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1. INTRODUCTION

If ¢ and H are graphs (which will mean finite, with no loops or
parallel lines), define the Ramsey number r(G,H) to be the least num-
ber p such that if the lines of the complete graph Kp are colored red
and blue (say), either the red subgraph contains a copy of & or the blue
subgraph contains H. The diagonal Ramsey numbers are given by r(G) =
= r(G, G). These definitions follow those of Chvatal and Harary [1].
Other terminology will follow Harary [2]. These generalized Ramsey
numbers have been much studied recently; see [3] for a survey.

Although most of the work done so far in this field has concerned
exact evaluation of (G, f) for rather special cases, it is also natural to
ask asymptotic questions. This paper is motivated primarily by the follow-
ing definition and conjecture.
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Definition. A set {G,,G,,...} ofgraphsiscalled an L-set if there
is a constant ¢ such that

"Gy e~ p(G)

for all i, where p(G;) denotes the number of poin s of G,. Also, call
a set of ordered pairs (G,, H;)) of graphs an L-set if

G, H)y<c- (p(G) + p(H)) .
It is often convenient to speak of L-sequences as well.

Conjecture. Any set of graphs or pairs or graphs having bounded ar-
boricity is an L-set.

Several comments are necessary at this point. First, note that the ar-
boricity of a graph may be written

q(F)
e ) —1"

where the maximum is over all subgraphs of G and where ¢(F) is the

number of lines of F. Note that we might as well have taken the maximum
over all induced subgraphs. For our purposes, a possibly more natural para-
meter than the arboricity of G is the edge-density, given by

The conjecture could equally well have been stated for this parameter
instead of arboricity. Later, yet another convenient parameter will be intro-
duced. Note that the conjecture could have been stated in more universal
terms, namely that for some function f,

G, H) < (p(G) + p(H)) - fp(G) + p(H)) .

The above conjecture has not been settled, but it has passed several
tests that have been proposed. Each of these leads to a theorem of interest..
Often the theorems take the form of estimating the Ramsey number of
graphs in terms of that of related, simpler graphs. In fact, estimations of
this sort form an important secondary motivation for this paper.
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Many sets of graphs are already known to be L-sets. In the following
lemma, we summarize what we will need.

Lemma 1.1. The Ramsey numbers nK, ,.K ) rP,, Pn), and
r{Cm : Cn) are all no greater than max {2m, 2n}. Moreover, if T is any
tree on n points, H(T)<dn+ 1.

The first three Ramsey numbers mentioned above have been evaluated
exactly, and the above bound is not sharp. See [3] for references and the
exact results.

We also call attention here to [4], which will be a companion paper
to this one. The basic differences are that [4] will consider primarily lower
bounds, and will emphasize cases in which fairly precise results can be given.

2. UNIONS OF GRAPHS

One of the simplest operations that can be performed on graphs is
the disjoint union of graphs. The following easy lemma is taken from [5];
much sharper results are proved there, but this result suffices for our pur-
poses.

Lemma 2.1. Let F,G, and H be graphs, with p(G) =k, p(H) = 1.
Then, if m,n=>1,

rF,GUHY< max (n(F, G) + 1, r(F,H)) ,
rmG,nE<r(G,HY+ (m— 1Dk+ (n—- 1.
From this lemma, three theorems follow immediately.
Theorem 2.1. Let
{(Fy,G,), (Fy,G,),...} and ((F,H)),(F,;,H,),...}
be L-sets; then so is
{(Fy, Gy VH Y, (Fyy Gy VH,); o
Theorem 2.2. Let {G,,G,,...} {H1=H2’ ...}, and {(G,,H,),
(G,,H,),...} be L-sets. Then so is
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{G, UHL,GZUHZ,...}.
Theorem 2.3, If G and H are any graphs, then
{G, 2G, 3G, ...}
and
(G, H),(2G, 2H), . . .}
are L-sets.

Lemma 2.1 has another significant consequence, namely that the
above conjecture does not tell the whole story about L-sets.

Theorem 2.4. The set
(4K, 4°K,, 4°K,, .. .}
is an L-set.

Proof. It is known (see [6] or Lemma 4.2 below) that r{KJ-) < 4
s0 by Lemma 2.1,

r4K) <4 + 204 - 1).
Since p(4fKi) =i+ 4, the proof is complete.

In Section 4 we will give an example in which the graphs are con-
nected.

It is natural to ask whether the conditions of Theorems 2.1 and 2.2
can be weakened. It is clear that in Theorem 2.1, one cannot omit either
of the two conditions, although they might perhaps be weakened. We will
show that the same is true of the three conditions of Theorem 2.2.

In the first place the condition that {(;',.} be an L-set cannot be
removed, for let G, = Kf and H,=iK,. Then it is easy to see that
n(K;,iK,) = 3i— 2 and it is not hard to prove (see [7]) that r(iK,)=
= 3i — 1. On the other hand it is well-known that r(K,)> 272 (in fact,
see Lemma 2.4 below), so that {G;} and hence {(Gi-u H;} is not an
L-set.
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We will see shortly that we cannot remove the condition that
{(G;, H)} be an L-set. First we state a result taken from [8].

