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ON SOME GENERAL PROPERTIES OF CHROMATIC NUMBERS
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§1. INTRODUCTION

In his paper [7] Taylor introduced a generalization of chromatic
number of graphs and stated several interesting problems. In this note we
will be interested in one of his problems we will state below. We are going
to formulate several pussible generalizations and quite a few related ques-
tions. Our main aim is to formulate the problems but we will write down
some partial results we obtained trying to clear the problems up.

Let us start with the following remark

(1) Let ¢(x,\) be any statement of set theory, A a set and
Y(x) an operation such that Vx((x)€ A). Let us assume that o <A
and ¢(x, ) imply ¢(x, o). Then there is a A such that for all x with
w(x, A) and for all o> Xk thereis a p such that ¢(y,6) and Y(y)=
= Y(x). To see this one defines 4’ C A with the stipulation

A" =lyed: INIx(Y(x) =y = Tp(x, N)}

i.c. the set of y € A for which “the A-sof ¢y~ !({y}) form a bounded
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set,” and denoting by
Ap) = min{\: Vx(¥(x) =y = To(x, N))] for yed'

i.e. the minimal bound for y € A, A=sup {A(»): y € A’} obviously sat-
isfies the requirement of (1).*

It is obvious that in general one can not hope for the determination
of the A (depending on ¢, and ). However, Taylor observed that
in many cases it is quite natural to ask for the size of A. The simplest in-
teresting case of Taylor’s general problem arises if we choose ¢(x, A)
to be the statement that X is a graph of chromatic number at least A,
B the set of finite graphs with vertices in w, A = P(B), and y(x) the
set of graphs in B isomorphic to a subgraph of X. Taylor’s problem
for chromatic numbers of graphs is to determine the minimal A satisfying
(1) in this case or to put it into words

(2) What is the minimal A satisfying the following condition. For
every graph 4 with chromatic number > A and for every o> A there
is a graph %' with chromatic number > ¢ such that % and % have
the same finite subgraphs.

Taylor pointed out that known theorems imply A> w, and he
conjectured that probably A= w,.

This problem seems to be very difficult and so instead of solving it
we will formulate variants of it which are probably even more difficult. We
will not consider Taylor’s generalization for relational structures but we
will stick to set-systems. To have a brief notation we say that # isa set
system if it consists of sets having at least two elements. For a set-system

# we put
x( #)=min{x: 3 afunction [ UF X
such that VpVxe #(x¢ f({p}N} -

x( # ) is the chromatic number of # and is the minimal cardinal

*This is the same proof which gives the existence of Hanf numbers in [6].
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x for which U 3 is the union of x-sets none of which contains an ele-
ment of 2 as asubset. #° is said to be uniform with «(#)=k if
[X]=k for X€ # . A graph is a uniform set system with x{(.#)= 2.
For further explanation of the terminology and for elementary results see
e.g. [1]. Note that two set systems, #, »#' are considered isomorphic
if there is a one-to-one mapping f of u# onto X' such that for
XCux#

Xewx iff AX)={fw): ueXle »'.
We denote by # = #' the fact that # and M’ are isomorphic.
§2. STATEMENT OF SOME RESULTS ON CLASSES OF

GRAPHS ADMITTING ARBITRARILY LARGE
CHROMATIC NUMBERS

Definition. Let 7> w be a cardinal. Put
Biry={%: gc[r]PAi9I<7); A(r)=PB(r)

i.e. B(r) is the set of subgraphs of cardinality < 7 of the complete graph
with set of vertices 7. Obviously, if |4/ <7, then % is isomorphic to
an element of B(7).

Let % be a graph. We denote by (%, 7) the set of ¢’ € B(7),
%' is isomorphic to a subgraph of ¥; (Y(%, 7)€ A(1)).

Let S& A(1); We denote by %(S, 7) the class of graphs ¢ with
U(%, 1)CS. S A(r) is said 7T-unbounded if

(3) Forevery A\ thereis #€ %(S,7) with x(#%)> \. An ob-
vious approach to Taylor’s problem would be first to characterize the
S € A(w) which are w-unbounded and then show that x(#%) > w, implies
that (¥, w) satisfies this characterization.

