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Abstract. Let G, bea graph of n vertices, having chromatic number r which contains no com-
plete graph of r vertices. Then GM contains a vertex of degree not exceeding n(3r—7)/(3r—4).
The result is essentially best possible.

0. Introduction

In this paper we shall use the following notations:

G, denotes a graph of n vertices, without loops and multiple edges;

V(G,) respectively E(G,, ) the set of vertices respectively the set of
edges of G, ;

(x, y) € G, means: forx,y € V(G,,), the edge (x,y) € £E(G,,);

o(x) is the valency of x € V(G,,);

V(x) is the star of x (i.e., V(x) ={y: (x,y) € E£(G,)}), and S(x) the
subgraph induced by V(x);

x(G) denotes the chromatic number of G;

A C V(G,) is an independent set if no two vertices of 4 are joined
by an edge;

K, denotes a complete graph of r vertices;

G{v,, ..., v,) denotes a complete r chromatic graph with independent
sets |Vl =v; (i =1, ..., 7); if y; = v, we use the notation G"(v).

We remind the reader of the following well-known results:

Theorem 0.1 (Turan’s theorem [4]). For any graph G,,, if n = mod(r—1)
and 0 < 1< r—1, at most one of the following properties can hold:
(1) K, ¢G,,

@ IEG> (22 g (’ )
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The theorem is best possible in the following sense:
K, ¢ G, and |[E(G,)| = (n2—12)(r—2)/(2(r—1)) + (g}if and only if
G, =G, Wiy a8 4%

where E’;;"] y=n and Ivi—ufl < lforl<ij<r-l.

A consequence of the above is the following:

Theorem 0.2 (Zarankiewicz’s theorem [S]). For any graph G,,, at most
one of the following properties can hold:

(3) K ¢G,,
i r—2
“) xerrll/](%,,) o) > [" F—_]]

The theorem is best possible too, but for some » and », there are
several extreme graphs. We shall discuss in Section 2 the question of the
extreme graphs.

In these theorems we see the connection between the maximal com-
plete subgraph contained in G, and |E(G),)| respectively min, o V(G ) 0(X):
The connection of these quantities with x(G,,) is shown already by the
following theorem.

Theorem 0.3 (Brook’s theorem [2]). Let r = 4. For any graph G,, at
most two of the following properties can hold:

(5) K, E Gy

(6) max o(x)<r—1,
XE V(Gy)

(7 X(G,) = r.

P. Erdos, T. Gallai, B. Andrdsfai and M. Simonovits [3] determined
the largest integer £y (r,n) for which there is a graph G of n vertices and
f;( (r.n) edges which is x-chromatic and contains no KX, . It is natural to
investigate the analogous question for the problem of Zarankiewicz. It
is well known that if we make no assumptions about chromatic numbers,
then Zarankiewicz’s theorem is an easy consequence of Turan’s theorem,
and in most of the cases (e.g. for n > ny (r)), the extreme graphs coincide.
On the other hand if we make assumptions on chromatic numbers, the
situation is completely different.
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1.
In the present paper we prove the following theorem:

Theorem 1.1. Ler r = 3. For any graph G, at most two of the following
properties can hold:

(®) K, ¢G,,
7 3r—7
Al = &

10)  x(G)>r.

The theorem is best possible in the following sense:
Let 3r—4/n, then there exists a unique extreme graph G;f with the fol-
lowing properties:

K,¢Gr,
min o(x) = L? n
xEV(GE) 3r—4 "
x(Gy) =r.
This graph is defined as follows: Let V' = V(G¥) and
Pisas g el

a disjoint partition of V, where

3n

lViI:ﬁ_ for 1&!%?’-3,
U == de for 1<j<5
34 o2

The edges of G are defined as follows: if x € V, then (x,y) € GF
=~y¢_ W, =1, sqr=3)if x € U, then (% y)e G"‘ﬁye Uz V; or
€ Uiy V Uy, where Uy = Us, U6 =U,.

The extremal graph for r = 3 respectively r > 3 is indicated in Fig. 1
respectively Fig. 2 (where a number 5 in a circle indicates an independent
set of 5 vertices, a line between two circles indicates that every vertex in
one of these circles is connected with every vertex of the other one by an

edge).
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Fig. 2.

Proof of Theorem 1.1. We shall prove the theorem by induction on r.
We need the following lemmas.

