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Introduction
Rational Chebyshev approximation to reciprocals of certain entire
functions by reciprocals of polynomials on the positive real axis has
recently attracted the attention of many mathematicians . By developing
certain new methods of approach we successfully attacked ([3]-[6]) some
of the related problems . This paper is a continuation of our earlier papers
([3]-[6] ) . The results of this paper improve and extend some of the
earlier results with simplified proofs (cf . Theorem 3) . For a reader
interested in this topic, this paper may serve as a guide by illustrating
some of the techniques (old ones with refinements, as well as new) which
we used to solve some of the very interesting and difficult problems of
the field (cf. examples 1, 2, 3 of Theorem 5) .

Notation and definitions
Let f (z) = Ek o akzk be any entire function . As usual, let

M(r) = max f (z) j, m(r) = max an rn = a„ I rv,
lzl=r

	

n~--1

where v = v(r) is an increasing function of r . M(r), m(r), and v(r) are
known as the maximum modulus, maximum term, and the rank of the
maximum term, respectively . If there exists more than one term which
is equal to the maximum term, then we take the one with the largest
index . Sn(z) denotes the nth partial sum of f (z) . 7rn denotes the class
of ordinary polynomials of degree at most n, 7rna,n denotes the class of all
rational functions of the form rm,n = pm/qn, where pn2 E 7r., qn E 7Tn-
Throughout our work we denote (k >, 1)

lk(x) = lk-1[logx], lo(x) = x ;

ek(x) = ek-1[eXpx], e0(x) = x,

n(lln)(l2n)(l3n) . . .(lk+ln)2 = A(n) ;
(ljn)(l2n)(l3n) . . .(l k n) 1 +6 = B(n) ;

( 1 1n)( 1 2n)( 1 3n) . . .(lkn) = D(n) .
Proc . London Math . Soc. (3) 31 (1975) 439-456
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As usual we write

(1 )

	

AO, (f-') A O, = inf

where 11 .11 is the uniform norm on [0, co) . As usual we define the order p
of f (z) as follows ( [2], p. 8). The entire function f (z) is of order p if

log log M(r)lim sup	 p (0 - p S 00))
r >oo

	

log r

If p is positive and finite, then we define the type -r and the lower type w,
corresponding to the order p, as follows
(2) lim suprP log M(r) = T, lim inf r- P log M(r) = w

r1co

	

r1co

p E77.

1

	

1
f (x) p(x)

(0<p<X,0<w'<T<co).

It is known ([2], p . 13) that for functions of finite order we can replace
logM(r) by log m(r) in the above formulae . That is,

log log m(r)lim sup	
log r P (0

S P S 00
)'rco

	

g
(T) lim sup r-P log m(r) = T, lim inf r- P logm(r) = w

r,00

	

r->oo

(0<p<00,0<w'<T<00) .

If f (z) is of order zero, then we define as in [111, p . 145, the logarithmic
order p j = A + l, and if A is strictly positive and finite then the correspond-
ing logarithmic types are defined as follows

log log M(r)

	

log log m(r)lim sup	
log logr =

lim scup	
log log r

= A+1 (0 < A < oo),
r~00

lim .up
(log n+i = lim sup (log) +1 = Ti,

limiinf ~1og ~+i = limmf(log~~+i = wi (0 < A < oo, 0 < wl < T l 5 co) .

It is also known ( [20], p . 45) that if f (z) = úk o a k zk is of order
p (0 < p < oo), type r, and lower type w (0 < w < T < oo), then

lim sup(n/pe) I an IP/n = T,

and
(3)

n~~o

lim inf(np/pe) 1 a., IPi% > w,

for a sequence of numbers np satisfying the condition
(4)

	

lim sup(np+l/np) ~< xi/x2,
p,G0
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where x l is the greatest and x2 the smallest root of the equation

(5)

	

x log(x/e) + (co/-r) = 0 .

LEMMA 1 ([7], pp. 534-35) . Let p(x) be any algebraic polynomial of
degree at most n . If this polynomial is bounded by 117 on an interval of
total length l contained in [- 1, 1], then in [- 1, 1],

(6 )

	

1p(x)I S MI Tn(41-1- 1)I

where 2Tn(x) _ (x+V(x2-1))n+(x-V(x2-1))n .

