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On Some Problems of Elementary and Combinatorial Geometry (*) .

PAUL ERDŐS (Budapest, Hungary)

Summary. - The author discusses various solved and unsolved geometrical problems all of which
are o f a combinatorial nature. Some are o f metrical character and some are more number
theoretic .

Elementary geometry has been studied for thousands of years . Nevertheless,
I hope to show in this article that the subject is full of easily stated but difficult,
unsolved problems . host of the questions which I discuss will be of a combinatorial
nature. I certainly do not claim completeness but will mostly only discuss problems
on which I worked myself, and will try to indicate the literature of related problems .
To save space I usually do not give proofs .

1 . - Let there be given n distinct points x 1 , . . ., x, in k-dimensional Euclidean
space . Denote by d(x,, x;) the distance from x, to x; . Denote by Dk(xl , . . ., x .) the
number of distinct distances amongst x,, . . ., x„ and put

One is tempted to conjecture

n

fk(n) = min D,(x,, . . ., x' ) .
x,, . . . s xn

Trivially / 1(n) = n - 1, but in the plane the situation becomes already very dif-
ficult. I proved

(1)

	

(n -1)I - 1 < f,(n) < cl n/(log n)I

and L . MosER improved the lower bound to n1/29I - 1 . It seems certain that
f 2 (n) > nl for every e > 0 if n> n,(,-) and in fact probably f2(n) > e.n/(1ogn)I .
The upper bound in (1) is given by the lattice points in the plane .

Denote by d 2(x .,) the number of distinct distances from x i . Afoser in fact proved

mag d2(x,) > 2 91-1
.

i-<i,m

d2(x) > c, n2/(log n)1
4=1

(*) Entrata in Redazione il 15 giugno 1973 .
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which would be a considerable strengthening of (1) . 1 only showed

n
d,(xx, ),) > 2n .

i=1

Assume now that the points x,, . . ., x„ are the vertices of a convex polygon . I made
three conjectures . 31y first conjecture was that in this case f,(n) _ [n/2], equality,
say, for the regular polygon . This conjecture was proved by ALTMAN . Next I con-
jectured

mag d2(x,)
n

1<i<-n

	

[2]

As far as I know this is not yet settled . Finally I conjectured that every convex
polygon always has a vertex which does not have three vertices equidistant from it .
DANZER to my great surprise disproved this conjecture . In fact be showed that to
every k there is a convex polygon of n, vertices so that every vertex has k other
vertices equidistant from it . Danzer's example is not yet published . It would be of
interest to determine or estimate the smallest possible value of n, .

The lattice points (u, v) . 1 < u, vc nI show that one can give n points x,, . . ., x„

in the plane so that to every x ., there are n` ,nIB'O others which are equidistan tfrom it .
It is not impossible that this bound is essentially best possible ; in other words,
if xl , . . ., x„ are any points in the plane then for at least one x ; there are fewer than
n`./log l ogn points x; equidistant from it. I can only prove this with 20, and would
like to see this bound improved to o(nl) and beyond .

It seemed likely to me that if D,(xl , . . ., x„) is small, then many of the x, must
lie on a line . More precisely : If no k of the x; are on a line, then D 2 (x11 . . ., x„) > E k n .

SZEMERÉDI recently gave a surprisingly simple proof of this conjecture . In fact
he shows that if no k of the x ;'s are on a line then

(2)

	

magd,(x,) > E,n .

To prove (2), denote by

	

the distinct values of the numbers d(x r , x ;),
1 < j E n, j i and assume that there are aG) values of j for which

Thus for every i

(3)

Now if (2) would be false, then s; < 8, n for every i. Thus by an elementary
inequality we obtain from (3)

(4)

d(xi ,x;)

E4

~ a ui? =n-1
Uu=1

n
2 -
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x(i)u
is a minimum if the xui) are as nearly equal as possible . From (4) we have

u=1 2
for sufficiently small e k

n a,

	

n2

	

itl
(5)

	

>	> (k-1) / .
it , u=i

	

4e,

	

2

The left side of (5) has the following geometric interpretation . Take all possible
pairs (x,,, x„) which are equidistant from one of the x i 's. In view of (5) at least one
pair (x,,, x4 ) is equidistant from k x ti 's . Thus the perpendicular bisector of (x,,, x„)
goes through at least k x i 's . This contradiction proves our assertion .

