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Rational Chebyshev approximation to reciprocals of certain entire
functions by reciprocals of polynomials on the positive real axis has
‘recently attracted the attention of many mathematicians. By developing
certain new methods of approach we successfully attacked ([3]-[6]) some
of the related problems. This paper is a continuation of our earlier papers
([3]-[6]). The results of this paper improve and extend some of the
earlier results with simplified proofs (of. Theorem 3). For a reader
interested in this topic, this paper may serve as a guide by illustrating
some of the techniques (old ones with refinements, as well as new) which
‘we used to solve some of the very interesting and difficult problems of
the field (cf. examples 1, 2, 3 of Theorem &),

Notation and definitions
Let f{z) = ¥, a.2* be any entire function. As usnal, let

Mir) = ma.xlf{z}l, mir) = mﬂflrxﬂlr“ =|a,|r,

‘where v = v(r) is an increasing function of r. M(r), m(r), and ¥(r) are
hmwn as the maximum modulus, maximum term, and the rank of the
angximum term, respectively, If there exists more than one term which
is equal to the maximum term, then we take the one with the largest
:hﬂﬁx H.(z) denotes the nth partinl sum of f(z). =, denotes the class
‘of ordinary polynomials of degree at most n, =, , denotes the class of all
rational functions of the form r,, = p,/q, Where p, e, g, €m,.
mmughout our work we denote {.4: ;a 1):

lfa) = hq[logxl,  Tyx) = =;
eu(®) = e qlexpal, ey(x) =2;
nlyn)(lgn)(lgn)... (e yn)® = A(n);
() (lgn)(Ign).. (L)' = Bn);
(L) (Tan)(Tan). .. (Tn) = Din).
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As usual we write
1 1

1 1 =

{ } )"ﬂ.-ﬂ{bf_] hﬂﬂ ﬂGIT. f{‘zj ?(ﬁ} [ﬂ..l'ﬂl
where ||+ is the uniform norm on [0,90). As usual we define the order P
of f(z) as follows ([2], p. 8). The entire function f(z) is of order p if

loglog M(r) _
lﬂgf =p (0 =p= o).

lim sup

If p is positive and finite, then we define the type = and the lower type w,

corresponding to the order p, as follows:

(2) limsupr—?logM{r) =7, liminfr—rlog M{r)=w
L= el F—=x

0<p<owm,0gswsr<w)

It is known ([2], p. 13) that for functions of finite order we can replace
log M{r) by logm(r) in the above formulae. That is,
lim sup log log m(r)

ng

b logr

(2') limsupr-flogmir) =7, liminfr—rlogm(r)=w
F-+10 L e

=p (0<p<o),

<p<m 0w rsm).
If f(z) is of order zero, then we define as in [11], p. 145, the logarithmie
order g = A+ 1, and if A is strictly positive and finite then the correspond-
ing logarithmic types are defined as follows:

. loglog M(r} .. log logm(r)
hn;glp “Toglopr IIT;HPW =A+1 (0<A <o),
log M(r) log m{r)

hlfilp{ P ﬂfﬂiptlugr}"‘ﬂ b

log M(r) _ .. . - logmir)
it s = Bt ey _
It is also known ([20], p. 45) that if f(z) = F,a2* is of order
p (0 < p < ), type 7, and lower type w (0 < w £ 7 < o0), then 3
lim sup(n/pe) | @, [ = =,
A=

=w (0<A<om, 0<ay<ygm)

and
(3) H’?jﬂ{ﬂﬂfﬂ}[ﬂﬂ,lpfh = w,

for a sequence of numbers n,, satisfying the condition
(4) lim mp{“pﬂ.r"ﬂp} < /Ty,
Fm
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where a, is the greatest and x, the smallest root of the equation
{5) xlogiz/e) + (w/r) = 0.

