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1 . INTRODUCTION

For a given finite graph G and positive integer k, let r(G ; k) de-
note the least integer r such that if the edges of Kr , the complete graph
on r vertices, are arbitrarily partitioned into k classes then some class
contains a subgraph isomorphic to G . The existence of r(G ; k) follows
at once from the well-known theorem of R a m s e y {8] which asserts that
r(Kn ; k) < - for all n and k . In this paper we investigate the behavior
of r(G ; k) for large k as G ranges over various classes of graphs .

We shall usually refer to the k classes as "colors" and the copy of
G in a single class as "monochromatic" . Also, the notation G(m, n) de-
notes a graph on m vertices and n edges .



(1)

2 . TREES

Let Tn denote a tree on n edges .

Theorem 1 .

(i) r(Tn ; k) > (n - 1)k + 1, n > 1, for k large and = 1(mod n) ;

(ü) r( n ;k)<2kn+ 1, n> 1, k 1 .

Proof. To prove (i), we use the result of R a y- C h a u d h u r i and
W i 1 s o n [91 which guarantees the existence of a resolvable balanced incom-

plete block design Dk n having (n - 1)k + 1 points and k(kn - k + 1)
n

blocks of size n provided only that k is sufficiently large and = 1
(mod n) . Identify the points Dk n with vertices of K(n 1)k + 1 . Assign
the color i to all edges of K(n - 1)k+1 which correspond to a pair of
points occurring in the i-th parallel class of Dk n . This is a k-coloring
of K(n - 1)k + 1 which contains no monochromatic connected subgraph on
n + 1 vertices and, hence, (i) follows.

To prove (ü), we apply the elementary fact that for all T,,,

(2)

	

Tn 9 G(m, mn) .

In any k-coloring of K2kn + 1, at" least k 2k2+ 1 edges must have

the same color . Thus, we have a monochromatic G(2kn + 1, n(2kn + 1))
which by (2) contains a copy of Tn .

If the conjecture

(3)

	

Tn q Gtm, [I (n - 1)ml + 1 )

of E r d ő s and V . T . S ó s [41 were known to hold, (1) could be replaced
by

(1 ')

	

r(Tn ; k) < kn + O(1)

which may be asymptotically correct .

- 51 6 -



3 . FORESTS

Let n denote a forest (i.e ., an acyclic graph) with n edges and
no isolated vertices. Let u(Fn ) denote the cardinality of a minimum set
of vertices whose removal completely disconnects n .

Lemma 1 .

(4)

	

r(Fn ; k) >
[
k +2 1 ] (u - 1),

	

k > 1,

	

u > 1 .

Proof. Let t denote [k+11 . Consider K, (, - , ) as a Kt with

Ku _ , 's for "vertices" . Label these copies of Ku _ 1 by 1, 2	t. As-
sign the color i to all edges between vertices i and j for 1 < i < j < t.
Assign the color t - I + i to all edges within the "vertex" Ku _ , labeled
i. This is a (2t - 1)-coloring of Kr(u _ 1) which contains no monochro-
matic copy of Fn (by the definition of u(Fn )) . Since 2t - I < k then
(4) holds . 1

Note that if n has a component with n` edges then it is easy to
show (similar to (1)) that

(5)

	

r(Fn ; k) > (k - 1) n'

However, any n either has a component with Vn edges or satisfies
WFn) > C . Thus, (4) and (5) can be combined to give

Theorem 2.

(6)

	

r(Fn ;k)> k(2-1),

	

k> 1,

	

n> 1 .

On the other hand, there exist for all n examples of n for which
?{Fn ; k) is bounded above by ckC . To see this, we first require a lem-
ma.

Let Sn denote a tree consisting of one vertex of degree n and n
vertices of degree 1 . Let mSn denote the disjoint union of m S n 's .
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Lemma 2 .

(7)

	

mSn q G(t + m - 1, e)

for e > IM 2
11

+ (
n21 +m-l)t, t>m(n+ 1) 2 , m> 1, n> l .

Proof. We proceed by induction on m. For m=l, the lemma

simply asserts that G(t, e) has a vertex of degree > n if e > ( n2 1 ) t
and this is certainly true . Assume, for some m > 1, the lemma holds for
1,

	

, m - 1 .

(i) Suppose G = G(t + m - 1, e) has at least m vertices v 1 , . . .
vm , each with degree > m(n + 1) . Then for each k, 1 < k < m, a

copy of Sn centered at v k may be removed from G and thus, mSn C-
9 G in this case .