Lemma 1.2. The theorem is true for r = 3.

Lemma 1.3. If the theorem is true for r—1 and G,, satisfies (8) and (9),
then for every x € V, we have

GRD) x(S(x) < r-2.
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Lemma 1.4. If G, would satisfy (8), (9) and (10), then it has the following
property P:
There is a disjoint partition

{A,, ..., A, D}

r=1’
of V(G,) satisfying the following conditions:
there exist points a; and subsets B; (i =1, ..., r—1) for which
(1) a; € B; C A
(ii) (a;, x) € G, if x € B};andf;ﬁj, 1<j<r—1;
(iii) 18,1 > 2n/(3r—4);
(iv) A; is independent, U1 Al = n — n/(3r—4)(r—2);
V) forany y € Dand anyj (j = 1,...,r—1), there exists at least one
x € A; with e 4y
(vi) for any y € D, there is at least one j for which (x, y) ¢ G, if
X € B]. \ {af}.

Lemma 1.5. If G, has property P, and if it also satisfies (9) and (10),
then it will contain a K, C G,,.

Hence to prove our theorem we only have to prove our four lemmas.

Proof of Lemma 1.2. Suppose that (8) and (10) hold with r = 3. Let us
take in G, a shortest circuit with odd length, with vertices Gy ey

Because of (8), any vertexx € V, x # a; (i = 1, ..., k), is connected
with at most two ¢;’s in G,,. Therefore for the number of edges £* of
type (x, q;), where x # a; (i,j =1, ..., k), we have on the one hand

|E* < 2(n—k).
On the other hand, if min, ., o(x) = p, then
\E*| =23 o(a;) — 2k > kp — 2k,
which gives
p<2nlk < 2n/S,
i.e., (9) cannot hold.

Remark 1.6. Observe that for the case r = 3, we proved a bit more than
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in Theorem 1.1, namely the following: if K; & G, , x(G,) > 3 and the
shortest odd circuit has length &, then

min o(x) < 2n/k.
xel

Proof of Lemma 1.3. Consider the induced subgraph S(x) and a vertex
¥ &€ V(5(x)). Let 0*(y) be the degree of y in S(x). If (9) holds for G,,
we have

o*(y) = o(y)—(n—ao(x)) = o(x)—3n/(3r—4) > o(x)(1-3/(3r—7)),

where |V (S(x))l = o(x). This means that if (8) and (9) hold for G,,, then
the same holds for S(x) with r—1 instead of ». By the induction hypo-
theses, x(S(x)) < r-—2.

Proof of Lemma 1.4. Assume that (8) and (9) hold. First of all we con-
struct an induced subgraph with at least n—n/(3r—4)(r—2) vertices which
is r—1 chromatic and contains a K,_; . Evidently, we may suppose that
K, ,CG,.Let
VK, ) ={ay,..sa,_;},
X(S(al )) < r'_?'!
3r—7

| V(S(ﬂi N> mﬂ-

Then there is an a;, say a,, which is in an independent set C;, C V(S(a;))
having at most

il
3r—4 r-2

vertices. If we consider S(02 ), this contains the vertices ay, a3, ..., a,_;
and so

x(S(a,)) =r-2.

Let us consider a colouring of S(a,) by r—2 colours, and denote by C;
the independent set of it which contains g;. For UI’.QIKC,-; we have

a; €C (i=1,...,r-1)

and
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r=1

u Cl> o(a,) +1C, | > (3’ ! 3’_?) =n <

34 23 a)" " T Gy

Now we define the sets B; as the set of all vertices x, for which
(12) (x,q)€ E(G,) if i#].
We have g, € B,. We shall show that
(13) 4;€B,CC,:

This is evident for i # 2, because for any x € B; # B,,

r—1

xe V(S(ﬂz )) = 'lJl Cf\Cz,
r:

but
xeéC,,. fori+#j,

by (12) and the independence of C} Fori=2,if x € B,, then
(x,a;) € E(G,),i.e., x € S(a;). C, was the independent set at a good-
colouring of S(4,) containing a, ; i.e. a colouring of S(a;) by r—2 colours,
where the vertices of the same colour form an independent set; all the
other:classes contain an a; (j > 2) which is joined to x, consequently, x
must be in C;.