Lemya 1 ([7], pp. 534-35). Let p(z) be any algebraic polymomial of
degree al most n. If this polynomial is bounded by M on an interval of
total length I contained in [— 1, 1], then in [~ 1,1],

(6) |plx)| < M| T (472 =1)|
where 2T, (x) = (2+ J(22= 1)+ (2= (@2 = 1))

Lemsa 2 ([20], p. 34). Let f(z) = £F a,z* be any entire function of finite
order p. Then for any ¢ > 0, and all sufficiently large r = r (), we have

M(r) < mirjrrte,
Lesma 3 ([10], Problem [1], part 1), Let
= al .
t'n f{t‘} = ]+’%|‘ J‘E;i!._d} {dﬁ‘l - d.; > ﬂ.j = ”.

Then for x = d, the nth term of the series (7) becomes the maximum lerm.

For the detailed discussion of our results, we need the following known
results,

Turoresm 1 ([8], Theorem 6). Let f(z) = ¥, a,2* be an entire function
of order p, type =, and lower type w (0 < w € v < o), with ay > 0 and
a2 0 forall k= 1. Then

lim sup(A, )™ < 1.

Tarorem I1 ([12), Theorem 7°). Let f(z) = SE, 02" (a, > 0, @, 2 0,
k> 1) be an entire function satisfying the assumptions that 0 < A < o0 and
0 <oy 7 <co. Then

lim !up{‘)ﬂ._]uun-nmr g

Taroresm 111 ([13], Theorem D). Lef fiz) = 5F 0,25 (a, > 0,a, = 0,
k> 1) be any entire function of order p (0 < p < ), type =, and lower type e,
with the assumpiion that r < bw fora 0 < 2and 0 < w < 7 < 0. Then

lim inf{Ag  JV/* = (eo/7 280 H prufpie,
neso

Tugorex 1V ([3], Theorem 1). Let f(z) = EEqt2* (4 > 0, a, > 0,
k> 1) be any entire function. Then for each ¢ > 0 there exist infinitely
many n such that

Ao < exp(—n(logn)=1-),
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Taeorem V ([8], Theorem 2). Let f(z) = T, a,2" be any enlire function
of infinite order with non-negative coefficients. Then for each e > 0 there
exist infinitely many n for which
Ao = exp(—en).
Toeorem VI ([18], Theorem ). Let f(x) = ¢*. Then
lim(Ag, )" = §.
L
Careful observation of the above theorems naturally leads to the
following questions.

Questiow 1. Can one obtain under the assumptions of Theorem I the
fact that
lim inf{A )V = 01

Questiox 2. Is it possible to improve the upper bound and provide a
simple proof to Theorem 11

Questiox 3. What conclusion do we get by dropping the assumptions
on the logarithmic types in Theorem I1?

QuesTioNn 4. Is it possible to prove Theorem IIT without the
assumption that v < flw?

QuesTion 5. ls it possible to replace (logm)'t* by (Ln)(lgn)...(In)te
for any k = 1 in Theorem IV ?

Questiox 6. Given an g, = (loglogn)™? can we replace & in
Theorem V by #,!

Questiox 7. Are there any other functions besides ¢ for which we
get, for a yi(n) which tends to infinity,
Hm(Ag JU¥M =3 (0 <8< 1)?
-

These questions motivated the work of this paper and in it we answer
all of them.

New results

Tueorem 1. Let f(z) = BE 02" (8, > 0, a, 2 0, k 2 1) be any entire
Junction, Then for each ¢ > 0 and any k 2 1, there exist infinitely many n
such that
(8) Aun € exp(—n/([n)(Ign)... ([n)' ).

Proof. If f(z) = LFaz* is entire, then lim, . |a, V" =0. Let
u, =a,~ V" Then u, -co. Now it is easy to observe from the
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convergence of

I+,

F=er+102)

that there exist arbitrarily large values of n for which for each I > 0,
1
(9) oy = W, [T+ [A(m+£)]70).
i=1

From (9) it follows, with [ = %, that
(10} Uy > W, (1 + w24 {R)]L).

Given any £ > 0, we can show now that there exist infinitely many n
such that

1 1 : L
7@ 5o @ o < exp(— 2n[B(2n)]").
By the definition of A,, (8) follows from (11). To prove (11), observe
that, on the one hand, we have for all @ = 0,

1 1 I 1
= =

(11)

0=

Spl#) flz) = Saul@) ~ @ua®’
Now for any given e > 0, let 2 2 w (1 +[B(n)]1). Then
(12) mx2" = (1+[Bin)] )" = exp(2n[B(2x)]1).