SzEMERÉni now conjectures the following generalization of Altman's result . Let
xl , . . ., xn be n points no three of them on a line . Then D, (x,, . . ., x ..) > [n/2] and in
fact

(6)

	

ma»d,(x,) >
L1]

.

Szemerédi's proof if carried out a little more carefully gives mag d,(x i ) > [nf 3] .
l<a-<n

These problems can be of course extended to k-dimensional space . The lattice
points in k-dimensional space immediately give

(7)

and perhaps (r) is best possible. An easy induction process gives fk(n) > n8k for some
> 0 .
For k = 3 Áltman proved that if x,, . . ., x„ are the vertices of a convex polyhedron,

then A(xl , . . ., x„) > en.. If no three of the points are on a line, perhaps the same
holds, but Szemerédi's proof only gives D3(x,, . . .x„) > en} which may hold for every
set of points in .E3 . Szemerédi's idea easily gives D 3(xl , . . ., x„) > on if we assume
that no four points are on a plane .

Before ending this chapter I would like to state a few more questions on
D 2 (x l , . . ., x„) . Assume that no three x, are on a line and no four on a circle . What
can be said about D.,(x,, . . ., x n ) . Is it true that

ek

(9)

fk(n)
< ek yt 2/k

lim DZ(x„ . . ., x,)/n = W
n=o

Assume next that no three x's determine an isosceles triangle (i .e . assume that
for every 1 < i < j < l D,(x„ x;, x,) = 3) . What can be said about min D,(x,, . . ., x.) .
This question seems to be non trivial even for small values of n e.g . n = 6 . HAI&
BURGER and RuzsA showed that in this case NX,x . . ., x,) > 6 . Similarly we can assume
D,(x;, x;, xk , x,) > 4 or > 5 and ask about min Nx l , . . . , xn ) . I did not investigate
any of these questions carefully and some of them may be trivial . Clearly many
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further related questions can be asked but I leave this to the reader . By the way

if we assume D,(x,, x;, xk , x,) = 6 (for every 1 < i < j < k < l < n) then clearly

A(X11 . . ., xre) _ ~2)

P. ERDŐS, On sets of distances of n points, Amer . Math. Monthly, 53 (1946), pp. 248 .250 .
L . MOSER, On the different distances determined by n points, Amer. Math. Monthly, 59 (1952),

pp . 85-91 .
E . ALTMAN, On a problem of P . Erdős, Amer. Math. Monthly, 70 (1963), pp. 148-157 ;

see also Some theorems on convex polygons, Canad. Math. Bull., 15 (1972), pp . 329-340 .

2 . - Let there be given n distinct points in k-dimensional space whose diameter
is 1 (i .e . mag d(x i , x;) = 1) . Denote by M,.(n) the maximum number of pairs satisfy-

Mi<f<n
ing d(x i, xf ) = 1 (the maximum is taken over all sets x„ . . ., xn of diameter 1). Tri-
vially M,(n) = 1 and ERIKA PANNV< ITZ proved M2 (n) = n . Thirty five years ago
VSzsoNYI conjectured M,(2n) = 2n- 2 . This conjecture was proved independently
by GRt7NBAvm, HEPPES and STxaSZIEVICZ in 1956 . LENT made the surprising obser-
vation that 111,(n)>[n2/4] and I proved

(1)

	

lim Mx,(n)In , = 2 2[ 1

Here I mention the following classical conjecture of Borsuk : let s, be a set in

k-dimensional space of diameter 1 . Is it true that s, can be decomposed into k + 1
sets of diameter less than 1. This is trivial for k = I and easy for k = 2 . For

k = 3 it was proved by EGGLESTON and later a simpler proof was found by GxüN-
BAum and HEPPES. For k > 3 the conjecture is still undecided .

Assume now that min d(x i , x;) = 1 . Denote by m,,(n) the maximum number of
1<i<Sn

pairs satisfying d(x„ x;) = 1 . It is easy to see that m,(n) = it -1 and m 2(n) < 3n.
The later inequality follows from the fact that there can be at most six points at
distance 1 from x i (otherwise 1 would clearly not be the minimum distance) . m 3 (n) <
< 6n since there are at most 12 points on the unit sphere so that the distance between
any two of them is 1 . m,(n) < r, (n) is easy to see, but the best value of r, is not known
for k > 3 .

It is easy to improve m 2(n) < 3n . We obtain with very little trouble that

3n-e,n 1i2 <m,(n)<3rt-c •, n 1,'3 -

	

6n-e,n213<m3(n.)<6n-e,n2/ 3 .