Lemma 2.2. Let G and H be graphs without isolated points. Let
X be the chromatic number of G and let n be the number of points in

the largest connected component of H Then
WG, H)yz(x—1yn—-1)+ 1,

Theorem 2.5. Let G; = 4iKi and H, =K, , where n=1i- 4
Then {G‘.} and (H.} are L-sets, but {(GI.,H,.)} and {G‘.UHI.} are not.

Proof. By Theorem 2.4 and Lemma 1.1 respectively, {G;} and {H,}
are L-sets, and in fact r(GI._) and r(Hi._} are each no more than 2i- 4‘.
But by Lemma 2.2, HG,,H)>i(i—1)- 4", so {(G,H)} isnotan L-
set. Finally, it is obvious then that {Gi U H‘.} is not an L-set.

The above shows that the ratio

rG, H)
max (rH(G), HH))
can be made arbitrarily large for suitable ¢ and H, and in fact can be
as large as a constant times the logarithm of max (r(G), r(H)). We will
whow in Section 4 that

min (1(G), r(H))
nG, H)
can also be made as large a constant times the logarithm of r(G, H). This
will be more difficult. In neither case have we been able to show that a
constant times the logarithm is the largest the ratio can be, and in fact we
have no reasonable upper bound on either ratio. It seems reasonable to
conjecture, however, that the logarithm is the correct bound.

3. GRAPHS OF THE FORM G + K,

Note that if {G;} is a set of bounded arboricity, so is {G, + K;}.
(Recall that G + K, is the graph formed by adjoining one point to G,
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connecting that point to every point of G.) This suggests a test of the
conjecture; and indeed we will see that if, in addition, {G,} isan L-set,
then so is {G, + Kl }. We begin with the following two results.

Lemma 3.1. If n=rG,H), then
NG+ K H)<nK, .. H).

Proof. Consider a two-colored graph on nK, ., H) points. If there
is a blue H, we are done. If not, there is a red Kl , and it is clear that
there must now exist a red G + Kl or a blue H.

Lemma 3.2. If m=rG+ K ,H) and n=r(G,H + K,), then
r{G+K1,H+K1)€m+n.

Proof. By Lemma [.1, such a graph contains either a blue K, w OF
a red Kl e and it is clear that in either case we are done.

It turns out that the most useful parameter of graphs to consider in
this section is neither the arboricity nor the edge density, but o(G), de-
fined as follows:

o(G) = max &(G) ,
FCG

where &(() is the minimum degree of points in F. In [9], a graph with
o(G) = k iscalled k-degenerate. The relationship between o¢(G) and p(G)
is given in the next lemma.

Lemma 3.3. For any graph G ot consisting entirely of isolated
points,

p(G) < 0(G) < 2p(G) .

Proof. To see that o(G) < 2p(G), note than any graph F has a
point of degree < 2q(F)/p(F). To prove that p(G) < o(G), assume the
contrary and let #, © G be such that p(G) = q(F)/p(F,). Since by
hypothesis 0(G) < p(G), we may remove from F, points of degree
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< p(G) until we have reduced FO to a single point. But this is impossible,
since the number of lines remaining will then be q(FO) — (p(FO) —1)-
- q(F, )/p(FU) > 0, a contradiction.

We now proceed to prove two lemmas about r(K, , H) which will
permit the use of Lemma 3,1,

Lemma 3.4. Let G have m points, and let F be derived from G
by removing a point of degree d. Then

HK ) < max (r{Kl Sy Flydln — 1)+ 1) .

1.n*

Proof. Take p to be the right hand side of the above inequality and
two-color Kp; now assume that there is neither a red KI! , hora blue
(. Certainly there is either a blue F or a red Kl,n, so the graph con-
tains a blue F. Let D be aset of d points of F such that if a point
outside [ is connected to each point of D by a blue line, a blue graph
isomorphic to G results. Then each of the dn — 1)+ | points not in
I must have at least one red line connecting to D. Therefore at least
one point of D must have a red degree at least

dn—- N+ jd=n—-1+ 1/d;

since the degree is an integer, it is at least », giving a red Kl " and the
desired contradiction.

Lemma 3.5. IJ p(G)=m, olG) =d, then
r(Kl‘n.G)sa'- (n—1+m.

Proof. We use induction on m. The result is trivial for m =1, so
assume it to be true for some m —1, m > 2. Let F be formed from G
by removing a point of degree < d, so by Lemma 3.4,

HGr, Kl‘n)é max (r{/", Kl.n), din— 1D+ nm).

It remains to show r(F, K, ) <d(rn 1)+ m. Butclearly o(F) <o0(G),
so this holds by the induction hypothesis, completing the proof.