On the other hand, let = < u,(1+[B(n)]). Then for all n = ny,

Spal)  fl@) ~ fl)Sg (@) ~ E=in41
By (9) and (10), we have for all & > 2n,

(13) 0ot SE=Bnl®) s Sk

(14) @y, < w, (1 +n[24(n)]"")

Thus, from (13) and (14), for @ < «,(1 +[B(n)]-1), we obtain
N r .- 1+[B(n)] \¥

e ot B ot <ot B (T dr)

A simple calculation based on (15) gives us

(16) a4 5 at < oxp(—2n[B(En)]Y).
E=¥n+1

Inequality (11) now follows from (12) and (16).

TanoreM 2. For every large ¢ > 0 and k = 1 there iz an enlive function
of infinite order with non-negative coefficients for which there exist infinitely

{ & may not be the same at each ocourrence.
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many n such Hhal

Agn = exp( —en/(In)(ign)... ().
Proof. Let f(x) = ¢;,,(x) (k = 1), and let us suppose that for all large n,

(17) I}—;Lﬂ < exp(—cn[D(n)]").
Let @ = L(n[D(n)]-') = ry(k), say (k = 1). At this point

J(@) = eyy4(x) = exp(n[D(n)]).

Then, by (17),
(18) |p| < exp(2a[D(n)]).

But at = = L(ne[D(n)]-!) = ry(k), say.

(19) J(x) = ey ,(x) = exp(ne®[ D(n)] ).

By applying Lemma 1 to (18) we get for the interval [0, r,]

I\ (D]
(20) |p| MIP(I,.';,&;?}:;:@;]T‘( L[ D{n)] ") )

x exp(2al D(n)]Joxp(4n[Din)] ).
From (19) and (20), it is easy to see that

1 ?
ﬂ m’—ﬁl‘m? exp(—en[D(n)]),
for some constant ¢, which contradicts our earlier assumption (17).
Hence the required result is proved.

TeeoreM 3. Le f(z) = X5 0,25 (0> 0,a, 2 0, k3 1) be any entire
function of order p (0 < p < o), type 7, and lower lype w (0 < w € 7 < o).
The

~ 0 < (ew/e¥irieted(e 4 1)4eymim < liminf(d, )0

< limsup(Ag )™ < exp —e/f{e 4+ 1)r) < 1,

where x; 15 the grealest and i, the smallest root of equation (5).

Proof. 1f f(z) is an entire function of order p (0 < p < o) and type =
(0 < 7 < o0), then, for each ¢ > 0, there is an my = ny(e) such that, for
all n > nyfe), we have ([2], p. 11) '

1) |4, € (per(1+e)/m)ve.
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As earlier, we have

@) <y ‘m 7y S W@ -5, ) <ot 3 agt

< a,—’k ?ﬁlakr* 0=x<r).

On the other hand, for each r > 0, we can find ([2], p. 12) an ny = ny(r)
such that for all » = ngt and v 2 7,
FIE. S T S

S ey fle) T S (@) T mir)
Now two possibilities oceur in (23): (i) 5y > ny, or (i) ny < n,. If (i) is
true, then in (22) we replace 8, (x) by 8, (), that is,

1 1 i
& e — = g rk,
Salx)  flx) <% k-%uﬂk

(23)

(22)

If (ii) is true, then in (23) we replace 8, (v) by &8, (x), that is, for all 2 = r,
| 1 1

(23" 0= ;E;Ex'i‘—'"ﬂ—ﬂ = i)
where
f24) r = (n/pr(e+ 1)(1+£))>.

In either case we choose n = max(n,,n,).t A simple calculation based on
(21) and (22") gives us, for 0 < x < r,

1 ]
25 L T T
el S T@ W
& l+s} Ep
<a/t ¥ ( per )
O 2 \re+ T(1+8),
- He
< % k-%ﬂ. (E'[-l)
5410 {e+ 1)Ve
1
Sy (£+l (qe+1}w—sw)

On the other hand, from {2') and (23'), for all r = ryle),

(26) m(r) = exp[riw(l —&)] = ﬂxp( - :f;;r?fi E}) G(’?'[ll; ‘;]' iy '.r),

t 1y denotes the rank of the maximum ferm.
1 It iz eaay Lo verifly that ng(r) = n(r) for thevalue of r given in (24).
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where & is arbitrary. We easily obtain from (25) and (26) that
Iiwp[?-“}”' < exp(—w/prle+ 1)) < 1.