(ü) Suppose for some p, 0 < p < m, G has exactly p vertices
with degree > m(n + 1), say v l , . . . , vp . Let G' denote the subgraph
of G induced by the remaining t + m - 1 - p vertices . There are two
possibilities .

(a) All vertices of G' have degree < n - 1 . Thus G' has at most

(t + m - 1 - P)( n2 1) edges and so G has at most

(2)+(p+ n 2 1 )(t+m- 1 -p)

edges. But for p < m - 1 this quantity does not exceed

1m 2 1 1
+(m-1+n 2 1-)t

which contradicts the hypotheses on e.

(b) Some vertex v in G' has degree > n in G' . We may delete
a copy of S n centered at v from G', causing a net loss of at most
m(n + 1)2 edges in G' . Replacing the vertices v,, . . . , v p we have left
a graph G, = G 1 (t + m - l - n- l, e l ) C G where
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provided

e> (n 2 1 )+( n 2 1 +n-1) (t-n+1)
and

t-n+ 1 > n(n+ 1) 2 .

But these conditions are certainly satisfied for t = 3kn, k > 3n2 , n > 1 . /

Thus, if n is a square and k > 3n then

(9)

	

r(Vn Sy,n ; k) < 3kln .
The following example shows that the bound on a in Lemma 2 is best
possible when n is odd . Let H be a regular graph on t vertices of

degree n - 1 . Form the graph G = G (t + m - 1,
(
in 2 1

)
+ ( n 2 1 +

+ m - 1) t) by adjoining a copy of Km _ , and joining each vertex of

Km _ , to each vertex of H. Clearly mSn G.

For k relatively small compared to n, the situation is somewhat
different .

2
11 +( n 2 1 +m-1)t-m(n+1)2 -p(n+1)>

> (M2 2 )+ ( n 21 +m-2)(t-n)

and

t-n+m-2>(m-1)(n+1)2

for t > m(n + 1)2 . Hence, by the induction hypothesis, (m - I)S, c G1
and so mSn C G . This completes the proof of (7) . /

Theorem 3.

(8)

	

r(nSn ; k) < 3kn, n > 1 , k > 3n 2 .

Proof. Let t = 3kn . Any k-coloring of Kr contains a monochro-
matic subgraph G(t, e) where e > k l2 I . By Lemma 2, nSn S G(t, e)
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Theorem 4 .

(10)

	

r(Fn ; k) > cI Ckn,

	

1 < k < n2

for some positive constant cl (independent of k and n) .

Proof . From a finite projective plane PP(r) of order r, we construct
a covering of K

r2 +r+ I
by r2 + r + 1 copies of Kr+ I

as follows. The
vertices of K

	

are the points of PP(r) . The vertices of the Kr+ 1 's
r2 +r+ 1

are just the sets of r + I points which lie on each of the r 2 + r + 1
lines of PP(r) . The edges of the Kr 's cover the edges of K+ i

	

r2 +r+ I
by

the properties of Mr). Now, replace each point of PP(r) by a copy of
Kt where t = [n/yrk ], keeping in mind the restriction k < n2 . This
gives a covering of K

(r 2 + r + I)t
by r'- + r + 1 copies of K(r+ I)t • By

choosing r + I to be the greatest prime power < Jr - 1 (which guaran-
tees the existence of PP(r)) and using the fact that pm + I /pm

	

1 for
the primes pm , we see that for a suitable constant c l > 0, we have cov-
ered K.Iy-kn by < k copies of Kn . Hence, assigning different colors
to the edges of the different K.'s, no monochromatic copy of In has
been formed and (10) follows .

On the other hand, it follows from (7) that for a suitable universal
constant c 2 ,

(11)

	

r(ynS~n)<c 2 lrkn,

	

1 <k<n,

when n is a square . Thus, for both (6) and (10), the upper bound on
r(C Sf ; k) comes to within a constant factor of the general lower bound .

4 . EVEN CYCLES

As might be expected, the more highly structured a graph G is, the
more difficult it is to obtain accurate bounds on r(G ; k) . Still, even the
rough bounds we derive for cycles Cn on m vertices point out the
striking difference in the behavior of r(Cm ; k) for even and odd m . We
first consider the case m even .
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Theorem 5 .

1 + 1-
(12)

	

r(Czn ; k) > c 3 k 2n ,

	

k > 1 , n > 1 ,

where c 3 = C3(n) .