Lemma 3.6. Let r(G,H)=1t, rG)=u, p(G)=m, p(H)=n,
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o(G)=¢, o(H)=d. Then

(3.1 G+ K, ,H)<dit—-1)+n,

(3.2) HG+ K, H+K))<(c+d)@t—-1D+m+n,
(3.3) HG+ K )< 2(u—1)+2m.

Proof. Relation (3.1) follows direetly from Lemmas 3.1 and 3.5.
Relation (3.2) follows from (3.1) and Lemma 3.2, and (3.3) follows from
(3.2) upon setting G = H.

From Lemmas 3.6 and 3.3 we immediately deduce the following two
results.

Theorem 3.1. Suppose {G,,G,,...} isan L-set having bounded
arboricity. Then {G, + K,,G, + K,,...} isan L-set.

Theorem 3.2. Suppose {(G1 i H’l h 7 (GZ’HI ),...} isan L-set, with
the G; and H, having bounded arboricity. Then {(G, + K, ,H, + K,),
(G, +K,,Hy, +K,),...} isan L-set.

Lemma 3.6 can also be used to estimate (K, G). We give two the-
orems. Note first the obvious fact that if p(G)=n, nK,,G)=n.

Theorem 3.3. If F is any forest on n points, then 1K, F)<
S(m-Dm-N0)+1. If F is in fact a tree, then rK ., F)=
=(m-1nr—-1)+ 1.

Proof. It is clear that F is a forest if and only if a(F)= 1. In this
case, relation (3.1) of Lemma 3.6 yields

r(Km,F)gr(Km_l,F)+n— i B

and starting with #(K,, F)=n, we easily find that r(K ,F)<
<(m—1)(n—1)+ 1. The second part of the theorem now follows from
Lemma 2.2.

The above theorem (or rather the second part; but the first part is a
trivial consequence) has been proved by Chvdtal [10], Stahl [11] has
evaluated r(K, , F) for all forests F.
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Theorem 3.4. Let p(G)=n, o(G)=d= 2. Then

m—Dd"~! —n+d

nK, , G)< =

Proof. By relation (3.1) of Lemma 3.6, an upper bound is given by
HK,,G)<u,, where the u  satisfy the recurrence relation

u, <du, , +n-—d,

subject to the initial condition u, =n. Observing that u«, must be of

the form xd™ + y, it is easy to solve for x and y. Simplying the re-
sulting formula for u, , we find that

:(n—l)dm‘l—n+a'

e d—T ’

H

OY<u,

and the proof is complete.

A slightly weaker result than this has been proved by Stahl [11],
using similar methods.

Lemmas 3.1 and 3.2 imply that (G + Kl )< 2m, where r(G)=n
and r(_Kl a0 )= m. It is possible to give a result that is often sharper.

Lemma 3.7. Let n=r(G) and m= HK, ,,G). Then

m?—2n+ 1

r(G+K1)< e

Proof. Let s=r(G + Kl) -— 1 and consider any two-coloring of KS.
We first observe that if the graph contains a red and a blue K, i with
all their endpoints in common, we are done, since the set of # endpoints
must induce a monochromatic (/. Moreover, if the graph contains a mon-
ochromatic Kl‘m, we are also done, since we must than have either the
configuration mentioned above or a monochromatic G + K] outright.

Consider now any point of the graph and assume that the point has
k red lines emanating from it to a set A of points and s — k — 1 blue
lines emanating to a set B, where k<m—1 and s-k—1<m— 1.
If any point of A4 has n red lines going to B, we are done, so we may
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assume the number of red lines running between A and B is no greater
than k(n — 1). Similarly, the number of blue lines running between A
and B is no greater than (s —k — 1)(n — 1). But the total number of
lines between A and B is k(s — k — 1). For this to be possible we must
must have

k(s—k—-1)<k(n—1)+G-k-1n—-1)=(G-1)n-1).

The left hand side of this is minimized when k& is as large or as small as

possible, that is, when k=m -1 or s—k —1=m - 1. In either case

the left hand side becomes (m — 1)(s — m). Consequently, we must have
(m—1)(s —m)<(s — 1)(n — 1), which is equivalent to

mim-—1)—-(n-1)
m-—n :

S <

From this the result follows directly.

Lemma 3.7 is strong enough to establish an interesting asymptotic
result,

Theorem 3.5. If n=>r(K,), k=2, and G denotes the graph
K, U(n—k)K,, then for some absolute constant c,

kn + l%r(G+Kl}ékn+cn/k.

Proof. The lower bound follows from Lemma 2.2. To prove the up-
per bound, observe that n(G)=n whenever n= ’(Kk ). From Theorem
3.3, m=rG, Kl,n-] =(k-1)m+ 1, so by Lemma 3.7,

((k—Dn+ 1> —2n+1 _

HG + K)) <

(k-—-2n+ 1
_Kn? —2kn* +n® ~2k—1n+1-2n+1 ,
- i T A < kn+ cn/k.

