us start with the following remark

(1) Let ~p(x, A) be any statement of set theory, A a set and
~(x) an operation such that Vx(~(x) E A). Let us assume that a < A

and ~o(x, A) imply ~p(x, a) . Then there is a A such that for all x with
pp(x, A) and for all a > A there is a y such that ~p (y,a) and 0(y) _
= O(x) . To see this one defines A' c A with the stipulation

A' = { y E A : 3AVx(0(x) = - 1~p(x, A)) j

i .e. the set of y E A for which "the A-s of ~ -1 ({y }) form a bounded
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set," and denoting by

X(v) = min { X: Vx(O(x) = y - -1p(x, X))} for y E A'

i.e . the minimal bound for y E A', X = sup } X(y) : y E A'} obviously sat-
isfies the requirement of (1) .

It is obvious that in general one can not hope for the determination
of the X (depending on gyp, and 0) . However, T a y 1 o r observed that
in many cases it is quite natural to ask for the size of X . The simplest in-
teresting case of T a y 1 o r 's general problem arises if we choose ~O(x, X)
to be the statement that X is a graph of chromatic number at least X,
B the set of finite graphs with vertices in w, A = P(B), and ~(x) the
set of graphs in B isomorphic to a subgraph of X . T a y l o i s problem
for chromatic numbers of graphs is to determine the minimal X satisfying
(1) in this case or to put it into words

(2) What is the minimal X satisfying the following condition . For
every graph with chromatic number > X and for every o > X there
is a graph W with chromatic number > o such that W and 9' have
the same finite subgraphs .

T a y 1 o r pointed out that known theorems imply X > w k and he
conjectured that probably X = w l .

This problem seems to be very difficult and so instead of solving it
we will formulate variants of it which are probably even more difficult . We
will not consider Taylor's generalization for relational structures but we
will stick to set-systems. To have a brief notation we say that -P is a set
system if it consists of sets having at least two elements. For a set-system

we put

X( ) = min { X: 3 a function f: u -; X

such that

	

t PVX C

	

(x f- '({p )I ))} .

X( ) is the chromatic number of

	

and is the minimal cardinal

* This is the same proof which gives the existence of H a n f numbers in 16 ] .
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X for which u is the union of X-sets none of which contains an ele-
ment of 1" as a subset . A9 is said to be uniform with K ( ) = K if
JXJ = K for X E . A graph is a uniform set system with K( ) = 2 .
For further explanation of the terminology and for elementary results see
e.g . [ 11 . Note that two set systems, ' are considered isomorphic
if there is a one-to-one mapping f of u onto u Ye' such that for
XC u"r

X E

	

iff f(X) = I f(u) : u C X} E )r , .

We denote by .* =

	

the fact that

	

and *' are isomorphic .

§2 . STATEMENT OF SOME RESULTS ON CLASSES OF
GRAPHS ADMITTING ARBITRARILY LARGE
CHROMATIC NUMBERS

Definition . Let T > w be a cardinal. Put

B(T) = l W : W C [T] 2 A f WI < Tj ;

	

A(T) _ P(B(T))

i .e . B(T) is the set of subgraphs of cardinality < T of the complete graph
with set of vertices T . Obviously, if I W1 < T, then is isomorphic to
an element of B(T) .

Let 9 be a graph. We denote by ~(S, r) the set of e§' E B(T),

I' is isomorphic to a subgraph of oN ; (~(W, T) E A(T)) .

Let S E A(T) ; We denote by ~§(S, T) the class of graphs

	

with
T) C S. S E A(T) is said 7--unbounded if

(3) For every X there is W E I (S, T) with X(1) > A. An ob-
vious approach to Taylor's problem would be first to characterize the
S E A(w) which are co-unbounded and then show that X(g) > w l implies
that áy(9, w) satisfies this characterization .

This again seems to be hopeless at present . It is not quite easy to
give nontrivial S E A(w) which are w-unbounded . We now give the def-
inition of some of them .

Let R, -< be an ordered set i < w. We will define two sorts of
graphs W° (R, i), W 1 (R, i, t) for i >, 2, or i > 3, 1 < t < i - 1 respec-
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tively. The set of vertices will be the set of -< increasing sequences ~p of
length i of elements of R in both cases .