LEMMA 2 ( [20], p . 34) . Let f (z) _ Eó akzk be any entire function offinite
order p. Then for any e > 0, and all sufficiently large r , ro (E), we have

M(r) S m(r)rP+ E .

LEMMA 3 ([10], Problem [1], part I) . Let

.0

	

X)
(7)

	

f (x) = 1 + E dld2d3 . . .d~ (d;+1 > dj > 0, j

Then for x = dn , the nth term of the series (7) becomes the maximum term .

For the detailed discussion of our results, we need the following known
results .

THEOREM I ( [8], Theorem 6) . Let f (z) _ Ek o a kzk be an entire function
of order p, type T, and lower type co (0 < co < T < oo), with ao > 0 and
ak , 0 for all k , 1 . Then

lim sup(A 0,n ) 1in < 1 .
n Sao

THEOREM II ([12], Theorem 7') . Let f (z) _ ~k o a kzk (a o > 0, ak , 0,
k , 1) be an entire function satisfying the assumptions that 0 < A < oo and
0<co, <Tj<oo. Then

n_ao

lim sup(AO,n)n-i-a/A) < 1 .
nco

THEOREM 111 ([13], Theorem D) . Let f (z) _ ~,k0 akzk (a o > 0, ak , 0,
k , 1) be any entire function of order p (0 < p < oo), type T, and lower type co,
with the assumption that T < 0w for a 0 < 2 and 0 < co 5 T < oo. Then

lim inf(Ao,n )l/n , (co/T2 2P+1)xi/Pxa .

THEOREM IV ( [3], Theorem 1) . Let f (z) = Eku akzk (a o > 0, ak , 0,
k , 1) be any entire function . Then for each E > 0 there exist infinitely
many n such that

Ao,n < exp(-n(logn)-1-E) .
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THEOREM V ([3], Theorem 2) . Let f (z) _ Zk=o akzk be any entire function
of infinite order with non-negative coefficients . Then for each E > 0 there
exist infinitely many n for which

Ao,n > exp( - sn) .

THEOREM VI ( [18], Theorem ) . Let f (x) = ex . Then
hm(í,Qn )1/n = 1

3 •
n,co

Careful observation of the above theorems naturally leads to the
following questions .

QUESTION l. Can one obtain under the assumptions of Theorem I the
fact that

lim inf(4,n ) 1/n > 0 ?
n1oo

QUESTION 2. Is it possible to improve the upper bound and provide a
simple proof to Theorem I ?

QUESTION 3. What conclusion do we get by dropping the assumptions
on the logarithmic types in Theorem II?

QUESTION 4 . Is it possible to prove Theorem III without the
assumption that T < Bco ?

QUESTION 5. Is it possible to replace (log n) 1 +E by (l,n)(l2n) . . . (lkn)1 +E
for any k > 1 in Theorem IV?

QUESTION 6 . Given an sn > (log log n)-1 can we replace s in
Theorem V by en ?

QUESTION 7. Are there any other functions besides ex for which we
get, for a (n) which tends to infinity,

lim(íi0,n)1/V1(n) = S (0 < 8 < 1) ?
n-c*

These questions motivated the work of this paper and in it we answer
all of them .

New results
THEOREM 1 . Let f (z) = Iko akzk (ao > 0, a k > 0, k > 1) be any entire

function. Then for each s > 0 and any k > 1, there exist infinitely many n
such that

(8 )

	

Ao.n < eXP(-n/(lln)(l2n) . . .(lkn)1+E) .

Proof. If f (z) _ ~0 akzk is entire, then limn w I an 11/n = 0 . Let
un = a,-1/n . Then un oo. Now it is easy to observe from the
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convergence of

cc
11 (1+[A(j)]-1),

7=ek+i(2)
that there exist arbitrarily large values of n for which for each l > 0,

(9 )
Z

un+! > 2bn fl(1+[A(n+t)]-1) .
t=1

443

From (9) it follows, with l = n, that

(10)

	

u2n > un(1+n[2A(n)]-1) .