This completes the proof.

This result yields 7(G + K,)= kn + O(n/k) and thus an asymptotic
formula as k, and hence n > r(K,), becomes large, although not when
k is fixed. In [4] it will be shown that under conditions similar to those
of Theorem 3.5, it is in fact true that HG + K,) = kn+ 1. We have
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included Theorem 3.5 to illustrate Lemma 3.7 and also for the sake of
completeness, since this theorem will be used in the proof of Theorem 4.4.

As has been mentioned in the proof of Theorem 2.4, r(K;)< 4k
so that we may take n this small for each k. We thus have a set of graphs
H_ for which r(H,)~ cp(H,) log p(H,) for some c. This, and some
similar sets of graphs, are the only sets of graphs not L-sets for which we
can prove even as precise a result as Theorem 3.5. It is interesting, then,

that for some such graphs the exact result mentioned above can be proved.

4. SOME SPECIAL RESULTS

In this section we prove three main results, Each asserts that certain
Ramsey numbers can be smaller than other related ones by any arbitrary
factor. The first of these results is that promised in Section 2, namely that
HG, H) can be much smaller than both r(G) and r(H). It is first neces-
sary to give three more lemmas.

Lemma 4.1. Let G be a bipartite graph with two maximal sets of
independent points A and B having a and b points respectively. Let
each point of A have degree at least d. Then there are s pointsin A
and t pointsin B such that these s+ t points induce a copy of Ks,r
in G, provided that

Y

Proof. The number of subsets of B having ¢ points is [I;] Since
each point of A has degree at least d, each point of & is the center of
at least l‘:] t-stars Kl_r. Hence, if s and ¢ satisfy the above inequality,
at least s of the ¢-stars meet the same ¢ points of B, yielding the de-
sired Ks' g

The next result is well-known; it was first proved in [6].

Lemma 4.2.

m+n—2]

r(Km,K"}é[ il
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Note that this implies 7(K,) < 4", as stated in Section 2.

The following lemma is taken from [12], which is based on a method
of Erdés [13].

Lemma 4.3. Let p,q and s be the number of points, lines, and
symmetries of G respectively. Then

nG)> (s29-1Hllp
Hence r(K, )> 2" 12 and K, )>2".
We now proceed with the following result.

Theorem 4.1. There exist graphs Gy,Gyy 1 and H,H,,... such
that {(G, H,))} isan L-set, but {G;}, {H;} are not.

Proof. Choose any k>3 and then choose an n and an m >n
such that

(4.1) 2m[”‘] > kn [2'"] ,
n n
4.2) km > r(Kk, Kkn’kn), and

A3 m< K, .-

To see that this is possible, observe that

[2m]/[m]<3" if m>2n,

f H

(2n+l)k—2]
il

k
X < (2kn)

Ky, Ky on) < 1K Ky ) < [
if n=3, and
(4.4) Ky in) > 2%,

where the last two inequalities come from Lemmas 4.2 and 4.3 respectively.
Hence, if n is chosen large enough, an m can be chosen satisfying (4.1),
(4.2), and (4.3).

Now set H, =K, .. , and let G, be the graph oi km + 1 points
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consisting of a point connected by one line each to m copiesof K,. We
first note that by Lemma 2.2,

rnG,) > (k- Dkm ,
so that {G.} is not an L-set. Also, by (4.4), {H, } is not an L-set.

It remains to show that {(G,, Hk)} is an L-set; we will prove that
r{Gl,(,H,c ) < 3km, which clearly suffices. Color the edges of a K3km red
and blue, and assume there is neither a red G, nor a blue H, = Kkn,“.
By (4.2) and Lemma 2.1, r(2mkK, , H,) < 3km, so we may assume that
the graph contains a red 2mK,. There remain at least 2m points not
in this red 2mK, ; we will show that the two-colored complete graph on
the points of the 2mK,_, together with 2m remaining points, contains
ared G, orablue H_.

Map this graph to a two-colored sz’Zm with maximal independent
sets A and B as follows: To each of the 2m red copies of K,, assign
one point of B and to each of the remaining 2m points, assign one point
of A. Color a line joining a point of 4 to one of B red if the cor-
responding star joining a point to a K, has any of its lines red; color it
blue in the contrary case, that is, if all the lines of the star are blue. Observe
that if the new graph contains a red Kl‘m with one point in 4 and m
in B, then the old graph contains a red G, . If on the other hand the
new graph contains a blue Kkn'n with kn pointsin A and n in B,
the old graph contains a blue K, . = H, . Hence, the proof will be
complete if it can be shown that one of these two cases must always hold.

To see this, we use Lemma 4.1 with a=b=2m, d=m, s= kn,
and f= n. Note that since any point of A with m lines emanating
from it yields a red G,, we may assume each point of A has at least
m blue lines emanating from it. Since 4.1 asserts that

(2
kn < Zm[mJ /[ m] ;
n n
Lemma 4.1 applies to the blue graph, and the proof is complete.