We put

° (R, i) = 11 ~p, } : ~o(i + 1) _ p'(j) for j < i - 1 1 for i > 2 and

1 (R, i, t) _ { { ~p, ~p' 1 : cp(j + t) < cp'(j) < cp(j + t + 1) < <p'(j + 1)

for j< i- 1-t1 for i> 3 .

We put

S°(i) _

	

i), w) _ ~(W °(R, i), w) for IRI > w

and

S 1 (i, t) _ ~( i# 1 (w, i, t), w) _ 0( 9 1 (R, i, t), w)

	

for

	

IR I > w .

Thegraphs 1 (R, i, t) we call Specker - Graphs, (Specker
used first

	

1(w, 3, 1) to show w3

	

(W3 , 3) 2 ) and the graphs b '(R, i)
we call with some abuse of terminology the "edge graphs" having in mind
the special case i = 2 .

The following are known about these graphs :

Old-lemmas (Erd(5s - H a j n a 1)

1/ Let IRI > (exp= 1 (A)) + ; A> w, i> 2 . Then X(I °(R, i))
,>X+ . As a corollary S°(i) is co-unbounded for 2 < i < w .

2/ S ° (i) does not contain odd-circuits of length 2j + 3 for j

<i-2, i>2,

3/ Let K > w be a cardinal. Then X(I 1 (K, i, t)) = K for 3 <
-i<w and 1<t<i-1 .

4/ S 1 (2i2 + 1, i) does not contain odd circuits of length 2j + 3
for j<i-1, 1<i<w .

5/ Assume A > w is a cardinal R, -< an ordered set with IR I <
< exp (A) for 2 < i < w. Then X(~§ ° (R, i)) < A .

See [21 Theorem 1 for 1/, and 5/, [41 Theorem 7 for 2/, [11 Theo-
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rem 7.4 for 3/, and 4/ .

The following inclusions hold :

(i) S° (i) : S ° (i + 1) for 2< i< w

( )

	

(ü) Si ( i, t) Si (i + 1, t)

	

for

	

3 < i < w

(iii) S°(i) C Si (i + 1, 1)

	

for

	

2 < i < w .

We will give the proof of (i) on p . We see now that the sets
S° (i) corresponding to the "edge graphs" form a decreasing sequence . The
members of the sequence are all w-unbounded . The intersection n i S° (i) :
2 < i < w } however by 2/ contains only graphs with X(~#) = 2, hence is
not w-unbounded .

One of our main points is that the S° (i) are not equally good as
w-unbounded classes .

To be able to formulate our result we need the following

Definition . Let F(X) > X+ be an operation on cardinals .

We say that S E A(w) is w-unbounded with the restriction F,
if for all a there is X > a, and a ~V with O(S, w) C S such that

(4)

	

X(~3v) > X and

	

I WI < F(X)

We briefly say that S is w-unbounded with the restriction ~ if
it is w-unbounded with the restriction

Ft where Ft (X) = x iff X = wa , K = COa+ 1 + t'

Theorem 1 . (a) S i ( i, t) is w-unbounded with the restriction 0
for 3<i<w .

(0) S° (i) is w-unbounded with the restriction exp i i (X)+ for
2<i<w.

(7) S ° (i) is not w-unbounded with the restriction exp j I (X) for
2<i<w .

As a corollary if G .C.H holds then for every n there is an S E
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E A(w) which is w-unbounded with the restriction n + 1 but not with
the restriction n .

Note that (a) follows from the old lemma 3/ (a) follows from 1/. We
will prove (y) in the next chapter . If G.C.H is assumed then S°(n + 2)
is co-unbounded with (expn + I (X))+, if ' = wa , (expn + 1 (X))+ =
wa+n+ 2, hence S ° (n + 2' is n + 1 unbounded, and is not co-bounded

with expn + 1(~) = wa + n + 2, hence is not n-unbounded . Before giving
the proof of (y) in the next cl apter, it is time to state the first problem .