Proof. Set e =

	

1

	

For a large h, h 1- E-color the edges of2n + 1
h

Kh uniformly at random . Since there are (h1- e) 2 ways to color Kh
and there are < Ir 2nc2n 's in Kh then the total number of monochromatic

h

C2n 's in all colorings is < h2nh1-e(hl-e)(2)-2n . Thus, the expected
number of monochromatic C2n 's is no more than

h

	

2n + 1h2n(hl-e)(2)

	

= hl+e(2n-1)
h

(h'-e)(2)

This implies there exists an h 1 `-coloring of Kh in which there are
< h1+e(2n- 1) monochromatic C2n 's formed . Form a graph G = G(h, e)
with e < h 1 + E(2n - 1) by removing one edge from each of these mono-
chromatic C2n 's. By a theorem of N a s h- W i 11 i a m s (7J, G may be
decomposed into no more than y e/2 + 1/2 acyclic subgraphs. If we assign
a new color to each of these subgraphs then we have shown the existence

of an (h l - e + ch
2 (1 + E(2n - 1) ) ) -coloring of Kh which contains no

monochromatic C,,, . Replacing e by 2n + 1 and letting k =
2n

_ (I + c)h 2n+ l we see that for a suitable * c 3 = C3 (n),

1 + 2nr(C,n ; k) > c 3 k

	

,

and (12) is proved . 1

k> 1 ,

	

n> 1 ,

In the other direction we have the following result .

*Since we must have h > h(n) for the preceding arguments to be valid .
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that
	 1+e

(13)

	

r(C2n ;k) <c4 kl+ n -1

	

k> 1 .

Proof. Choose c > 0 and for a large k (to be determined later)
let

Kck 1 + E
be arbitrarily k-colored . Hence,

Kck 1 + E
must contain a

monochromatic subgraph G = G(ckl + E, e) where e > 3 c2k1 + 2e .

By a recent result of B o n d y and S i m o n o v i t s[ 2], G contains
a copy of C2n provided the following two inequalities hold :

(i)

	

n < -	e	
100ck1+E'

Theorem 6. For all e > 0, n > 2, there exists c4 = c4 (e, n) such

00

	

n(ckl + 1)11' <	 e _
lOckl+E

However, it is easily checked that for any S > 0, if a is taken to be
1+ 5 then for sufficiently large c and k
n - 1

	

y

	

(i) and (ü) both hold . Thus,

for suitable c 4 = c4 (5, n),

1+6
r(C2n ; k) < C4 k 1 + n -f

and (13) is proved . 1

Of course, since C2n contains a subtree on 2n -- 1 edges then by
(5)

(14)

	

r(C2n ;k)>(k- 1) (n- 1),

	

k> 1 ,

	

n> 1 .

It is interesting to note that initially for k, r(C2n ; k) is bounded
above by ckn .

In particular, the argument of Theorem 6 can be suitably modified
to establish

(15)

	

r(C2n ; k) < 201 kn ,

	

1 < k < 201 n ,

	

n > 1 .

,
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It has recently been shown [3] for C4 that

r(C4 ; k) < k 2 + k + 1 for all k ,

r(C4 ; k) > k 2 - k + 1 for k = prime power .

H a j n a l and S z e m e r é d i had previously shown (unpublished) that

r(C4 ; k) > ck 2 for some c > 0 .

S. ODD CYCLES

Theorem 7.

(16)

	

2k n < r(C2n + 1 ; k) < 2(k + 2)!n,

	

k > 1 , n > 1 .

Proof. The lower bound follows easily by induction on k . For
k = 1, C2n + 1 ¢ Ken • If there exists a k-coloring of K2kn with no mo-

nochromatic C2n + 1 then by joining two such copies of K2kn by edges

of color k + I we have a (k + 1)-coloring of K2k+ 1n with no mono-
chromatic C2n + 1

We now prove the upper bound . Let to = 2(k + 2)!n and suppose
Kr is arbitrarily k-colored . Then for some color, say color c, , some

to -1
vertex v, has at least t, >

	

k - edges of color c 1 leaving it . Let

G, be the complete subgraph spanned by the t, vertices connected to
v, by these edges of color c 1 . If G, contained a subset of m vertices
which spanned a subgraph Gí containing > mn edges of color c 1 , then
by a theorem of Erdős and G a 11 a i [5] G í would contain a path

Pen - , of 2n - 1 edges of color c 1 . This, together with the two edges
of color c, to v 1 , would form a monochromatic C2n + 1 • Hence we
may assume all subsets of m vertices of G, span < mn edges of color
c 1 . Thus, some vertex v 2 in G, has < 2n - 1 edges in G, of color
c1 . Therefore, for some new color c2 * c 1 , v 2 has a least

t,-I-(2n-1)
t2 >

	

k-1
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edges of color c, . etc .