Finally, we show that

2n

(14) IBI>3 3

Let V(G,) — ({ay, ....,a,} Y B;) — S§. We count the number of edges
E** of type (a; x) € E(G,),i# 2,x € S ¥ B;. On the one hand we have
from (9) that

(15) [E**| = (r— 2)( n—(r— 3))

3r—4
On the other hand, since any x € S is connected with at most r—3 of the
aj’s (j # 2, otherwise it would be in B;), we have

(16)  IE**|< (—2)IB,l + —3)IS|

=(r—=2)B;l + (r—3)(u—I|B,|—r + 2)
=Bl + n(r—3)—(r—2)(r—3).
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(15) and (16) give (14).

Now we define the sets 4; C V(G),) as follows:

fa)d, 3 C =1, eir=1);

(b) A:‘ isindependent (i =1, ..., r—1);

(¢) U2} A, is maximal with the properties (a) and (b); for any
Ve U’;;{Ai and any i€ {1, ...,r—1}, {3}l U A, is not independent.

To finish the proof of the lemma we only have to prove (vi). Our
proof will be indirect.

Because of (10), V— U’E:ll A, # 0.Assume that we have the vertex
y € V—-UIZ1 4; and the vertices b; € B;—{a;}, where (b;, ) € E(G,)
fori=1,...,r—1. For these vertices we have from the construction that

(a,b) ¢ E(G,),
(a!., bf) € E(Gﬂ) for i#7j,
(af,aj)e E(G,) for i#].
LetFy ={y, 4, b;(i=1,..,r—D}and F, =V(G, )-F,.

We shall count the number of edges E*** of type (x,z) € E(G,),

x € Fy, z € F,, in two different ways, which will give the desired con-
tradiction.
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For this purpose we prove that every vertex in F, is not connected
with at least 3 vertices in F . If there would be a vertex z € F, for which
there are at most 2 such vertices, we would have a contradiction either
with (8) or with Lemma 1.3.

Namely for the two vertices ¢ and d not joined with x, we have the
following 6 possibilities:

()c=a,d= a. In this case, S(a;) for / # i, j would be (r— 1)-chroma-
tic.

(i) c= b,d= bj, i # j. In this case, there would be a K, C G,,.

(ii)c=a,d= bf, i # j. In this case, there would be a K, C G,,.

(iv) ¢ =a,, d = b, for some i. In this case, S(z) would be (r—1)-chroma-
tic.

Vc=yd =a;, and

(vi) ¢ =y, d = b;, in these cases, we would have K, C G, .

Therefore, for the number of edges E*** of type (x,z), where x€ F|,
zZE F2 , we have on the one hand

(17) [E**%| < (2r—4) (n—(2r—1)),
on the other hand by (9)

3r—7
% Mo i —
|E*%% > (2r I)(—3r_4n+l) 2 &y
where E0 is the number of edges in the induced subgraph G, (F). Since
K, ¢ G,(Fy), |F;| = 2r—1 and x(G, (F,)) = r, according to Turan’s
theorem we have that

Eo<(¥31)-0+ 1y

2
(18) | B = (2.!*‘—1)(2:—:;t n+ l)—(Zr—l)(2r—2) +2(r+1).

From (17) and (18) we have r < 3.
Proof of Lemma 1.5. Using Lemma 1.4, we construct a K, C G, step by

step in the following way:
(a) For an arbitrary x, € D, let B; be the B; for which

(19) (xq, DYEE(G,) if bEBI\{a_l_}.
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(From Lemma 1.4 we know that such a B; exists.)
(b) Let x; € A; be a vertex for which

(x4, X, ) E E(G,).

(c) Let X; ={x: x € 4;,(x, xy) € E(G,) fori # 1},
and we determine the indices so that

(20) | X, | = max|X;|.
Let x, € A, be a vertex for which
Q) (g Xy), (¥, X5) € E(Gy).

Such a vertex exists, because in B; we have at least 2n/(3r—4) vertices
which are connected neither with x; nor with x, , which means (because
of (9)) that we have altogether less than 2n/(3r—4) vertices which are not
joined to at least one of them. Since |4,| > 2n/(3r—4), we have an
X, € A, for which (21) holds.

(@) If xy, ..., x; (x, € 4, for I v <j)are determined already, we
define x;,; @ < r—l ) in the following way:

(x,, x}-ﬂ)e E(G,) forO<v<j.

The following reasoning shows that such a vertex exists:
Forx, € 4, (1 <v<j),let

d =W{a:(a, x,)¢ E(G,),a eUZ] A4;\A,}I.