Problem . Does there exist an SEE A(w) which is w-unbounded
but is not w-unbounded with the restriction exp n (A) for every n < w?

Note that there is an obvious correlation with an old E r d ő s -
H a j n a 1 problem stated in 2 (Problem 1). This problem asks if there is a
graph of X( ,§) > X such that all subgraphs !§' of I!'I < exp w (A) have
chromatic number < X . The "edge graphs" S ° (i) were used in [2] to
establish a positive answer to the above problem when exp, (A) is replaced
by expn (A), n < w .

We finally mention that the definition of unboundedness with a
restriction had to be done as in (4) because we have the following

Theorem 2. Assume S E A(w) is Lo-unbounded . Then for every
a there is a > o and W E W(S, w) with

§3. PROOFS

First we prove Theorem 2 .

Let S be co-unbounded. For every - X choose NA_ E '§(S, w)
with X(S.) > A. Put S. _ >G(s x , w). Put S. _ { IE O(Wx , w) : There
are uncountably many subgraphs ' c 9. isomorphic to S with pair-
wise disjoint sets u W' i .

For each S E S~ - S. let F (w) be a maximal system of sub-
graphs of W . satisfying the following conditions :
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(ü) ' * S" 'E t(W) , n U !2r' _ ¢ .

By the definition of S~ we have I . ( )I < w for §C- S~ - S~ . Hence
u u ( ) is countable for W E S~ - S. . We now omit the vertices in
u { u u (W) : W E Sx -- S x } = T. from ~F. i .e. we consider 4, _
_ Wx n [ u Wx - T, ]2 . Then for X > w , we have X(4.) > X. It follows
from the construction that >G(~~, w) = SA. and, using ITxI < w, for all
9' E S. there are uncountably many ~" c 9 . isomorphic to W' with
pairwise disjoint u W" . It follows that S . has the following property

(5) Assume 9t E S., i < n < w such that u w i n u s,=0 for
i* j< n . Then U I e S~S

i<n

Now it follows that there is S. C S S. w-unbounded, such that
S. satisfies (5) . On the other hand, if S. is w-unbounded and satisfies
(5) then W(S., w) is closed with respect to arbitrary unions of graphs
with disjoint set of vertices . Let u be given. We can choose Wo , with
X(`$a ) > a, and 5n+ 1 with X(ln + 1 ) > 1 'n 1 for n < w such that
Wn E N(S'\ , w) and the u W n are disjoint. Then ~ = U Wn En < w
E I(S., w) c S(S, w) and x( ) = 19 1 > u. This proves Theorem 2.

We now state the following .

Lemma . Let I be a graph, 2 < i < w,

	

is isomorphic to a
subgraph of ° (R, i) for some (R, -<) if the following conditions hold :

Put G = u 9 . There is a relation

	

on G X i such that

(a) -< is transitive .

(0) Vu, v c G X i (u - v V v- u) i.e . -< is a preorder on G X i
put x-<y for x :~ yny x; x"y for x ::~ ylly :~ z .

(y) Vx E G(U, 0) -<

	

-< (x, i - D) .

(5) `dx, y E G((x, 0> (y, 0> V . . . V Cr, i - 1> (y, i - D V x = y).

(e) V x, y E G( j x, y} E W (Cv, 1) H (y, W A . . . n (x, i- D-
- (y, i - 2>) V ((y, 1) H (x, 0> n . . . A (y, i - 1) _ (x, i - 2)) . The lemma is

- 249 -



obvious .

Proof of Theorem 1 . We only have to prove (y) of Theorem 2 .
Let ! E I(S ° (i), w), 2 < i < w . Let A > w be arbitrary, and assume
I I I < expl_ I (X) . By the assumption for every S' C 9, 1 !'1 < w, S' is
isomorphic to an element of S°(i) . Hence by the lemma there is a pre-
order satisfying the conditions (a) . . . (E) of the lemma for u ?' X i .