Now we shall prove the other inequality of Theorem 3. As the coefficients

of f(z) are non-negative, we have from (2), for all large r > r,(s),

(27) 0 < f(x) € flr) = M(r) < exp(rir{l +2)) (D€ x <7, r2rle))

Now from (27) we have, for

r={wn(l +2&) g e+ 1)1V = H(n, p, w,7),
that

0<f) </ [(WM) m]

. “P(ifl +n;:{}']r;: 1- 1;.)

Tl 1
< 0{3. P e, f] = &Ip(;-{;:-l-};) £ K;

for all » > n,. Next, we take the rational function rg, = 1/pF (r§ £m,,)
which gives the best approximation in the sense of (1); that is, for all
n = ng,

1 1 i

(28) Ao = Sl&)” p*() floaer”
A simiple manipulation based on (28) gives us

(29) —f'(ﬂf(ﬂr}+-]—) < pt—fi@)

< fl{x},f(ﬁ-ﬂ:}) (0 < x < Hn, p,w, 7).

Clearly the right-hand side of inequality (20) is monotonie increasing
with . Hence we write

1
(30) 184 ~(@)] < 62, pys )/ (5=~ Gl o)

(05 =< H(n,p,w,7)).
Next, let

[31] EnUJ = p.h:{. HP.{I]'—fl'ﬂ]Euimﬂr

From (30) and (31) we get, for all n > n,,

(32) E (f) < G(2n, p,w, r}f(f; ~G{m; pyo0; r}).
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To obtain a lower bound for E, we use a result of Bernatein ([1], p. 10)
which gives us, in the interval [0, H(n, p, w, 7],

] (n+1lp g
B i i1
(33) n (#fg-l- {1+ ze)) Bunil

From (32) and (33) we get

tw, T}
{34} Eﬂ+1[H{;;f_:l }] = G{Eﬂ, Py il 'r'}rn"r(xél— -_ G{'ﬁ: Py ek -r})

for all n = n,.
From (3) we have, for a sequence of values of n =n,+1 satisfying
the assumption (4),

(35) a, 11 = (pew(l—g)/(n, + 1))mtiie,
From (34) and (35) we get

peso(1 — )| et )lp ({1, py o, )]
Tm+l T

(36) (

< Gr{zn.,g.m,-r};(-l—-a{n,p, m,f}).

L
1t is easy to obtain from (36) that
G(2n,, poo,7)(n, + 1) (BN E28NeH
[{Pﬂtﬂ{l =# }LPH{H'pj Pratady T”nr| 1

< z[erf.( 2w )] (4::1- ple+1)(1 +ﬂe})=n,+nfp (m +1)rn,,+mp

e+ 1jp wi{l — e Ry

(37) ;10' < G{ny, p, w, 7)+
Tty

Now by adopting the technique used on p. 373 of [19] we can easily
obtain from (37) and (4) the fact that

(38) lim inf(), ,)#/n > ( | _ﬂ*’_)m;a,

iy Sﬁm’ﬁc{l!.,.!&_; o+ 1 }.i:p

Remarks. (1) Under the assumptions of Theorem 8, Reddy ([16]) has
recently obtained the following sharper result

lim inf{,j.ﬂ“}l.-'s = {2!+1a‘p,—1rﬂm—1.f.n,_. 1]—3.
-+
(2) There exist entire functions which fail to satisfy the assumptions

of Theorem 3, but for which we can still find two constants ¢; and ¢,
{0 <& < e; < 1) such that

0 < ¢, < liminf(d,, J/* < Timsup(de,,)V® < ¢, < 1.
) ~+m

——
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Exawrre 1, Let

fle) =1+ é. (I“%“’)'m-

This is an entire function of order p = 1 and type r = co. For this function
the maximum module M(r) is given by

(39) £1e) = 3(e) ~ exp(Slog?).