Given any e > 0, we can show now that there exist infinitely many n
such that

(11)

	

f("17 ) 82n(X ) 10,00)

< exp(- 2n[B(2n)]-1) .

By the definition of ao,n (8) follows from (11) . To prove (11), observe
that, on the one hand, we have for all x > 0,

1

	

1

	

1

	

1
0 \ S2n(x) f(x) \ S211(X ) \ anxn

Now for any given E > 0,Í let x > u n(1 + [B(n)]-1 ) . Then

(12)

	

anxn (1+[B(n)]_1)n , exp(2n[B(2n)] -1 ) .

On the other hand, let x < un(1 + [B(n)]-1 ) . Then for all n > nl ,

(13)

	

0 \ 1 _ 1 = f(x)-S2n(x)
< ao-2 E akxk.

'82n(X) f(x)

	

f(X)82n(X )

	

k=2n+1

By (9) and (10), we have for all k > 2n,

(14)

	

ak < unk(l+n[2A(n)]-1)-k .

Thus, from (13) and (14), for x < un(1+[B(n)]-1), we obtain

(15)

	

ao 2 Z akxk < ao 2 ú

	

I + [B(n)] 1 k

k=2n+1

	

k=2n+1 I+n[2A(n)] 1

A simple calculation based on (15) gives us
W

an2

	

akxk < exp(-2n[B(2n)]-1) .
k=2n+1

(16)

Inequality (11) now follows from (12) and (16) .

THEOREM 2 . For every large c > 0 and k > 1 there is an entire function
of infinite order with non-negative coefficients for which there exist infinitely

f r. may not be the same at each occurrence .
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many n such that

Ao,n > exp(-cn/(lln)(l2n) . . .(lkn)) .

Proof. Let f (x) = ek+1(x) (k 1> 1), and let us suppose that for all large n,

(17)

	

f 1 to,~) <
exp(-cn[D(n)]-1) .

Let x = lk(n[D(n)]-1) = rl(k), say (k > 1) . At this point

f(x) = ek+1(x) = exp(n[D(n)]-1) •
Then, by (17),

(18)

	

jpj < exp(2n[D(n)]-i) .

But at x = lk (ne2[D(n)]-1 ) = r2(k), say,

( 19 )

	

f (X) = ek+1(x) = exp(ne 2[D(n)]-i ) .

By applying Lemma 1 to (18) we get for the interval [0, r 2]

(20) Ip I \
exp~	

2n	
lT

(2lk(ne2[D(n)]-1) _ 11
(lln)(l2n) . . .(lkn) n

lk(n[D(n)]-1

	

l)

x exp(2n[D(n)]-1)exp(4n[D(n)] -1 ) .

From (19) and (20), it is easy to see that

I	1	1

i

	

~f(x) p(x) to,ral'
exp(-cn[D(n)]-1),

for some constant c, which contradicts our earlier assumption (17) .
Hence the required result is proved .

THEOREM 3. Let f (z) _ lko akzk (ao > 0, ak ~> 0, k > 1) be any entire
function of order p (0 < p < oe), type r, and lower type w (0 < w < -r < oo) .
Then

0 < (ew 2/e 2ó)/v(e+DT2(e+1)4P)xl/x2 < liminf(íio,n )P/n
n~w

limsup(A )P/n < exp(-w/(e+1)T) < 1,
n~00

where x l is the greatest and x2 the smallest root of equation (5) .

Proof. If f (z) is an entire function of order p (0 < p < co) and type 7-

(0 < r < oo), then, for each s > 0, there is an n 2 = n2(e) such that, for
all n >, n2 (E), we have ( [2], p. 11)

(21 )

	

1 a,,, I < ( pe-r(I+c)/n)nlP .
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As earlier, we have

(22)

	

0

	

1
-

1
S a-2(f(x)-Sn2(x)) S a~ 2

	

akxk
Sn2(x) f (x)

	

o

	

k=n2+1

m a0-2

	

akrk (0 < < r) .
k=n2+1

On the other hand, for each r > 0, we can find ([2], p. 12) an n3 = n3 (r)
such that for all n >, n3t and x > r,

1

	

1

	

1

	

1

0 \ 8 n3(X ) f (X ) \ 8n3(X) \ m(r )
Now two possibilities occur in (23) : (i) n3> n2, or (ii) n3 <, n2 . If (') is
true, then in (22) we replace 8112 (x) by Sn3(x), that is,

(23)

(22')

If (ü) is true, then in

(23')

where

(24)

445

1

	

1

	

M
0	-	 ao2 E akrk.