Note that this proof has shown in fact that the ratio
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min (r(G), r(H))
nG, H)

can be as large as log r(G, H).

The next theorem makes good a claim made in Section 2, namely
that connected graphs can be given that behave like those of Theorem 2.4.

Theorem 4.2. If G,=4%K, . + K,, then {G,} isan L-set.

Proof. We will show that in fact #(G,) < 2(18i + 2)4%. We begin
by observing that by Lemma 4.2, (K, ) <r(K,;) < 421 Letting n =
= (4i + 1)4%!, we see that nK, ,, K, ;) <4n, since by Lemma 4.1, for
this to be true it is sufficient that

i< 2n[z]/ [2:’] +1,

which is certainly the case. We now apply Lemma 2.1 to find r(42’K BAS
<4 +4i- 4% = (4i+ DA% =n and HK,, ,AYK, )< 440+ 1;42*
+ 2i- 421 = (18i + 1)42%1, Finally, from Lemmas 3.1 and 3.2,

nG) < 2r(G,, 4*'K, )< 2r(K, . 4*'K, )< 2(18i + 1)4%
and the proof is complete.

Note that by Lemma 4.3, a necessary condition for {G;} to be an
L-set is that there be a constant ¢ such that q(G,)/p(G,) < c log p(G.)
for every i. Thus Theorem 4.2 gives the best possible order of growth.
Note that Theorem 3.5 gives a set of graphs for which the above inequality
holds, but which is not an L-set.

The final result of this section requires a generalization, taken from
[1], of the Ramsey numbers defined in Section 1. If % is a set of graphs,
let /%) be the least number p such that if the lines of Kp are two-
colored, the graph contains a monochromatic G for some Ge€ %, If
4% ={G,,G,} is natural to ask about the ratio min (r(Gl),r(Gz))/r(’g’).
The ratio is clearly at least unity; we will show that it can be at least a
constant times the square root of the logarithm of r(%). It will be con-
venient to prove the result in two stages.
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Theorem 4.3. Let k, >k, > 2 and n > n, >r(Kk2). Let G;=
=K, + (K, VU(n, —k)K,), i=1,2, and let ¥ ={G,G,}. Then
']

kyny + 1< (%)< 2k, — Dny + 2.

Proof. The lower bound is established by considering a red le"z

and its completementary (blue) graph. The components of the red graph
are too small to contain either G, or G,, and the chromatic number
of the blue graphis k, <k + 1<k, +1, so that it cannot contain G,
or G, either.

To establish the upper bound, consider a two-colored complete graph
on Z(kl — I)n, + 2 points. By Lemma 1.1, there is a monochromatic,
say red, star of degree (k; — 1)n, + 1. Denote the set of endpoints of
this star by A. By Theorem 3.3, either the points of A induce either a
red Kkl or a blue K'l,n2. In the former case, we have ared G,. In

the latter case, we have a red and a blue K, ny with all n, endpoints
in common. Since n, > ’(Kk2)= we must have a monochromatic G, .

Thic ompletes the proof.
The next result indicates the significance of Theorem 4.3.

Theorem 4.4. Let the assumptions of Theorem 4.3 hold, but assume
k
in addition that k n, = k,n,, k,= kf and n, =4 2 Then for some
constant c,

min (H(G ), H(G,))/r(%) > Ve log r(F) .

Proof. By Theorem 3.5, min (G ), HG,)) = klnl. By Theorem
43, H¥) < 2k];12. Hence the ratio in question is at least n1/2n2 =
= k,/2k, = Vk,/2. But k, = logn,/log4>c, logr(¥) forsome ¢, so
the result follows.

Note that this result is the best that can be given using graphs of this
type.
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5. POWERS OF CYCLES AND MORE GENERAL GRAPHS

A significant test of the conjecture of Section 1 are the squares, or
higher powers, of cycles. In fact, we will prove a rather general result. Let
£,.(G)=L,(G)[K,], in the notation of [2]. This graph may be described
as follows. Replace each point of degree d with a K, . If two points
are adjacent in G, connect the corresponding complete graphs with a
Kk,k’ in such a way that all such copies of Kk,k are disjoint. An ex-
ample of a graph G, £ (G), Z,(G) is given in Figure 1 below.

We will show that there is a function f such that if A(G)=d (the
maximum degree of (), then

", (G)<fld k) - rG).

It is easy to see that Cfn c Z, (Cﬂ) and that powers of paths and cycles
of other orders can also be obtained easily as subgraphs of graphs of the
same form. This is the connection between the above result and the title
of this section. Before proving that result several lemmas will be necessary.

Lemma 5.1. Let p(G)= n,o(G)=d. Then
r(mK,, G)< nd' + ml .

Proof. The above inequality follows from Theorem 3.3 and 3.4 and
Lemma 2.1.