Because of x, € 4, and A, is independent, we have
d, < 3n/(3r—4) — |4;l,
and consequently, using U;Z =1 j4i=n— n/(3r—4)(r—2) and Lemma 1.4(iv),

-1
(22) Z}d L4-Dg— Z)lA,.l
v=1
Sl 1)— E
n n

< 3r—4 * r—4)r-2) -



B. Andrésfai et al., Chromatic number, maximal cligue and minimal degree of a graph 215

Let
dy =Ha: (a,xg) € E(G,),ac Uz} 4,11 .

From (19), (20) and (9), we have that

1 n r—3
(23) dy ‘g(”_'-"(Jr())_Ifi'll-"l)(I _r_2)g3r—4r—2'

(22) and (23) give that

i
T
=0 3r—
Since |4;,,| > 2n/(3r—4)for j > 2, we have an x;, | € 4;,, for which
(xy. X741) € E(G,) for 0 < v <j. This completes the construction of our
K, C G,, hence Lemma 1.5 and Theorem 1.1 is proved.

With a little more detailed reasoning, our proof gives the uniqueness
of the extreme graph in case (3r—4)/n.

The following questions seem interesting: Assume K, ¢ G, and
X(G,) = 1> r. What can be said about min, ¢ . ,0(x)? Erdos and
Simonovits proved that if »r = 3, then miner(Gn)g(x) = (3 +o())n.

We denote by T respectively Z graphs,-the extreme graphs belonging
to Turan’s respectively Zarankiewicz’s theorem.
Forr> 2, agraph G, is a Z graph if

b,
min  o(x) = [nr——%].
x€V(Gy) r—1

Theorem 0.1 implies Theorem 0.2 but the Z graphs are not known gener-
ally. One can see easily that for n = g(r—1), the Z graphs and the T graphs
are the same. In general, any T graph isa Z graph too even if we omit

“a few” of its edges. It is interesting that for fixed r, all the T graphs are
(r—1)-chromatic but there exists a Z graph with chromatic numbers=r. In
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the simple case r = 3, all Z graphs are given in [ 1, Theorem 2.4]. In general,
there exist many types of the Z graphs although giving all of them seems
to be hopeless. However, in the case » = 4 we can give all the Z graphs.

Proposition 2.1. In the case r = 4, there are exactly seven Z graphs with
chromatic number = 4 (see Fig. 4).

The proof of Proposition 2.1 is a somewhat lengthy discussion of
several cases and we leave it to the reader.

We can get an upper bound for the number of vertices of the Z graphs
with chromatic number > r. For general r, Gallai conjectured that every
Z graph with chromatic number > r has fewer than c72 vertices. This
conjecture follows easily from Theorem 1.1. In fact, let x(G,,) = r and
G, a Z graph. Put n =q(r—1)+d (d = 1, ..., r—2), then we have

(24) 6_. = min o(x)=[n’—2]=q(r—2)+d—1,
X EV(Gy) r—1

n=13 n=13 n=16
Fig. 4.
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and by Theorem 1.1,

3r-7
3r—4

g(r—-2)+d-1< (gr—1)+d).

Thus ¢ < 3r—4—3d. Hence
(25) n< 32 (7 +3d)+4(d + 1);

equality if and only if G, = G¥.

Let us consider the special case of the greatest remainder d =r—2,
and let G, be a Z graph with chromatic number > r (r = 4). By (24) and
(25), wehave o,;, =q(r—2)+r-3,g< 2andn < 3r—4. Now ifg =1,
then o, =2r—5Sand n =2r-3,and if ¢ = 2, then o, = 3r—7 and n =
3r—4. In the case ¢ = 2 by Theorem 1.1, G, is identical to G§,_,. We are
going to show that there is no Z graph G, for whichn = 2r—3, o, =
2r—5 and x(G,,) = r. To see this observe that since o,;, = 2r—S5 and
K, ¢ G,, we obtain our graph by omitting —2 independent edges from
a K,,_3;. However, we have x(G,)) = r—1, and it is a contradiction. Hence
from Theorem 1.1 we obtain the following corollary:

Corollary 2.2. For fixed r > 4, let G,, be a Z graph with chromatic num-
ber=rand n =q(r—1) +r-2. Then G,= GF,_4 given in Theorem 1.1
(see Fig. 5).
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