Then by the compactness theorem the same holds for u ~~ X i. Hence by
the lemma there is R, -< such that I is isomorphic to a subgraph of

° (R, i) . By I NI < exp l 1 (X) we may choose R with IR I < expt 1 (A) .
Then by the old lemma 5 ./ X(W) < X(W ° (R, i)) < X . Thus S ° (i) is not
co-unbounded with the restriction exp t- , . This proves Theorem 1 .

Finally we prove (-) (i) .

It is sufficient to prove S°(i + 1) C S° (i) for 2 < i < w. Let
W E S° (i + 1). We may assume W _ 1'(n, i + 1), U I _ " + 1 n for some
n < w. We define a partial order <' on (t+ 1 n) X i by the stipulation

(gyp, j) -<' (~, k)

	

iff

	

~p(j) < , ( k) V (~p(j) _ ~ (k) A ~p(j + 1) < ~(k + 1))

and we extend -<' to an arbitrary preorder of " 1 n X i . It is easy to see
that the requirements (a) . . . (e) hold for ' hence by the Lemma, I
is isomorphic to an element of S°(i) .

§4. A THEOREM OF DIFFERENT TYPE

Old result . (see E r d ő s- H a j n a I[ 1 j (Corollary 5 .6)) .

Assume X(1) > w . Then W contains a complete bypartite graph
[K, w,j for all x < w . As a corollary if W a is a fixed finite bypartite
graph and X(q) > w, then contains a subgraph isomorphic to 10
and again in another formulation if SEE A(w). S is co-unbounded, then
S contains all bypartite finite graphs .

On the other hand, the old lemmas show that this statement is no
longer true for any fixed nonbypartite graph .

However, it is still possible to prove statements of the following
type :
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(i) If X(g) > X then ~(w, w) n S 0 for some fixed S C
E A(w) .

(ü) If X(W) >

	

then there is no such that Sn E 0(s, w) for
some fixed sequence (Sn ; n G w), S n C B(w), n > no .

Taylor's coniecture implies that if a statement like (i) or (ü) holds for some
then it holds for A = w as well .

The following theorem is an example of a statement of this kind .
In [ 1 ] we only could prove it in case X(W) > w l .

Theorem 3. Assume X( ) > w. Then there is n < w such that
I contains odd circuits of length 2j + 1 for all n < j < w .

Proof. Let X(5) > w. Put U .X = G for the set of vertices . We
may assume is connected. Let x be an arbitrary vertex of t~ . Put
Gi = { y C G : The length of the shortest path connecting x and y in '1

is i ll . Then Go = i x 1j , G = U Gi . Put Ty i = w n [G .] ] 2 . Then there
i< w

is 1 < i < w such that X( `) > w. Let u, v i C N i : There is
a path of length 2(m + 1) in ' connecting u and v, all whose verti-
ces but u and v do not belong to Gi ll . By the definition of G i we
have

~J t = U
m<i

Considering that then X(S') < If X(S , ' ) it follows that there is in <
m<i

< i with X(' i,m ) > w. By the old result, for all j, 2 < j < w, there is
an edge i u, v C I', m contained in an odd circuit of length 2j of ' i, m

Omitting from this circuit the edge i u, v i and adding to it the edges of
the path of length 2(m + 1) the existence of which is required by the
definition of 9i,m , we get an odd circuit of length 2(m + j) + 1 con-
tained in `-!; for m + j > m + 2 = n . This proves Theorem 3 .

We have no counterexample to

Problem 2. Let X('y) > w. Then there is i, with 2 < i < w
such that

So (i) C ~wc, w) .
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We think that the answer is no . A positive answer would yield the solution
of all the problems mentioned so far, since, by the old lemmas, it would
imply that if X( ,N) > w, then V(N, w) is w-unbounded with the restric-
tion exp ,+, for some n < w . (i .e . that the answer to T a y 1 o r 's problem
(2) is yes and the answer to Problem 1 is no .)*

§5 . FURTHER SPECULATIONS

1 / Let F(r) T+ be an operation on cardinals . Choosing the
property ~p(x, X) appearing in (1) to be 3 T(T+ > A A x is a graph A
A X(x) > T A ix I < F(T)), we see that there is a T a y 1 o r number corre-
sponding to each restriction . Obviously we can expect results only if F
in some way reasonlable, (e.g . F(w) _ (2W)+, F(X) = X+ for x >, w l ,
is unreasonable .) W zhout going into details we state the simplest problems .