Lemma 5.2. Let G and H be graphs related in the following way:
For every point of G there corresponds a complete graph K, CH, and
for every pair of points that are adjacent in G, the corresponding com-
plete graphs are connected by a complete bipartite graph K, ; , ., where
d is the maximum degree of G. Then %£,(G) CH. '

Proof. (Note that the conditions implicitly entail kd </.) For each
point of G of degree d' <d, we may pick d' sets of k points each
from the 4' copies of de,kd entering the X, corresponding to that
point of G, and such that all d' sets are disjoint. If we do this for every
point of G, the set of all points of chosen induce a copy of #,(G) in
H.
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L(G) Ly(G)

Figure 1

Lemma 5.3. Let (¢ and H be graphs related in the following way:
For every point of G there corresponds a set of | points of H, and
for every line of G there corresponds a set of lines joining points of the
two corresponding sets, with the property that at least t points of either
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set are each joined to at least t points of the other set. Suppose further
that t>1—1/d, where d is the maximum degree of points of G. Then
GCH

Proof. We build up a copy of G in H a point at a time. We must
do this in such a way that each point is joined to those points already
chosen which are adjacent to it in , and also so that it is joined to at
least ¢ points each of the adjacent sets of / points from which no point
has yet been chosen. Let V' be any of the sets of / points from which
no point has yet been chosen. Suppose that x points adjacent to v have
already been chosen any y sets adjacent to v have not yet had points
chosen from them. Note that x <d — y and that either x or y may
be zero.

We see that at least [/ — Ix/d > ly/d points of V are adjacent to the
x adjacent points already chosen. Denote the subset of points of ¥ for
which this is true by U. Each point of U is adjacent to at least [/ — {//d
of the sets of ! points to which V is adjacent and from which no point
has yet been chosen. Hence there must be at least one point of U of the
sort we seek. Thus we may continue to choose points until G has finally
been built up. This completes the proof.

Lemma 5.4. Let d and k be given. Then there exists an | such
that if the complete bipartite graph K“ is two colored, either the red
subgraph contains a K, ., or thereisa t>1—1/d such that at least
t of the points of each maximal independent set of the K, , are connected
by blue lines to at least t points of the other.

Proof. Note that the result is trivial if d =0 or 1, so we assume
d > 2. Suppose that the blue subgraph does not have the desired property.
Then at least ¢ > !/d of the points of one (in fact, each) of the maximal
independent sets of the K“ have at least //d red lines going to the
other. We now apply Lemma 4.1 and find that the red subgraph will con-

tain a de‘kd provided that

kd<(l/d)[;§]/[;d]+ 1
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But as / becomes large the right hand side is asymptotic to
(/) fay ik = 1f2q*4

Hence, it is sufficient to choose [ about as large as 2d*¢. This com-
pletes the proof.

We are now in a position to prove the principal theorem of this sec-
tion.

Theorem 5.1. There exist functions fl and )"2 such that if
max (A(G), A(H)) = d, then

1 £ ,.(G), H)< f(d, myr(G, H) ,
r(¥,.(G), ¥, (H) < f,d, nrG,H) .

Proof. Note that it is necessary to prove only the first inequality,
since the second follows by applying the first to itself.

Let m= r(G, ), n=p(H), and let | be a number large enough
that Lemma 5.4 is applicable. By Lemma 5.1, r(mK, H) < nd! + mi. Con-
sider a two-colored complete graph on that many points; we will show that
such a graph contains a red ¢ (G) or a blue H. Since we are done if
there is a blue //, we may assume that the graph contains a red mK,.
We focus our attention on the graph induced by the points of these m
red K.

Let us form a new two-colored complete graph of order m from
this graph. Let each red X, correspond to a single point of the new graph.
Consider the two-colored K, , connecting any two of the red K, in the
original graph. By Lemma 5.4, at least one of the two alternatives of that
lemma must apply. If the first applies, namely that the two K, are con-
nected by a red de,!cd’ color the corresponding line in the new graph
red; otherwise color it blue. Since the new graph has m = (G, ) points,
it contains either ared G or a blue H. In the first case, Lemma 5.2
applies and the original graph contains a red ¥, (G); in the second, Lem-
ma 5.3 applies and the original graph contains a blue H. This completes
the proof.
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Various consequences follow from the above theorem. For instance,
if S,,(G) isthe m-th subdivision graph of G, then (S, (G))" c £,(G),
provided k> m/2 + 1. In fact, if H is formed from G by inserting at
least m and no more than n points into each line of G, then it can
be seen that H™ & ¥, (G), provided k> m/2 + 1. From this, the next
result follows, announced at the beginning of this section.

Theorem 5.2. If m is fixed, then {P["} and {C["} are L-sets.

6. SUBDIVISION GRAPHS AND RELATED GRAPHS

From Theorem 5.1 and the above discussion it follows immediately
that if {G;} isan L-set with bounded degree, then for m fixed, {S, (G}
is an L-set. It is also easy to prove from Theorem 5.1 that if G is any
graph, then {S(G)} isan L-set. In this section we will give direct proofs
of stronger results.