Sn3(x) f (x)

	

k=n+1

(23) we replace S,,3(x) by Sn2(x), that is, for all x > r,

1

	

1

	

1
0

	

Sn2(x) -f(x) m(r) ,

r = (n/p7- (e+1)(1+a))1/P .

In either case we choose n = max(n 2 , n 3 ) . A simple calculation based on
(21) and (22') gives us, for 0 S x S r,

(25)

	

0 S	 1 -	 K	 1

	

a -2

	

akrk
SAX) f(X)

	

0
k=n+1

\
a0-2

	

peT(1 + E)

	

k/p

k=nn~+l (p-r(e+ 1)(1-á-E))

w
a0-2

	

(	
k=n+1 \e

8

+ 1

klp

8

	

(n+l)/p

	

(e+1)1/P
\ ap 2

\e + 1)

	

((e + 1) 1 /P - el /P)

On the other hand, from (2') and (23'), for all r > r 3 (£),

--

	

l
(26) m(r) > exp[rPw(1-e)] = exp	

cun(1 a)

	

_
((e	

w

	

E E)

	

a ( (1
n

(
(1

1 E

e))
, p,

t n3 denotes the rank of the maximum term .
$ It is easy to verify that n3 (r) <, n(r) for the value of r given in (24) .
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where e is arbitrary . We easily obtain from (25) and (26) that

limsup(Ao,n )lin < exp(-w/pT(e+1)) < 1 .
n- oo

Now we shall prove the other inequality of Theorem 3 . As the coefficients
of f(x) are non-negative, we have from (2), for all large r >, r4 (e),

(27) 0 S f (x) < f(r) = M(r) 5 exp(rPT(1 +e)) (0 ,< x ,< r, r i r4 (e)) .

Now from (27) we have, for
r = {wn(l + 2e) -1p -1,r-2(e + 1)-1}11P = H(n, p ) w, T),

that
wn

	

1~p
0 <1 f (x) f 1(1 2p(e + 1)(1 + 2e)

nw(l +e)
5 exp

( 1 + 2E)Tp(e+ 1 )

< G(n, p, w, T) = exp
(

nw
-r(e + 1 )p

1

AO,n

for all n >, n4 . Next, we take the rational function rOn = 1/V*n
which gives the best approximation in the sense of (1) ; that
n> n5 ,

1

	

1
( 28 )

	

AO,n - f(x) p*(x) X

11

110,.1

A simple manipulation based on (28) gives us

(29 ) -f 2 (x)/(f(x) +
A
O
n)

pn
-f(X)

(r0,. E -O,n)
is, for all

f2(X)1
( 1 -f(x)) (0 < x 5 Ii(n, p, w, -r» .
~O,n

Clearly the right-hand side of inequality (29) is monotonic increasing
with x. Hence we write

(30 ) II pn -.f(x) II < G(2n, p, co, T)/
(AO

	 1 -G(n, p, w, ,r)
I,n

(0 < x S H(n, p, w, T)) .
Next, let

(31 )

	

En(f) = inf Ilpn(x) -f(X) II [0,H(n,p,6),r1] •
Pn E 7!n

From (30) and (31) we get, for all n >, no ,

(32)

	

EX) < G(2n, p, co,T)/(
~

1
-G(n, p, w,T)) .