This again seems to be hopeless at present. It is not quite easy to
give nontrivial S € A(w) which are w-unbounded. We now give the def-
inition of some of them.

Let R, < be an ordered set i< w. We will define two sorts of
graphs 9°(R, i), g (R,i,f) for i>2, or i>3, 1<t<i—1 respec-
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tively. The set of vertices will be the set of < increasing sequences ¢ of
length i of elements of R in both cases.

We put
g°(R,D={lp,¢): 0+ =9 () for j<i—1} for i>2 and
IR, L,O={{e¢}: o+ <D<+ t+ D<LG+ 1)
for j<i—1—-t} for i>3.
We put
S°() = Y(%°(w, i), w)= Y(9°(R, i),w) for |Rl>w
and
SV, 6) = Y(FV (w, i, 1), w) = YEUR,i,1),w) for |R|>w.

The graphs %'(R,i, t) wecall Specker — Graphs, (Specker
used first ¥ !(w, 3, 1) to show w? # (w?, 3)?) and the graphs ¥°(R, i)
we call with some abuse of terminology the “edge graphs” having in mind
the special case i= 2.

The following are known about these graphs:
Old-lemmas (Erdés — Hajnal)

1/ Let [R|=>(exp, ((A)*; A>w, i=2. Then x($°(R, D))=
=AY, Asa corollary S°(i) is w-unbounded for 2 <i< w.

2/ S°(i) does not contain odd-circuits of length 2j+ 3 for j<
<i—2,1i2 2,

3/ Let k> w be a cardinal. Then x(%'(k, i, 1)) =k for 3<
<i<w and 1<t<i- 1

4/ S'(2i% + 1,0 does not contain odd circuits of length 2j+ 3
for j<i—-1, 1<i<w.

5/ Assume A= w is a cardinal R, < an ordered set with |R|<
<exp(A) for 2<i<w Then x(4°(R, D))<\

See (2] Theorem 1 for 1/, and 5/, (4] Theorem 7 for 2/, (1] Theo-
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rem 7.4 for 3/, and 4/.
The following inclusions hold:
(i) S°HES°(i+1) for 2<i<w

(») (i) S'G0nGS'G+ 1,0 for 3<i<w
(i) S°(HcS'E+1,1) for 2<i<w.

We will give the proof of (i) on p. We see now that the sets
S°(i) corresponding to the “edge graphs” form a decreasing sequence. The
members of the sequence are all w-unbounded. The intersection N{S°(i):
2<i< w| however by 2/ contains only graphs with x(%) = 2, hence is
not w-unbounded.

One of our main points is that the S°(/) are not equally good as
w-unbounded classes.

To be able to formulate our result we need the following
Definition. Let F(A)> At be an operation on cardinals.

We say that S € A(w) is w-unbounded with the restriction F,
if forall o thereis A=0, anda % with (%, w)C S such that

(4) x()>N and |9 < F(\).

We briefly say that § is w-unbounded with the restriction £ if
it is w-unbounded with the restriction

FE where FE(M =k iff A=w, , k=w

Theorem 1. (a) SY(i, t) is w-unbounded with the restriction 0
for 3<i< w.

a+l+¢E°

(B) S°(i) is w-unbounded with the restriction exp,_ l(?\)* for
2<i< w.

(y) S°(i) is not w-unbounded with the restriction exp,;_,(\) for
2<i< w.

As a corollary if G.C.H holds then for every n there is an S&
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€ A(w) which is w-unbounded with the restriction n + 1 but not with
the restriction .

Note that (a) follows from the old lemma 3/ (8) follows from 1/. We
will prove () in the next chapter. If G.C.H is assumed then S°(n + 2)
is w-unbounded with (exp, 1(7\))+, if \=w,, (exp,. l(?\))+ =
= w,, 4, hence S°(n+Z) is n+ 1 unbounded, and is not w-bounded
with eXP, , 1 (A) = (CHIEE hence is not n-unbounded. Before giving
the proof of () in the next ¢l apter, it is time to state the first problem.