Problem 3. Is it true that X(1) > w, I X I < (expi (w))+ implies
that O(W, w) is w-unbounded with the restriction (exp i (X)) + for i <
< w?

There is no counterexample to the following stronger

Problem 4 . Let X > w, i < w. Assume that there is W with
X(9) > X, I WI < (exp i (X))+ then for every infinite T there is S' with

X(!§') > r, 1!§'1 < (expr(r))+, 0(s, w) _ ~(W', w) .

(We emphasize again that X(~'#) = X, 151 = X does not imply that there
is S' with X(5') = I S' l = T

as is shown e .g. by the fact that X(W(K, 2)) = K

	

for all strong limit
K .)

2/ The problems we mentioned so far had not been studied in de-
tail for set systems, not even in case K( .Y ) = 3 .

Let us now extend for uniform set systems, with K( C) = K, in
a self-explanatory way the notation B(r), A(T), 0(~V, r), !(S, r) intro-

* Problem 2 has already been stated in T ay 1 o r 181 .
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duced in § 2. We will use the notation BK (T), A K (T), ' K (
° , T),

K (S, r) respectively. Though we can not disprove the analogue of (2)
which is

(2') Let K( -V') = 3, x( ) > w. Then for each A there is . P'
with x( -*') > X,

~3 (

	

', w) _ ~ 3 ( . , w)

we want to point out one new phenomenon .

As we explained in §4, the old lemmas even imply the following
(trivial) statement .

(6) If S0 is such that W0 E S for all S E A(w) which is w-
unbounded with the restriction A+ (the strongest possible restriction) then
S0 E S for all unbounded S E A(w) . (Namely the SO in question are
the bipartite graphs only) .

A result of Erdős - Hajnal - Rothschild [5] implies that
the analogue of (6) does not hold true for uniform set systems with
x( f ) = 3. The following is true :

(7) Let ,Yo consist of two triples having two points in common .
Then

(a) `Yf0 E S for all S E A 3 (w) which is w-unbounded with the
restriction V = exp o (A)+ but

(0) There is S E A3(w),

	

0 S, S is co-unbounded with the
restriction exp l (A)+

We do not know what is the natural bound to this sort of counter-
examples in case K( -P) = 3 .

Again we do not state the problem here in general context but we
formulate a rather simple T a y I o r type problem .

Let C3 (w) = i ` 0 E B3 (W) : --* 0 does not occur in some
0 3 ( , w) for which x( •,Y) > w } . For each eo E C 3 (w) there is a
minimal T = T( eo ) such that there is e, I ..X!o I = T- z

	

3 (

	

, w),
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X( ) > w. Put T(3, w) = sup { T( moo ) :

	

a E C3 (w) i .

Problem 5 . T(3, w) < (expl (w))+, (Or at least < exp W (w) .)

In a forthcoming E r d ő s- G a l v in - H a j n a l paper it will be
proved that if Vo is the system consisting of three triangles, which have
an empty intersection and pairwise one point in common then r( ro ) <
< exp2 (w)+ .

3/ Let be a graph . Define a function f, (n) for n < w by
f,(n) = max { X(l') : ~§' C S A IU S'I = n } for n < w . We mention with-
out proof that the example of the graphs W *Q, i} shows that

(8) For every i < w there are graphs W i with X( w j ) > w,
f, t (n) < Ci logy (n) for n < w . We state

Problem 6 . Does there exist a W with y,(1) > w and such that

f, (n) < logÍ (n) for n > n(i) , i < w ?

This should be compared with Problem 2 .

4/ Interesting new problems arise if we investigate the case of uni-
form set systems with K( .*) = w. We only mention

Problem 7 . Does there exist a cardinal A such that if dr is a
uniform set system with X(Y° ) > a and K(-*) = w, then there always
exists an S C U

	

, ISI = cc for which X( n P(S)) > 2?

The answer to this question might turn out to be trivial, but cer .
tainly a lot of similar interesting problems could be raised .
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