O,n
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To obtain a lower bound for En we use a result of Bernstein
which gives us, in the interval [0, H(n, p, w, T)],

nw (n+v/p a	 n+1
(33)

	

En i (,2(e +1)P(1+2E)

	

22n+1

From (32) and (33) we get

(34)

	

an+1[ (22 p+i T)]n
+
1 <G(2n,p,w,T)/~~1 -G(n,p,w,T)~

O.n

for all n >- n 7 .
From (3) we have, for a sequence of values of n = n, +I satisfying

the assumption (4),

(35 )

	

anp+1 % (Pew(1-£)/(np+1))(np+1)/p

From (34) and (35) we get

(36) ~peco(1-a)1 (np+1)/p [ H(np, p, w, ,r)]np+ 1
l np + 1

	

22np+1

(38)

n,oo

447

([1], p. 10)

1

	

1
G(2n, p, w, T)/

(AO
	 - G(n, p, co, T) / .

jjj

It is easy to obtain from (36) that

1

	

G(2np , p, w, T) (np + 1)(np+l )/p22%+1
(37)	. < G(np , p, w, T) +

Qnp

	

[{Pew(1 - e )I11/pH(np, p, w, T)]%+1

2npw

	

~4pT2p(e+1)(1+28)1 (np+v/p(np +I (np+l)/p
< 2ex/

	

lp	 l

	

l
1

	

///

	

pT(e + 1)p J

	

w 2 (1 - E)e n

Now by adopting the technique used on p . 373 of [19] we can easily
obtain from (37) and (4) the fact that

ew2

	

xl/xs
liminf(~1o,n )p/ n
n->w

	

(e2 (o/ 7( e+1)72(e+t)4 )p

REMARKS . (1) Under the assumptions of Theorem 3, Reddy ([16]) has
recently obtained the following sharper result

Jim inf(Ao,n)l/n > (22+1/p rl/pw-1/p - 1)-2.

(2) There exist entire functions which fail to satisfy the assumptions
of Theorem 3, but for which we can still find two constants cl and c 2
(0 < c l < c2 < 1) such that

0 < cl < lim inf(A o,n )1 /n

	

lim sup(Ao,n )1/n < c2 < 1 .
n,oc

	

n,oo
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EXAMPLE 1 . Let

f(X) = 1 + ,x=
(log nl nxn .

2 nn

This is an entire function of order p = 1 and type T = oo. For this function
the maximum module M(r) is given by

(39)

	

f(r) = M(r) - exp(r log e l .
This function clearly satisfies the growth condition (3.1) of [8] ; hence
there exists a constant q > 1 for which

(40)

	

lim sup0o,n ) 1 /n = 1 < 1 .
n1oo

	

q
From (4) it is easy to see that, for all large n > na (e),

(41)
From (39) we have

Let
(42)
That is,

qln = [q(1 -,,)]n < 1/AO.n-

0 < f(x) < f(r) < exp(rlog(r/e))r

rlog(r/e) = 2nloggl .

n log q,r
2 log(2n logql)

From (41) and (42) we get, for all n > n o ,

0 < f (x) < f (r) < exp(r log(r/e)) < qln/2 < 1/A o,n .

Now proceeding exactly as in the proof of the second part of Theorem 3
we get, for the value of r given in (42) and for all n > nlo,

n

	

n+1 a

	

1
(43)

	

log( In log ql)

	

22+1 5 qln/ (~
n
- qln/2

From (43) it is easy to see that
1 < 22n+l gln[log(2nloggl)]n+l

+gln/2
AO,n

	

nn+lan+1

22n+1 n log(2n log q1 ) n+1 (n +
1)n+1 + qln/2

<

	

ql ( n log(n + 1) )

In other words,

	1 < 22n+z n n + 1 n+1 log(2n) +log log ql n+l
(44)

	

Aon \

	

ql ( n

	

(

	

log(n+1)

	

)
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A simple manipulation based on (44) gives us, if we take ql to be very
close to q,

Let
r

(48)

	

2log(r/e)

	

2n log ql .

Then for some c > 0, r - n log(cn log q l ) . From (45), (47), and (48) we
obtain, for all n > n12 ,

0 < f (x) <, f (r) < exp
(1 + £)r <

qln/2 <	 1
e log(r/e) ~

	

~1o,n
and

(49)

From (49) we get as before, for an = (n log n)-n,

lim inf(Ao n ) 1/n > 1/4q .