Problem. Does there exist an S € A(w) which is w-unbounded
but is not w-unbounded with the restriction exp, (X)) for every n < w?

Note that there is an obvious correlation with an old Erdés —
Hajnal problem stated in 2 (Problem 1). This problem asks if there is a
graph of x(%) > A such that all subgraphs %' of |%'| < exp_ (A) have
chromatic number < X. The “edge graphs” S°(i{) were used in [2] to
establish a positive answer to the above problem when exp  (A) is replaced
by exp,(N), n< w.

We finally mention that the definition of unboundedness with a
restriction had to be done as in (4) because we have the following

Theorem 2. Assume S € A(w) is w-unbounded. Then for every
g thereis =0 and %€ (S, w) with

x(%)=1%1=\.

§3. PROOFS

First we prove Theorem 2.

Let S be w-unbounded. For every A choose %, € % (S, w)
with x(¢,) >\ Put S, = U(4,,w). Put S, ={9E€ Y(%,, w): There
are uncountably many subgraphs %'C %, isomorphic to ¥ with pair-
wise disjoint sets U %'},

For each 9 €S, - fi'\A let #(%) be a maximal system of sub-
graphs of #, satisfying the following conditions:
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() 9eF(9)=>%=g%
(i) 9" +9"€ #F(%)=>U%' N vg" = ¢.

By the definition of §:\ we have | # (%) < w for $€S, — §A. Hence
U U F(%) is countable fqr ges, — S We now omit the vertices in
U{UU ZF(9): 9€8, —-S,|=T, from %, i.e. we consider @

=9 nusg, -T jz Then for ?\>w wehave x(fﬁ 1= 2 Itfollows
from the conatructlon that y(ff w) =S, and using IT | < w, for all
9'e S there are uncountably many %" = 'Zﬁ 1som0rph1c to %' with
palrmse disjoint U ¢”. It follows that S has the following property

(5) Assume 4, E§ i<n< w such that ugfﬂugjng for
i#j<n. Then U 9. ES

i<n i
Now it follows that there is S, €S S, w-unbounded, such that
Sa satisfies (5). On the other hand, if S;\ is w-unbounded and satisfies
(5) then ¥(S,, w) is closed with respect to arbitrary unions of graphs
with disjoint set of vertices. Let o be given. We can choose #%,, with
x(9,)>0, and ¥, _, with x(¥ +l)> |9,| for n< w such that

%, € %(S,,w) and the U ¥ are disjoint. Then = U 9,6 €
n<w

€ 9(S,, w) C 9(S, w) and x(f&) =|%|> 0. This proves Theorem 2.
We now state the following.

Lemma. Let % beagraph, 2<i< w, % is isomorphic to a
subgraph of %°(R, i) for some (R, <) if the following conditions hold:

Put G=U%. There is a relation =< on G X i such that

(a) =< is transitive,

B) Vu,veGXxiwu=vVv=u) ie =< is a preorder on GX i
put x<y for xXyANyEx; x—=y for x<yAy=z

(7) VxeGx, 0) <....<&x, i— D).
(8) Vx, yEGKx, d vy, OV .. . V&, i—DHE,i—-DVx=y).

(€) Vx, yEGUx, € ¥=(&x, D=, ON ... A, i— 1
Y, i— 2V, D=, DAL A, i — 1) =<, i—2). The lemma is
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obvious.

Proof of Theorem . We only have to prove (v) of Theorem 2.
Let $€ 9(S°(i), w), 2 <i<w. Let A> w be arbitrary, and assume
19| < exp;, ,(N\). By the assumption for every ¥'C ¢, |9'|<w, ¥4 is
isomorphic to an element of S°(i). Hence by the lemma there is a pre-
order = satisfying the conditions (a)...(e) of thelemmafor U %' X i,
Then by the compactness theorem the same holds for U % X i Hence by
the lemma there is R, < such that % is isomorphic to a subgraph of
#°(R,i). By |9|<exp,_,(N) wemaychoose R with [R|<exp, ().
Then by the old lemma 5./ x(%)<x(#%°(R,i))<\. Thus S°() is not
w-unbounded with the restriction exp, ,. This proves Theorem I.