Perhaps

(2)

	

m 2(3n 2 + 3n•+ 1) = 9n 2 + 6n .

If true (2) is best possible ; m2(3n 2 + 3n + 1) > 9n 2 + 3n follows if we consider the

points of a triangular lattice inside and on a regular hexagon of sidelength n .



p . 19, this conjecture was proved by HARBOTH .

Denote by Pk(n) the maximum number of pairs (x;, x,) for which d(x,, x,) assumes
the same value (i .e. P,(n) is the maximum number of pairs (xÉ , xk ) with say say
d(x„ x,) = r .

Trivially P,(n) = n -1 . For k = 2 and k = 3 it is surprisingly difficult to give
a good estimation for P,(n) . I showed

(3)

	

ni+c.11os1oen < P2(n) < 2n312 .

I expect that in (3) the lower bound gives the right order of magnitude for P, (n),
but I was not even able to show P2(n) = o(n 313 ) . SZKMERÉDi and JdzsA just proved
this, but their ingenious proof is complicated and will appear in the proceedings of
the geszthely meeting held in 1973 .

For k = 3, I showed
e2 n413 1oglog n < P, (n) < e, n513 .

It is curious that for k > 4 Pk(n) is easier to handle. I proved that if k = 21,
n - 0 (mod 2k), n > n,(k) then

Pk(n) = n2(l- 1) + n

For odd k the results are slightly less precise .
Let x,, . . ., x„ be n points in the plane . dl , . . ., d, the distinct distances determined

by the points. What are the possible values of l . Clearly f ,(n) < l <
(9 (

fk (n) is defined

in 1), but it is not clear what are the possible values of l . I can show that there is a c

so that l can take every value between 076 31 2 and
(2

(I think this result fails for En312

instead of cn 312 ) . Denote by v i the number of pairs satisfying d(x,., x$ ) = dá , U,>

n
>'U2> . . . > U l , I ut =

2) '
and u, < n by the result of ERIKA PANNWITZ, but u~ = n

is possible e .g. n odd and the x Q form a regular polygon, here of course u,= . . . _

= u[n121 = n. How many distinct values can the u's take. At most n - 1, but I do

not think n - 1 can be attained for n > 4 . Also what in the largest possible t„ for

which I ui > 2 n ? The lattice points shoe- that t o can be as large as n(log n)''

but it is quite possible that for a certain y

I ud= o(YZ 2 )
us> n(loe n)V

i .e. there are relatively few distances which occur more often than n(log n)7 times .
PURDY and I considered the following questions . Let there be given n points

x,, . . ., xn in k-dimensional space . Denote by g( " ) (n) the maximum number of r-dime-

PAUL ERDŐS : On some problems of elementary and combinatorial geometry 103

V . REUTHER, Recently conjectured M2(n)=3n-(12n-3)1, Elemente der Math ., 27 (1972),
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sional simplices whose vertices are chosen amongst the x,'s and which all have the
same non zero r-dimensional volume. We proved

(5) C 4n2 loglog n< g22)(n) < 4rt 512

Probably the lower bound in (5) is not very far from the truth .
In our paper we state a few problems which as far as I know are still unsolved .

Let xl , . . ., x n be it distinct points in the plane how many quadruplets can one form
so that not all the six distances should be different . Let us call such quadruplets
degenerate. We can show that one can give n points with csn3 log n degenerate
quadruplets, also that the number of degenerate quadruplets is always less than e. n'/ 2 .
We conjectured that it is less than n3+s

Let there be given n points in the plane . How many triangles can one have which
have the maximal (or minimal) non zero area . We only have trivial results : The
maximum are can occur at most c, n 2 times and it can occur c, n times .

Let there be given n points in k-dimensional space . What is the largest set of
pairwise congruent (similar) triangles? What is the largest set of equilateral or (iso-
sceles) triangles? One specific question : By the method of Lenz one can give 3n
points in 6-dimensional space the vertices of which determine n 3 equilateral triangles
of size 1 . One would suspect that we can not have n 3 -}- 1 such triangles .

P . ERDŐS, Oil sets of distances of n points . Amer. 31ath . Monthly, 53 (1946), pp. 248-250 .
P. ERDŐS, On some applications of graph theory to geometry, Canad. J. Math., 19 (1967),

pp. 968-971 ; see also On sets o f distances o f n points in Euclidean space, Publ . Math ., Inst .
Hungar. Acad. Sci ., 5 (1960), pp . 165-169 .