EXAMPLE 2 . Let

f(x) = 1+ ú=2 (n
x
log nn ) n

This is an entire function of order p = 1 and type z = 0 . For this function

(45)

	

f (r) - exp	
(e log

r
(r/e) •

f(r) satisfies the growth condition (3.1) given in [8] ; hence there exists
a q > 1 such that

(46)

	

lim sup(a o,n ) 1 /n = 1 < 1 .
n~oo

	

q

As before from (46) we can find, for all n >, n11(8), a ql < q such that

( 47 )

	

Ao,n _< q1-n .

lim inf(~1o,n ) 1 /n > 1/4q .
n~oo

n(n+1) [log(cn log q l ) ]n+lan+l
22n+1

n100

	 1qln/
Go n

_ qln/2

THEOREM 4 . Let f (z) = 1 + Zk, akzk , ak = (d1d2 . . .d k )-l with dk+1 > dk > 0
(k >, 1), be an entire function of finite order p . Then for any s > 0 and all
large n > n13 (s), we have

(50)

	

d 1d2d3 . . .dn

	

<

	

d1d2d3 . . .dnd2n+1	
24ndn2(P+e)dn+ldn+2'

•' d2n

	

0,2n-1

	

do+ldn+2 • . •d2n(d2n+1 - d2n)

Proof. The second half of (50) follows from the proof of Theorem 5 of [4] .
5388 .3 .31

	

EE
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To prove the first half of (50) observe that, for 0 x < r = dn , Lemmas 2

and 3 hold and that, for all n > yt(e),
(51)

	

0 f(x) < M(r) < m(r)&+E

m(dn)dnp+e

= dnndnP+e < do+ldn+2-d2n(d2n+1 - den) _ (den+1 - d2n)
dld2 . . .dn

	

2d2n+1
	 _

2J(dn)d2n+1

This follows because when x = do we know from Lemma 3 that the nth
term becomes the maximum term, that is,

m(dn ) = dnn/dld2 . . .dn .

As before we choose p*(x) E7r2n_1 such that p*(x) gives the best approxima-
tion to f (x) in the sense of (1), that is,

(52)

Let
(55)

(56)

(58)

A0,2n-1

A simple calculation based on (52) gives us (as in the proof of
Theorem 3)

(53 )

	

Ilf- pzn-111 < {f (x)}2/IX0,2
-1

-f(x)1 (0 < x < r=dn) .

From (51) and (53) we obtain

(54 )

	

Ilf -p2-1 11

S dn2ndn2(P+E)/(d,d2 . . .dn)2(Ao,2n-1 dlddndn) (0 < x < dn)

From (54) and (55) we get

1 1

	

1
f(x) p * ( x) (P* E72n-1)'

[0,0~')

E2n-1(f) =

	

min IIf- 92n-1 I[0,dnl'
92n-1 e 772n-1

E2.-1(f)

2n 2t +E)

	

2	1 	dnndnP+E
do do P /(d1d2 . .

.dn) G0,2n-1 d1d2 . . .dn) (0 5
x

	

dn ) .

To obtain a lower bound for E2.-I(f) we use (as before) a result of
Bernstein (j], p. 10), which gives us for x = dn ,

(57)

	

E2n 1(f) i a2ndn2n/22n22n-1 .

From (56) and (57) we get, for all n > n14,

J dn< 24n-ldn

	

l2(P+a)	 1 - dnndnP+e

( )

	

/ Á0,2n-1 d,d2 . . .dnl
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From (58) it is easy to calculate that

24ná
n2(p+e)<

Á0,2n-1

Therefore for all large n, we have

d1d2d3 . . .dn

	

< A

	

<	d1d2- 2ná2n+1	
24nán2(p+e)á n+ldn+2** ,d2n \

0,2n-1

	

do+ldn+2* , *d2n(á2n+1 - den)

EXAMPLES . (1) Let

1

n- CC

M

J(dn)

xnf (x) = 1 { V1 21og 231og 3 nlog n

For this function we get from (50)

lim(~ )1/(nlogn) _ iO,n

	

- 2

45 1

It is interesting to note that this function fails to satisfy the assumptions
of Theorem 7 of [8] and Theorem 7' of [12], because p) = A + 1 = oo. But
our present method which is much simpler than the methods used in [8]
and [12] gives us more precise information .