Finally we prove (*) (i).

It is sufficient to prove S°(i + [)C §°() for 2<i< w. Let
%ecS°(i+1). Wemay assume %= %°(n, i+ 1), U9=*1p for some
n< w. We define a partial order <' on ((*1n)X i by the stipulation

(p. D=<" W, k) iff  p() < YRV (0() = (k) A+ 1) < Yk + 1))

and we extend <’ to an arbitrary preorder of ‘*1ln X i. Itis easy to see
that the requirements (a)...(e) hold for =<' hence by the Lemma, ¥
is isomorphic to an element of S°(i).

§4. A THEOREM OF DIFFERENT TYPE
Old result. (see Erddés — Hajnal [1] (Corollary 5.6)).

Assume x(¥%)> w. Then ¢ contains a complete bypartite graph
[k, w,] forall k< cw. Asacorollary if %, is a fixed finite bypartite
graph and x(%) > w, then ¢ contains a subgraph isomorphic to ¥,
and again in another formuliation if S€ A(w). § is w-unbounded, then
S contains all bypartite finite graphs.

On the other hand, the old lemmas show that this statement is no
longer true for any fixed nonbypartite graph.

However, it is still possible to prove statements of the following
type:
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(i) If x(¥¢)>\ then W%, w)NS+¢ for some fixed Se
€ A(w).

(ii) If x(#)> X then thereis n;, such that S, € Y(¥%, w) for

some fixed sequence <(S,; n < w), S, € Blw), n>n,.

Taylor’s conjecture implies that if a statement like (i) or (ii) holds for some
A then it holds for A = w as well.

The following theorem is an example of a statement of this kind.
In [1] we only could prove it in case x(%)> W, -

Theorem 3. Assume x(%)> w. Then there is n< w such that
% contains odd circuits of length 2j+ 1 forall n<j< w.

Proof. let x(¥4)> w. Put U % = G for the set of vertices. We
may assume % is connected. Let x be an arbitrary vertex of %. Put
G,=1{y € G: The length of the shortest path connecting x and y in ¥
is i}. Then G,={x}, G= U G, Put ¢'= 4 [G,]> Then there

. i<w . .
is 1<i<w suchthat x(#")> w. Let #%"™ ={{ u, v}€ %’ There is
a path of length 2(m + 1) in % connecting u and v, all whose verti-
ces but u and » do not belong to G,|. By the definition of G, we
have

= | gt

m<i

Considering that then x(%%) < ]{I x(%"™) it follows that there is m <
m i

<i with x(4%™)> w. By the old result, for all j, 2<j< w, there is
an edge |u, v} € %"™ contained in an odd circuit of length 2j of %"™.
Omitting from this circuit the edge {u, v{ and adding to it the edges of
the path of length 2(m + 1) the existence of which is required by the
definition of @*™  we get an odd circuit of length 2(m+ )+ 1 con-

tainedin ¢ for m+j>m+ 2= n. This proves Theorem 3.
We have no counterexample to

Problem 2. Let x(%)> . Then there is i, with 2<i< w
such that

SO C YW¥, w).

- 251 —



We think that the answer is no. A positive answer would yield the solution
of all the problems mentioned so far, since, by the old lemmas, it would
imply that if x(%)> w, then (%, w) is w-unbounded with the restric-
tion exp; for some n< w. (ie. that the answerto Taylor’s problem
(2) is yes and the answer to Problem 1 is no.)*

§5. FURTHER SPECULATIONS

1/ Let F(r)=7" be an operation on cardinals. Choosing the
property ¢(x, A) appearing in (1) to be I7(r* > AA x is a graph A
A x(x) > 7 A x| < F(1)), we see that there is a Taylor number corre-
sponding to each restriction. Obviously we can expect results only if F
in some way reasonlable, (e.g. Flw) = (2¥)*, F)=A" for x> w,
is unreasonable.) Without going into details we state the simplest problems.