P. ERDŐS - G. PDRDY, Some extremal problems in geometry, J. Combinatorial Theory, 10
(series A) (1971), pp . 246-252, see also a forthcoming paper of Purdyin Discrete Mathematics .
For further literature on results quoted in this chapter see Proc . Symp. in Pure Math .,

Vol. VII. Convexity, Amer. Math . Sec., (1963), in particular the paper of L . DAxzER, B . GRÜ.N-
BALTm and V. KLEE, Helly's theorem and its relatives, pp . 101-180 and B . GxtirBAUM, Borsuk's
problemm and related questions, pp . 271-284 .

3 . - Denote by f (n ; k) the smallest integer so that any set of f (n ; k) points in
k-dimensional space contains a subset of n points any two distances of which are
distinct. It is not hard to see that f (n ; k) < n°k but I do not know the best exponent e .
I conjectured

An' 1) _ (1 + 0(1)) n 2 .

TuRáN and I proved f(11 ; 1) > (1=, 0(1)) n 2 and recently Koim6s, Su-LVOx and SzEME-
Rí;Dr proved by a very ingenious and general number theoretic argument that f (it ; 1) <
< en2, their proof is not yet published and will appear in Acta Math . Sci. Hungar .

I proved f(3, 2) = 7 and Croft proved f (3, 3) = 9 (i .e . 9 points in Euclidean
3-space always contain three points which do not form an isosceles triangle) . STRAUS
and I proved f (n ; k) < cn, our proof is not yet published. Probably hm f (n ; k) ltk = 1,
but we have not been able to prove this even for n= 3 .
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L. Al . KELLY raised the following question . Let g(n ; k) be the largest integer so

that there are g(n; k) points in k-dimensional space which determine at most n distinct

distances . STRALTs and I proved g(n ; k) < ek"6 ', our proof is not yet published .

g(n ; k) > ck% is easy and perhaps kim g(n ; k) l kn exists . g(2 ; 1) = 3 is trivial,

g(2 ; 2) = 5 is easy and CROFT proved g(2 ; 3) = 6 . The 2k vertices of the k-dimen-

sional cube determine k distinct distances, thus g(k + 1 ; k) > 2 k . It would be in-

teresting to get a good upper bound for g(k+ 1, k) .
I proved that if s is a set of power m in k-dimensional space then s has a subset s l

of power m so that any two distnees of s l are distinct. This completely fails in Hilbert

space . KAKUTANi and I constructed in Hilbert space a set of power e so that all the

distances are rational . Also one can construct in Hilbert space a set of power c all
triangles of which are isosceles and acute angled . PósA disproving a conjecture of mine
constructed in Hilbert space a set s of power c so that all subsets s l c S of power c

have an infinite subset s 2 any two points of which are equidistant . PósA uses 2N^ _ N1 .

H. T. CROFT, 9 point and 7 point configurations in 3-space, Proc. London Math. Soc ., 12
(1962), pp . 400-424 .

P. ERDŐS - P . TURÁN, On the problem of Sidon in additive number theory and on some related
problems, Journal London Math. Soc ., 16 (1941), pp . 212-215 .

P. ERDŐS, Some remarks on set theory, II . Proc . Amer. Math. Soc., 1 (1950), pp . 127.141 .
L. M. KELLY - E . A. I\ ORDH AUS, Distance sets in metric spaces, Trans . Amer. Math. Soc .,

71 (1951), pp . 440.456, see p . 451 .

4 . - Let there be given n points in the plane not all on a line . Is it true that

there always is a line which goes through precisely two of the points? Such a line is
called an ordinary line . This beautiful question was posed in 1893 by SYLVESTER and

nobody solved it at that time . I rediscovered the question in 1933 and communi-
cated it to T . GALLAI who soon found a simple proof. Other proofs were found later

the simplest in my opinion is due to L . M. KELLY. This question and its generaliza-
tions have a large literature a small part of which I try to give at the end of this
paragraph .

DE BRUIJT and I conjectured that if f(n) is the minimum number of ordinary li-

nes determined by n points then f (n) tends to infinity . This conjecture was proved

by MoTZHIti and later L . 31. KELLY and W. MOSER proved f(n) > [3-n /7], equality for

n = 7 . AIOTZKI_V conjectured that for n > n, o f(n) > n/2 and observed that for even

n there is equality .
Let there be given n points in the plane no n- k are on a line . I conjectured that

these points then determine at least ekn lines (where c is an absolute constant inde-
pendent of k and n) . Some very precise results in this direction were obtained by
KELLY and MosER .