(2) Let

'0= 1

	

xn
f(X)

	

-}-

	

223 344 . . .nn

This function also fails to satisfy the assumptions of Theorem 7 of [8]
and Theorem 7' of [12], because in this case A = 1, that is, pl = 2 and
T1 = 0. For this function we get by (50)

hm(í On ) 1 /nzlogn = e-1/4

(3) Let
n-oo

.) Xn
f (x) = l +nY

~2
(1 < 8 < 00) .

For this function A = 0, whence it also fails to satisfy the assumptions of
Theorem 7 of [8] and Theorem 7' of [12] ; but we obtain by (50)

hm(í ox)2-n-1 = 1/5 .n,oo

THEOREM 5 . Let f (x) = 1 + IT=] (d1d2 . . .dk)-1xk (dk+1 > dk > 0, lC i 1)
be an entire function of infinite order . Then for each s > 0, there exist

infinitely many n for which

A0,2n-1 i [K(dn)]1+e .
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Proof. As before when x = dn, dnn/dld2d3 . . .dn becomes the maximum

term of f. Let to = xn/dld2 . . .dn . Then

(59)

	

f(x) = tn,+tn,-1(1+to-2 +tn-3+ . . .+to)
to-1 to-2

But

and so on. Hence

(60)

Similarly

and so on. Therefore

(62)

where

(63)

+ tn+1
\ 1
+ tn+2 + tn+3 + . . .

tn+1 tn+1

tn+2 =	x

	

dn+1<

	

,
tn+, dn+2 dn+2

tn+3

	

x2

	

<
\
dn+112

tn+1 dn+2d n.+3

	

dn+2

tn+2 + tn+2 + . . .
tn+1 tn+1

tn-2 < (Cln-l)

	

tn-3 <
ldnt

	
-1//

12
'n-1

	

dn

	

tn-1

	

dn

tn-2 + tn-3 + . . .
tn-1 tn-1

From (59), (60), and (61), we obtain

<	dn+,
dn+2 - dn+1

dn-1
< dn - dn-1

f (x) = tn + tn-,(1 + ~Q ) + tn+1( 1 + ~p1),

192 1 < d

	

3n ndn-1

	

1~Q11 <
	 dn+1

do+2 - do+1

From (62) we get, for x = dn ,

.f (x) 5 d1dd3n. .dn
+ tn-1( l. +gyp)+ tn+1( 1 +~P1)

For all sufficiently large n we can find an s > 0 such that

.f(dn) < [K(dn)]-(1+E)l8

Now let us suppose that for all large n and all x (0 < x < oo)

1

	

1	 -		1+E.64

	

.f (x) p2n-1(x)

	

[ ( n)~



RATIONAL APPROXIMATION ON [0, cc)

	

453

From (63) and (64) we get

I p I < [K(dn)]-(1+s)l4

Because of the assumption that f (x) is of infinite order for every large
r > 0 we can find sufficiently large n such that

f [dn( 1 +r-1)] % [f (dn)] 18 .(65)

Therefore from (62) and (65) we get

(66)

On the other hand by applying Lemma 1 to p(x) we get

(67 )

	

p[dn(1+r-1)] < [K(dn)]-(1+ells,

From (66) and (67) we get

(68 )

	

[K(dn)]'+e 5 [K(dn)](1+s)/2{1- [K(dn)]3(1+e)/2l

I

	

I1

\pn(dn(1+r-1)) f(dn(1+r-1))'
that is,

{K(dn)l1(1+e)/2+{K(dn)I13(1+e)/2 < 1,

which gives the required result, because the conclusion (68) contradicts
our earlier assumption (64) .

f [dn ( 1 +r-1)] i [K(dn)]-2(1+e)

THEOREM 6 . Let f (z) _ Eko akzk (ao > 0, ak >~ 0, k >, 1) be any entire
function satisfying the assumption that

log log M(r)
1 S lim~~sup -

log log r
	 = A + 1 < oo .