This function clearly satisfies the growth condition (3.1) of [8]; hence
there exists a constant ¢ > 1 for which

(40} lim sup(, )V =~1q- <1,
From (4) it is easy Lo see that, for all large n > ny(e),
(41) " = [g(1—2)]" € 1/A,..
From (39) we have

0 < f(x) < f(r) < exp(rlog(r/e)).
Let
(42) rlog(r/e) = inlogg,.
That is,

P . log gy :
2log(inlogq,)

From (41) and (42) we get, for all n = n,,
0 < f(x) < f(r) < exp(rlog(r/e)) € ¢, < 1/A,,.

Now proceeding exactly as in the proof of the second part of Theorem 3
we get, for the value of r given in (42) and for all # > ny,

(48) (lﬂﬁii:lﬂﬂ m})m ml <a" (11,1_,._?‘“)'

From (43) it is easy to see that
1 3""‘"‘91"[‘03{}"1059'1]]"“

‘;“‘. “_‘Hi'!d“l
+ " [i“ l‘}gql} Wi -l a2
‘F Iql. llﬂg(ﬂ+l} {“"I'” +Q:I.
In other words,
Wi T “+1 R ﬂgtiﬂ]q-luglﬂﬂﬁ néL
4 ot o Ml o )"
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A simple manipulation based on (44) gives us, if we take g, to be very

close to q,
lim inf(A, )V = 1/4q.

ExamrrLe 2. Let

f{:ﬂ} = ]« E (‘J‘lll}g'ﬁ) .
This is an entire function of order p = 1 and type » = 0. For this function
r
) 1) ~ 2 {Gog7a)

[f(r) satisfies the growth condition (3.1) given in [8]; hence there exists
a q > 1 such that

(46) Jim sup(A, )V = = < 1.
n-sn ' q
As before from (46) we can find, for all n = ny,(e), a ¢, < ¢ such that
(47) Aon S G
Let
{48} Elﬂg ?J."'IE} é’ﬂ LR

Then for some ¢ > 0, r ~ nlog(cnlogg,). From (45), (47), and (48) we
obtain, for all n = ny,,

0<J(#) <) < exp( S TT) < gt < 1

and

in1) 1 Tmlg 1
[49} T E-I'Dg fﬂ‘ﬂ U‘g QI] ] aﬂ_{-l ﬁ "II_“.."'II (;'Jiu e qlm-z) A

22!‘14-1

From (49) we get as before, for a, = (nlogn)—™,
lim inf(d, )1/ > 1/4q.

Tunonem 4. Letf(z) = 1+ X5, a2*, @ = (dydy. . dp) P withdy,y > d, > 0
{k = 1), be an entire function of finite order p. Then for any & > 0 and all
large n = nyyle), we have

(50) dydud,...d,

20 200y gy

Ehiq e 5 il J,da . SR

(B rldn S A {‘im{-l = d;} :

Froof. The second half of (50) follows from the proof of Theorem 5 of [4].
G388.3.81 EE
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To prove the first half of (50) observe that, for 0 £ # £ r =4, Lemmas 2
and 3 hold and that, for all n = (),

(81)  0< fx) < M(r) < mrperis

= m{dn}dﬂfH_u
= dnﬂﬂiﬂp"'s x- da:+1rjr'l1.-l-ﬁ'"dﬂﬂ{dh+1_d3ﬂ} o !:I'-’_Egﬂ+1"‘:ffen}
dldﬂ‘ g ‘dﬂ. MSHI 2J {dn }rfiﬂ-F.l 1

This follows because when x = d, we know from Lemma 3 that the wth
term becomes the maximum term, that ia,

wld, ) =d */did,...d,.