GRAHAM conjectured that if there are given any n points in the plane not all on
a line. Then the lines determined by the points never have property B (i .e . every
subset of the n points which meets all the lines contains all the points on at least one
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of the lines) . This conjecture was recently proved by M . O . RABIN and independently

by MoTZKIN .
I then asked the following questions . Does there exist for every k a set of points

in the plane so that if one colors the points by two colors in an arbitrary way, there
always should be at least one line which contains at least k points and all whose points

have the same color . GRAILhm and SELFRIDGE gave an affirmative answer for k = 3,

but the cases k > 3 seem to be open .

TH. lIoTZKIN, The lines and planes connecting the points of a finite set, Trans. Amer . Math .
Soc ., 70 (1951), pp . 451-464 . For further literature see e .g. B . GRÜNBAUm, Convex polytopes,
p. 404, Pure and Ipplied Math ., Vol. XVI, Interscience John Wiley and sons and Hadwiger
Debrunner and Klee, Combinatorial geometry in the plane, Holt, Rinehart and Winston .

See also B . GRt NBAUMS, Irrangements and spreads, Amer. Math. Soc. Providence, 1972,
and a forthcoming paper of S . BURR, B . GRUNBAL'm and N . J . A . SLOANE . These papers contain
many very interesting unsolved problems and very extensive references . In fact the shortness
of this chapter is due to the fact that I can refer to these beautiful papers .

5 . - In 1931 Miss E . KLEIN asked the following question : Is it true that for every k

there is an n k so that if there are given n points in the plane no three on a line one

can always find k of them which determine the vertices of a convex k-gone . She

proved n 4 = 5, l1AKAZ and TuRAw showed n 5 = 9 . SZEKERES conjectured nk = 2k-2 + l,
this is open for k>6 .

SZEKERES and I proved

(1)

	

2k-2+1
<vzk<

~k-4
(2k_9 .

The proof of the lower bound contains some minor inaccuracies, which were all cor-

rected by KALBFLEiscx .

SZEKERES and I proved that if there are given 2, points in the plane then there

are always three of them which determine an angle > n(1 -I/n) . A previous result of

SZEKERES shows that this result is best possible since to every E > 0 he constructs 21,

points so that all the angles are less than n(1 -1/n) + e . For m points 2n < m <
< 2n} 1 we do not have such sharp results, also there are few precise results in higher
dimensions . I conjectured that 2n+ I points in n-dimensional space always deter-

mines an angle greater than ~T/2 . This conjecture was proved by DANZER and GRtN-

BAUnr . CROFT proved that 6 points in 3-space always determine an angle >n12 . It

is easy to see that this result is best possible .

L . DANZER. - B. GRtiNBAUM, 77ber zwei Probleme bezöglich konvexen Kórper von P . Erdős and
V. L. glee, Math. Zeitschrift, 9 (1962), pp . 90-99 . P . ERDŐS - G . SZEKERES, On some
extremism problems in elementary geometry, Ammales Univ. Sci . Budapest, 3-4 (1960-61),
pp. 53-62 .
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6 . - Before ending this paper I would like to state a few miscellaneous problems
and conjectures . l3EILBRO_rs posed more than 20 years ago the following problem .
Let there be given n points in the unit square . Put

Perhaps for every k

A,(n) = max

	

min A(x, , . . ., x i . )
y1 Xn 1<%1< . . .ik<7ó

	

1

where A(xl , . . ., xk ) is the area of the convex hull of xl , . . ., xk : It is easy to see that
A3(n) > c,/n2 •A3 (n) < c . /n is obvious . The first non-trivial result was due to K . F .
ROTH who proved

A3(n) <
e3

n(loglogn) }

Recently «'. SCHMIDT proved (Journal London Math . Soc., 1972) that A3(n) <
< e4/n(logn) 1 and very recently Roth proved A3(n)<e,/n'+".

It would be very interesting to decide whether A3(n) < c,/n- is true. In his paper
W. SCHMIDT constructs n points in the unit square so that

A,(n) > e"ín# .

Ák(n) > Ck/n l+llfk-21

SCHMIDT points out that the proof of A4 (n.) = 0(1 /n) presents difficulties . It seems
of course that Ak(n) = o(1 11 n) for every k .