,.

Then for any e > 0,

(69)

lim inf( . o n)n-1-(i/A+e) < 1 .
n~co

Proof. We get from Theorems 1 and 3 of [11]

lim sup to n
loon a,,, - 'I-

_.- A.
n,co

	

g{

	

g From this we easily obtain that, for any e > 0,

lim jan j1/n exp(n1/(n+e)) = 0 .
n CO

As earlier, let un = an1/n ; and let h = 1/(A + e) . Then un exp(- nk) -~. oo .
This implies that there exist infinitely many n for which

	 un+i	 i	 un 	l = 0, 1, 2, . . . ) .
exp[(n+l)k] exp(nk)
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Now let

Then

(70)

x > Bnhun (1 < 0 < exp(2h -1 ) .

82n(X) > anxn > anunnonh+1 = enh +1 .

Hence, as usual we get from (70), for x > Bnhu,z ,

1

	

1

	

1
(71)

	

0 <'	-	 5

	

1<
1 < B-nh+1

S2n(x) f(x) S2n(x) anxn

On the other hand, let
x < nn (e) nh .

Then as before it is easy to note from (69) that, for any k > 2n,,

Iak I < unkexp(k(nh-kh)) .

This formula implies that

From this we have

(72)

akxk

	

{expk(nh-kh)}Bnh h
k=2-n+1 k=2n+1

~co

(

(Be)nh
la

)k
Lk=2n+1 exp k

A0,2n

a0-2

	

akXk
k=2n-I-1

	 (Be)nh

	

a o

	

exp(2n)h
(exp(2n)h)

	

° (exp(2n) 71 - (eO)nh

From (71) and (72), with Be < exp(2h), we easily obtain that

liminf(a,2n )1i«2n)h+1l < e-1(8e)1/ [ 2h) < 1 .0
n,co

(®e)nh 2n+1

	

exp(2n)h
(exp(2n)h)

	

(exp (2n)h-(ee)nh)

I 1	1

If (x) p2n(x)

M

THEOREM 7 . Let f (z) = a °+ J]k1 ank znk, with a ° > 0, ank > 0 (k
and lira infk,(nk+1/nk) > 9 > 1, be an entire function of finite order
Then for any a (0 < a < 1) and any e > 0, we have

liminf(A°,n)(1-a) (p+0in S P-1 .

The proof of this result is very similar to the proof of the preceding

theorem. Hence the details are left to the reader .
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Concluding remarks '

Theorem 3 of this paper answers questions 1, 2, and 4 in the affirmative .
The answer to question 5 follows from Theorem 1 . Question 3 is resolved
in Theorem 6 . The examples given at the end of Theorem 4 answer
question 7. Question 6 must be answered in the negative ; this follows
from Theorem 4 .

It may be of some interest to know whether it is possible to obtain a
lower bound for

lira suP(A o,n )n-1-WA)
nIco

(cf. Theorem II) .

This has been solved in [15] . We have proved in [15], under the
assumptions of Theorem II, that

Jim Sup (Ao,n n-1-(1/A) >, ex

	

- A

	

1

	

1/A

n,~

	

)

	

p ((A+1) ((A +1)Tl) )

It is natural to ask whether we can do much better by using the general
rational functions of the form pn(x)/Qn (x) than by using 1/Qn(x) in the
above results. We are not able to settle this question in general (see,
however, [9] and [17j) . But we are able to prove the following theorem .

THEOREM (cf. [14] ) . Let f (z) _ Ek=o akzk (ak -> 0, k > 0) be any entire
function of order p (0 < p < oo), type T, and lower type co (0 < to 5 -r < oo) .
Then one cannot find algebraic polynomials p(x) and Q(x) with non-negative
coefficients and of degree at most n for which

1

	

P(x)

	

lpolnT
lim inf	 -		lj

	

< (22)-1 .
n,oo

	

f (x) Q(x) [0,x)1

The examples 1 and 2 of Theorem 3 fail to satisfy the assumptions of
the above theorem ; but the conclusion of the theorem still holds for
these examples, in a slightly different form .
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