As before we choose p*(x) 7, , such that p*(z) gives the best approxima-
tion to f(x) in the sense of (1), that is,

I I
fix) p*(e)
A simple calculation based on (52) gives us (a8 in the proof of
Theorem 3)

(63)  |f-phl < {f{m}}“x’(

From (51) and (53) we obtain
t'ﬁ'i} “f_P;ﬂ—l |[

(52) Aigna 2 l (p*Emen 1)

(0,55

1

dn-1

—f{m}] e =ik,

1 " e
< dtrd 2t M d dy. ., “( — B TR 0= d. ).
n"ll( |‘i3 :I' A"}'aﬂ,-n"_ l'f-l{"'.-.-.d { * = I'I}
Let
(55) Eonalf) = min  |[f—gauq liga,
Fee-1EWEn-1
From (54) and (55) we get
(58)  Bgualf)
1 T
ang Blpte) 2 =Fn s ;
R e sl ICELEL

To obtain a lower bound for E,, ,(f) we use (as before) a result of
Bernstein ([1], p. 10), which gives us for x = d_,

(57) Eou1(f) = agyd " /2202301,

From (56) and (57) we get, for all w = n,,,

1 rfﬂ’“d-h-”*"’)

58 J(d,) < 217 Bate) 2 .
(58) () < g e/ (f
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From (48) it is easy to enloulate that

1 adng Hpte)
?"Jl—l _?tdn]
Therefore for all large n, we have

dydydy.. d, dyfly...d iy
______________ o ko S T
2ind Siptaid gty Aan-1 < " I S ‘fln['flnﬂ" )

Examrres. (1) Let

J'('E} =14 E , 2log 23lox ?‘_ﬂ_ opplog

For this function we get from {54'}]

Emu'.‘]ul:llﬂlnl = l

=
Tt is interesting to note that this function fails to satisfy the assumptions
of Theorem 7 of [8] and Theorem 7° of [12], because py = A +1 = oo, But
our present method which is much simpler than the methods used in [8)

and [12] gives us more precise information.
(2) Let

16 = 1+ X gsgs

This function also fails to satisfy the assumptions of Theorem 7 of [8]
and Theorem 7' of [12], because in this case A = 1, that is, p; = 2 and
7y = 0. For this function we get by (50)

Hm(A,, J/n*leen — g1/,
(3) Let
fle) =14 g;’—: (1 <8 < o).

For this function A = 0, whenee it also fails to satisly the nssumptions of
Theorem 7 of [8] and Thearem 77 of [12]; but we obtain by (50)

i (A, )" = 1/8.

THEOREM 5. Ld III} = I+Ef=-| {ﬂtd‘...dﬂ"'.t' {dﬂl > d. > 'u, k} l}
be an entire function of infinite order. Then for each ¢ > 0, there exist
infinitely many n for which

Apyan-1 = [K(d )]




452 PAUL ERDOS AND A. R. REDDY

Proof. As before when » = d,, d */ddd,...d, becomes the maximum
term of f. Let f, = a™/d,dy...d,. Then

(59) J@) =1, +:H(1+ S LS +s)

n—l ‘n ~a

+s,.+1(1+-!—*—‘+‘—"-‘-‘+.,.).
Il“‘l ll-"l-
But

boia _ * _dayy

t x* yir\®
DR = ( "::) '
tﬂ-ﬂ‘. J'n—!‘!duﬂ d:l'l

-
-
="
=
+
L3
,ﬂ-
+
3

and so on. Hence

f f d
(60 .!Ii!+."_+'|+ | —'H'l___
!'-.+1 ‘!-FI d.....—lf,.,,l
Simil ]f

crc(fp). e (i)
and so on. Therefore

(61) fn,-_-+'.e;-+_,_|{_*fn:t,_.,

b tua dy—dy
From (59), (60), and (61), we obtain
(62) J(x) =t 4t ((1+@)+ (1 +3),
where 3
lpl < ';&L—lr EARS w:“ﬂ::;

From (62) we get, for x = d,,

10 g+l +8) a1 +20) = (KT

For all sufficiently large n we can find an ¢ > 0 such that
(63) Sld,) < [K(d,)]"4m,
Now let us suppose that for all large n and all 2 (0 € & < o)

1 1

() T Paal®

< [K(d))He.
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From (63) and (64) we get
|2] < [K(d,)]- M4,

Because of the assumption that f(x) is of infinite order for every large
r > 0 we ean find sufficiently large m such that

(65) Sld (1 +r72)] > [f(d)]™

Therefore from (62) and (65) we get

(66) Sl 1+ 1] = [K(d,)]-204,

On the other hand by applying Lemma 1 fo p(x) we get

(67) pld,(1+r71)] < [Kid,)] Vs,

From (66) and (67) we get

(68) [K(d )] < [K(d, )] 21 — [K(d,)[M1+ev2)
1 |

S P+ Y) S+’
that is,
{K{d“}}fl-l-llfl_i_{gtd'“}}ﬂl +a)ia < ] .
which gives the required result, becanse the conclusion (68) contradicts
our earlier assumption (64).