ANNING and I proved the following theorem . Let there be given an infinite set
of points in the plane. Assume that the distance between every two of them is in-
tegral . Then the points are on a line . ÜLADI asked the following question : Is there
an infinite set in the plane which is everywhere dense so that the distance between
every two of its points is rational? The answer is probably no but the proof seems
to be nowhere in shight . It is known if one can find 6 points in the plane no three
on a line no four on a circle so that all the distances are integral . Recently IIARBOTH

found such a set of five points . Let G be a denumerable graph with the vertices
xl , x 2f . . . . What is the necessary and sufficient condition on G that there should exist
a set of points xl , x,, . . . in the plane no threee on a line so that the distance between x,
and xf is an integer if and only if x ; and x; are joined in G by an edge . I proved that
if G contains a K(3 : N o ) ( i .e. a complete bipartite graph with 3 white and Na black
vertices) then this is impossible . It is possible (but I doubt it) that if G does not
contain a K(3 ; No ) then such a set x l , . . ., exists. If we further assume that the
set xl, . . ., in the plane does not contain four points on a circle we may get a com-
pletely new situation .

Denote by F(n) the smallest integer for which one can color the points of n-dimen-
sional space by F(n) colors so that two points of the same color never have distance 1 .
NELSON conjectured F(2) = 4 . W. and L . MogER proved F(2) >4 and it is known

that F(2)<6 . In this connection L . MOSER asked the following question : let s be a
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measurable set situated in a circle of radius r (r large) and no two points of r are at

distance 1. Is it true that the measure of s is less than nr14 . Equality for r= 1 .
For large n, F(n) and related problems are studied in a recent paper of LAxtiIAN and

ROGERS, F(n) > cn 2 is the best lower bound known . F(n) > (1-' e) n would follow
fro the following combinatorial conjecture : Let JS J = n A i c S, 1 < i < k. Assu-
me that A i r) A ; never has size [n/4] . Then k < (2 - c,) n . 11ore generally I conjec-

ture that for every 91>0 there is an e > 0 so that if J S J = n, A i c S, 1 < i < k, k >
> (2 - e)n then for every r, slit < r < n(2 _i7) there are two integers 1 < i < j < k
so that lAin A ; I = r .

V. T . Sós and I proved that if there are n + 1 triples in a set S of n ele-
ments, then there are always two of them whose intersection is a singleton, for

n - 0 (mod 4) this is best possible. The simple proof can be left to the reader . We

conjectured that if 1>3, A i c S, 1 < i < k, ~Ai J= l, n > no (l),
k > n-2 (l

- 2 then for

some 1 < i < j < k, !A i 0 A ; I = 1 . This conjecture if true is certainly best possible .

-
To see this consider the

n 2ll
-

2~
l-tuples containing two fixed elements of S . KATONA

porved our conjecture for l = 4 the unpublished proof is not very simple . The

cases l > 4 are open .
The following problem is due to FEJES-TbTH : Let there be given n points xl , . . ., x n

in the plane. Assume their minimum distance is 1 . Minimize

d(xi, x,)

FEJES-TbTii conjectures that the minimum is assumed if the x i's are the vertices

of a triangular lattice .
In a recent paper several collaborators and I studied the following problem : A

finitee set S in n-dimensional space is called Ramsey if for every k there is a finite set S

in m-dimensional space m = nto($, n, k) so that if we color the points of S' by 7 ,-

colors, there always is a monochromatic set congruent to S . We prove in our first

paper that if S is a rectangular parallelepiped then it is RAMSEY . On the other hand

not every set is RAMSEY, we show that a RAMSEY set is spherical (i .e . lies on a sphere) .

The simplest unsolved problem is whether every non-degenerate triangle is RAHSRY .

Another problem is the following : Color the points of the plane by two colors . Is

it true that all triangles can be monochromatically imbedded with the possible excep-
tion of at most one equilateral triangle. lfany further problems will be stated in

our papers on this subject .

K. F. ROTH, On a problem of Heilbronn, 111, Proc. London Math. Soe ., 25 (1972), pp . 543-549
P. ERDŐS . Integral distances, Bull . Amer . Math. Soc .
P. ERDŐS - R. L . GRAHAM - P . MONTGOMERY - B . L . ROTHSCHILD - J. SPENCER - E. G .

STRAUS, Euclidean Ramsey Theorems, J . Combinatorial Theory, 14 (1973), pp . 341-363,
two further papers of the same titlee and by the same authors will apper in the Proc . of the
Keszthely meeting; held in 1973 .


	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10