Problem 3. Is it true that x(%)> w, |¥|< (exp; (w))t implies
that (%, w) is w-unbounded with the restriction (exp; Nt for i<
< w?

There is no counterexample to the following stronger

Problem 4. let A> w, i< w. Assume that there is % with
X(9)> X, 9] < (exp; (A\))T then for every infinite 7 there is %' with

X(4)>71, |9 |<(exp(r)™, ¥ w)= W%, w).

(We emphasize again that x(%)= A, |%9|= A does not imply that there
is 9" with x(¢)=19"I=17
W%, w)= Y9, w)

as is shown e.g. by the fact that x(%°(k,2)) =« for all strong limit
K.)

2/ The problems we mentioned so far had not been studied in de-
tail for set systems, not even in case x(.# )= 3.

Let us now extend for uniform set systems, with x(# )=k, in
a self-explanatory way the notation B(r), A(7), Y(¥%,7), %(S, 1) intro-

*Problem 2 has already becn stated in Taylor [8).
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duced in §2. We will use the notation B, (1), A4 (1), ¢ (#,7),
‘#K(S, 7) respectively. Though we can not disprove the analogue of (2)
which is

(2") Let k(#)=3, x{ #)> w. Then foreach A thereis #'
with x( #') > A,

%(J‘f”,wJ: %(Jf’sw)
we want to point out one new phenomenon.

As we explained in §4, the old lemmas even imply the following
(trivial) statement.

(6) If %, issuchthat %, €S forall §€ A(w) which is w-
unbounded with the restriction AT (the strongest possible restriction) then
Gy € S for all unbounded S € A(w). (Namely the %, in question are
the bipartite graphs only).

A result of Erdés — Hajnal — Rothschild [5] implies that
the analogue of (6) does not hold true for uniform set systems with
x( #)= 3. The following is true:

(7) Let s, consist of two triples having two points in common.
Then

(@) #,€S forall S€ A,(w) whichis w-unbounded with the
restriction A" = exp,(A)* but

(B) Thereis S€ A3(w), #, &S, S is w-unbounded with the
restriction exp, (\)™.

We do not know what is the natural bound to this sort of counter-
examples in case x( #) = 3.

Again we do not state the problem here in general context but we
formulate a rather simple Taylor type problem.

Let Cy(w)= {9&"0 <= B3(w): Ji"o does not occur in some
Ys(# , w) for which x(#)> w] . For each H#y € Cy(w) there is a
minimal 7= 7( #;) suchthat thereis #, |#|=T17 A& Vi #, w),



X(#)>w. Put 7(3, w)=sup{ 7( #,): #,€Cy(w)] .
Problem 5. 7(3, w) < (exp, (w))*, (Or at least < exp_ (w).)

In a forthcoming Erd6s — Galvin — Hajnal paper it will be
proved that if o, is the system consisting of three triangles, which have
an empty intersection and pairwise one point in common then 7(#) <

< exp, (w)”.

3/ Let % be a graph. Define a function f,(n) for n< w by
f,(n) =max {x(¥'): ¢'CHAlUY'|=n} for n<w. Wemention with-
out proof that the example of the graphs %°(§, i) shows that

(8) For every i< w there are graphs %; with x(¥)> w,
fo.(m)< C}]cngir (n) for n< w. We state

Problem 6. Does there exist a % with x(%)> w and such that
fe)<log;(n) for n>n@), i<w ?
This should be compared with Problem 2.

4/ Interesting new problems arise if we investigate the case of uni
form set systems with k(.# )= w. We only mention

Problem 7. Does there exist a cardinal A such that if # isa
uniform set system with x(# ) > X and k{(.# )= w, then there always
existsan SCU# , |S|=w for which x( #n P(S)) > 2?

The answer to this question might turn out to be trivial, but cer
tainly a lot of similar interesting problems could be raised.
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