Continuing this argument recursively, we find that some monochro-
matic C,,, +

1
must occur provided tk > 1 + 2kn. A brief calculation

shows that for to > 2(k + 2)!11, this is indeed the case and so (16) is
established, ü

Another upper bound on iiC,,,+ 1 ; k) which is probably better than
that in (16) is given by the following result .

Theorem 8 . For a suitable constant c,

r(C,,,+ 1 ; k) < ck 3 nr'(C3 ; k) ,

	

n > 1 .

Proof. Let 111 3 denote r(C3 ; k) and let s denote 8111 3 . From
the definition of in 3 it follows that for some c l > 0, any k-colored
KS contains at least c l km3 monochromatic C3 's. Hence for t large, if
Kt is k-colored then each choice of s vertices of Ki spans at least

cl kni 3 monochromatic C3 's. [f we sum this over all t choices of ss
vertices in Kr , we see that each monochromatic C 3 has been counted

t--3at most

	

3 times. Hence, there are at leasts--

cl km 3 ( t

(s-3j
monochromatic C3 's in Kt and so at least

tc 1 1113
	 s

	

C, 1113 1 3

(s - 3)- >

	
s3

-

monochromatic C3 's all having the same color, say, color c' . For t =
= ck3 nm3 this number is at least c3 nt'- . Thus, some vertex v in Kt
has at least c4 nt of the edges of these triangles incident to it . The corre-
sponding vertices of these edges span a graph G which contains all the

third edges of the triangles, i .e ., at least 2 c4 nt edges of color c' . By
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the previously mentioned theorem of E r d ő s and G a 11 a i, if I c 4 > 1

then G must contain a path Pen - 1 consisting of 2n - 1 edges
of color c' . This, together with v now forms a monochromatic C2n + 1 .
By choosing c sufficiently large, we can force c4 > 2 and the argument
is complete .

It is probably true that

r(C2n + 1; k)klim	
r(C3

; k) -- = 0

	

for

	

n > 2 ,

but this is not known at present .

We note here that for the complete bipartite graph K,,,n, the inclu-
sion

(17)

	

K,,, n C G(m,c,m 2-11n )

due to K ő v á r i , S ó s and Turán [6] implies that r(Kn n ; k) < (c2 k)n
for suitable constants c t > 0. The determination of r(Kn ; k) is a well-
known classical problem . It is known [ 1) that

e c 1 kn < r(Kn ; k) < k c 2kn

for suitable constants c, > 0 .

6 . CONCLUDING REMARKS

A number of questions remain open, several of which we mention
here .

(i) Is it true for trees Tn that

r(Tn ; k) = kn + O(1)?

As mentioned before, this would follow from the conjecture

Tn9G(m,[2(n-1)m]+l) . m>n+l .

(ü) It follows from Lemma I that if T is a maximum component
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of a forest F and u(F), as before, denotes the cardinality of a mini-
mum set of vertices whose removal completely disconnects h' . then

r(F; k) > max
I

[k+
1 1 (u - 1), r(T ; k) .

Is this essentially the correct behavior of r(F; k)?

(iii) It is known that K2n can be decomposed into n bipartite

graphs while K
2n+ 1

can not be so decomposed . What is the least odd

circuit which must occur in any decomposition of K,,t
+ I

into n sub-

graphs?

(iv) It follows from what we have proved that for any graph G n
with n edges

r(Gn ; k) > ckyn

for a suitable constant c . Among all such graphs, which have the fastest
growing values of r(Gn ; k)? For example, is it true that

r(Kn ;k)>r(G-k)

	

n ,

	

k> l,

	

n> l,

t2)

with 2 edges?for any graph G (n
z
)

(v) Is it true that

r(C2n + 1 ; k)
lim	 ---0 for n > 2 .
k-•-

	

r(C3 ; k)

It is not even known at present that
log r(C2n +1 ; k)

k	 =0(1),

	

n>2 .

Trivially,

r(Kn ; k) < kkn

but perhaps
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r(K3z ; k ) < c n .

It would be of interest to investigate r(G ; k) when both j G I and
k tend to infinity, but we do not do this here .
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