Theorem 6.1. Let G be any graph on n points with the property
that any two points of degree = 3 are at distance at least three. Then
nG) < 18n.
18n(18n — 1)

4

are the same color, say red. We show that the red graph contains a graph

in which every point has degree at least 5x#. Remove a point with degree
< 5n, if any, Now remove a point with degree < 5n from the new graph,
if any. Continue this process until we obtain a graph of the desired type,

or until all points have been removed. But the latter case cannot happen,

since after 13n points have been removed we are left with a graph with

Sn points and at least

2
18n(12n— D). fants— 1) = 328 . 173);&@5:_1)_

Proof. Consider a two-colored Kan‘ At least lines

lines, a contradiction.

Thus we have a red graph H with every point having degree =5n,
and its complementary (blue) graph. We will show that either the red graph
contains G or the blue graph contains X, ,, . We attempt to build up

=P =



ared G in a straightforward manner. First, choose arbitrarily a set S of
points to be used as those points of G which have degree > 3. Examin-
ing the remaining points of G, we see that they and the edges incident
to them, must belong to certain paths or cycles. If such a path is connect-
ed at only one end to a point of S, or to no point of S, we may clear-
ly build it up in the red graph with no difficulty. In the remaining cases
we have either a path connected at both ends to points of §, or a cycle
containing one or no point of S. In the case of a cycle containing no
point of S, choose any point arbitrarily to serve as a point of the cycle
and adjoin it so S, designate by 7 the set S to which such points
have been adjoined.

To build up G, it is necessary to form paths or cycles % R
where (.14, €T and k> 3. We will call these paths or cycles links.
Again, we have no difficulty in forming a path 7, ...¢ 5 in A It
remains to choose f, _, and # _, so that the edges be 3ty _as
ty oty y» and 1, arein H. But by hypothesis, #, , and f,
each have degree at least 5n. From this fact we see that we can find 4»
distinct points Ups s ooy lags Vysoss s Vap such that £, 3U; and vjrk
are in H for each { and j and such that no u; and Y have been
used already in building &. If any edge uy; is in H, the desired link
can be completed. If not, the blue graph contains a KZn,Zn‘

It remains to show that the existence of a blue th‘zn guarantees
a monochromatic &. Let us denote by ¢ and V the two maximal in-
dependent sets of 2n pointsin the K2n, o+ By Lemma 2.1, HG, nkK,) <
< 2n. Consequently, fixing our attention on {/, we see that either U
inducesared G or a blue [n/2]K2. Thus the proof will be complete if we
show that in the latter case, UU V' induces a blue <. Choose a set of
points in V' to correspond to the points of 7. There is no difficulty in
building up any necessary paths for the desired blue copy of G that are
not links, nor in building up links with even length (and therefore an odd
number of points not in 7). But building up a link of odd length is not
difficult either; simply incorporate one of the edges of the blue [n/Z]K2
of U. This completes the proof.
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This theorem is of interest in that it shows a rather large set of graphs
to be an L-set. It is probably true that the theorem holds with the prop-
erty of G weakened to that of having no two adjacent points of degree
> 3. The authors have not succeeded in showing this, but it has been pos-
sible to deal with the case in which G is the subdivision graph of X,
that is when G = §,(K, )= S(K,).

Theorem 6.2.
nS(K,)) < 3n? + 3n.

Proof. Set N = 3n? + 3n and consider a two-colored K, . Note
that p(S(K,)) = n(n + 1)/2 = N/6. At least half the lines of this graph are
of one color, say red. Call the red graph H. In what follows, only H
will be considered. Since N is even, at least N/2 points of H have de-
gree > NJ2; call the set of such points S. Observe that if § contains
n points such that each pair of such points are mutually adjacent to
n(n+ 1)/2 points of S, it is easy to construct a copy of S(K,) in H.
To do this, choose the n given points to be the n points of degree
n—1 inthe S(K ); it is clear that the rest of the points can be chosen
without difficulty.

Suppose that some point x of S has the property that there exist
points y,,¥5,...,¥, of S such that for each i, x and y, are mu-
tually adjacent to fewer than n(n + 1)/2 points of S. Then any pair of
y’s are mutually adjacent to at least n(n + 1)/2 points of S, and by the
above observation we are done.

Now suppose that there is no point x as above. If any point z, is
chosen from S, then with fewer than n exceptions, each other point of
S in mutually adjacent with z, to at least n(n + 1)/2 points of S.
Discard the exceptional points and choose z, from the remainder of S.
Again there will be fewer than »n exceptional points to be discarded. In
this fashion, choose points z,,z,,...,2,. This can clearly be done, since
fewer than n? of the = N/2 = 3n(n + 1)/2 points of S will be discard-
ed. For each pair of z’s there are at least n(n+ 1)/2 points adjacent to
both of them. Hence by the observation made earlier, a copy of S(X)
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can be constructed. This completes the proof.