Taworum 6. Let f(z) = ¥R a;2% (@, > 0, a, 2 0, k> 1) be any entire
Junchion satiafying the assumption that
| < Iimmpw=ﬁ+l < o,
reologlogr
Then for any & > 0,
liminf(d, )* """ < 1,

Progf. We get from Theorems 1 and 3 of [11]

logn
M oe P logln-Tloga, 1) =

From this we easily obtain that, for any ¢ > 0,

A

lim|a, |V exp{ni/tit)) = 0,

As earlier, let u, = a,~V*; and let h = 1/(A+¢). Then u, exp{—n*) —= .
This implies that there exist infinitely many » for which
u

s Ys gaG19 .

g exp[(n+1)"] © exp{n®)
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Now let
20, (1 <8 <exp(2h),

Then
(70) 8,.(7) = a,0" = a,u 0 = g,
Hence, as usual we get from (70), for x = #u
1 1 1 1 .
) ' Sznf'ﬂ TSl Hsniﬂ'} apa” s
On the other hand, let
x <, (8"

Then as before it is easy to note from (69) that, for any & > 2w,
| @) <ty explknt — k).

This formula implies that

S aat< T [exph(nt— ke
k=2n+1 ke=En+1
= ﬁ{,}n*)
ol
ammi(ﬂpk“

({Be}“‘ n)ml( exp(2n)t )

exp(2n) exp(2n) — (B

From this we have

11
72 R T
" ."“"“"“‘tHﬂx: Pl
< ayt 5 a2k

k=En+1

<( (Be)” )q A exp(In)h )
exp(Zn)* ° \exp(2n)t — (ef)®

From (71) and (72), with fe < exp(2*), we easily obtain that

lim inf(A, 5, WO < o-1(fe)ti? < 1,
LLEe =
TreorREM 7. Lel f(z) = ay+ X5, a,2™, with 2, =0, a,, >0(k>= 1),
and Dminf, . (n../n) = B> 1, be an entire function of finite order p.
Then for any « (0 < & < 1) and any & > 0, we have

lim i-“ﬂ.-""n ﬂ]ilﬂ]lp-l—a}."n = B_Ir
== ¢

The proof of this result is very similar to the proof of the preceding
theorem. Hence the details are left to the reader.
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Coneluding remarks

Theorem 3 of this paper answers questions 1, 2, and 4 in the affirmative.
The anawer to ¢uestion 5 follows from Theorem 1. Question 3 is resolved
in Theorem 6. The examples given at the end of Theorem 4 answer
guestion 7. Question § must be answered in the negative; this follows
from Theorem 4,

It may be of some interest to know whether it is possible to obtain a
lower bound for

limsup(A, )7 (of. Theorem II).
Ll

Thiz has been solved in [15]. We have proved in [15], under the
assumptions of Theorem 11, that

: p—1-iliA —A 1 ua
Hmaupn)* > esp(o 3 () )

It is natural to ask whether we can do much better by using the general
rational functions of the form p (x)/Q,(x) than by using 1/@,(x) in the
above results. We are not able to settle this question in general (see,
however, [9] and [17]). But we are able to prove the following theorem,

TaeporeM (ef. [14]). Let f(z) = Bf  a® (@, = 0, k = 0) be any entire
Junction of order p (0 < p < ), type 7, and lower type w (0 <w < 7 < o).
Then one cannot find algebraic polynomials p(x) and Q(z) with non-negative
coefficients and of degree at most n for which

o 1 Plx)
lim mf{ e
o Hf () Q)
The examples 1 and 2 of Theorem 3 fail to satisfy the assumptions of

the above theorem; but the conclusion of the theorem still holds for
these examples, in a slightly different form.

Ipﬂl."nr

< (2/2)1

[0=e)
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