Note that we have actually shown an extremal result, namely that any
graph with N = 3n? + 3n points and at least N(N — 1)/4 lines contains
S(K, ). Using the same methods, Theorem 6.2 can be improved, but only
slightly. We conjecture that the true Ramsey number of S(K,,) is about
2n?. Theorem 6.2 suggests a possible generalization. Let k be fixed and
for each n define G, as follows. Choose a set 4 of n points and a

¥
set B of [;} points. For every k-tuple {a;,...,a,} of points of A4,

let there correspond a unique point of B and connect this point to all
points of the k-tuple. For k=2, G, isjust S(K,). By the conjecture
of Section 1, for each & the set {G,} should be an L-set, but we have
not been able to prove this.

Theorem 6.3. There is a constant ¢ such that if G is any graph
on n points formed from K, by inserting at least one point into each
line, then r(G) < cn.

Proof. We will only sketch the proof, which is based on the ideas of
Theorems 6.1 and 6.2. Consider a two-colored K, , where ¢ remains to
be chosen. Without loss of generality we may assume that at least half the
lines are red. In similar fashion to the proof of Theorem 6.1, we remove
points until we have a graph H, every point of which has degree at least
Sn, but this time we also want every point to have degree at least 2p(H)/5.
If ¢ is sufficiently large, it is easy to see that this can be done, and this

determines c.

By the argument of Theorem 6.2 we can again find a red S(K ).
Now some paths of length two must be replaced by longer paths which we
call links, as in the proof of Theorem 6.1. As in that proof, we attempt
to build up the desired links, and again we either succeed in forming a red
G or we find a K2n, ,n in the complementary (blue) graph of H. Pro-
ceeding as before this leads to a monochromatic G, completing the proof.
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7. PROBLEMS AND CONJECTURES

Many interesting questions are suggested by the results proved here.
In the first place, the conjecture of Section 1 remains unsettled. The au-
thors offer a total of $25 for settling it. However, it seems to be quite dif-
ficult, and probably further work must continue to be in the direction of
partial results. One significant question is the following: If {G,} isan L-
set with bounded arboricity, is {G; X K,} necessarily an L-set?

It is not completely clear what sets of graphs (or pairs of graphs) can
be seen to be L-sets using the results of this paper, and to characterize
such sets is an interesting problem in itself. Certainly there exist sets of
graphs of bounded arboricity which have an unbounded number of points
of unbounded degree, and except for those of Section 6, the results of this
paper do not apply to these graphs. Another set of graphs beyond the reach
of our results is that of graphs consisting of portions of a square lattice
work.

Most of the results of this paper leave some question open. For ex-
ample, Theorems 2.5 and 4.1 show that the ratios of certain Ramsey num
bers can be as large as a constant times the logarithms of those Ramsey
numbers, and Theorem 4.3 shows that certain ratios can be as large as a
constant times the square roots of the logarithms. A natural question is
whether or not these ratios can be made larger; we have not been able to
give any useful upper bound to these ratios. It seems reasonable to con-
jecture that the bounds given here are in fact of best possible order. Indeed
each result is of best order in the restricted sense that one cannot do bet-
ter with graphs of the same type as used there. Another question left open
by Theorem 2.5 is whether or not such a result can also be proved with
all the G, and H, connected.

Theorems 2.4 and 4.2 give examples of L-sets {G,} for which
q(G)Ip(G;)) ~ clog p(G;) for some constant c. Lemma 4.3 shows that
an order of growth no greater than this is a necessary condition that a set
of graphs be an L-set. Moreover, Lemma 2.2 shows that for such an order
of growth to hold, it is necessary that the chromatic number of the graphs
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be bounded. Perhaps any set of graphs satisfying the above two conditions
is an L-set. An interesting test case is the set {Q,} of cubes. The authors
offer a total of $25 for deciding whether the set of cubes is an L-set.

Most of the results of Section 3 are easily seen to be relatively sharp,
at least in some instances. An exception is Theorem 3.4, which for fixed
G gives a bound on AKX, , G) which is exponential in m. Probably the
true behavior is like a power of m. When G = K|, this is an old prob-
lem in classical Ramsey theory.

The results of Section 5 suggest several questions. If {G;} is a set of
graphs of bounded degree, the same is true of the set of line graphs
{L(G,)}, the set of total graphs {7(G))}, and the set of k-th powers
{Gl.k} for a fixed k. If {G;} is known in addition to be an L-set, what
about the other three sets? The results of Section 5 bear on this question,
but fall far short of answering it.

The bounds that come out of the proof of Theorem 5.1 are extreme-
ly large; can they be improved? The bounds amount to arithmetic progres-
sions in m with the constant term a double exponential in 4d and the
coefficient of m a single exponential. While the true bounds must certain-
ly be fairly large, one might expect constants not quite so huge.
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