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STRONG EMBEDDINGS OF GRAPHS INTO COLORED GRAPHS

P. ERDOS — A. HAJNAL — L. POSA

§1. NOTATION

Results. By a graph ¢ we mean an ordered pair ¥ = (g, G) where
G C [g)?. Let y>0. The sequence {G,: v<7} issaid to be an edge
coloring of % by v colors if the G, are disjoint and their union is G.
For hC g we denote by %(h) the subgraph of ¥ spanned by the set
hoie. %(h)=(h,G N [h)?). We say that the graph . = (h, H) can be
embedded in the v-th color of the edge coloring {G : v <7} of G if
# is isomorphic to a spanned subgraph % (G') of ¢, .

We say that # can be strongly embedded into the v-th color if it
is isomorphic to some spanned subgraph ¥ (g') such that %,(8)=9@&).

In other words in both cases there exist one-to-one mappings f of
h into g such that {x,y} € H implies {f(x),f(¥)}€ G, for x,y€h
and {x,y}€ HAx,y € h implies {fix),(¥)} & G, Iis case of embeddings
and {f{x), f(y)} € G in case of strong embeddings respectively.

The following two partition relations were introduced in Erdés —
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Hajnal [1]) and Henson [2] to study embeddings and strong embed-
dings respectively.

Let @, # :v <<y be graphs. The relations ¥ — (A#,),« » G >
> (.;e’v)p(,r are said to hold if for every edge coloring {G,: v<7v} of
¥ by v colors there isa v <<y such that »#, can be embedded or

strongly embedded into the v-th color respectively.

As usual ¥ > (.)i"v)”‘(?, G >f> (;#v)v{T denote that the corre-
sponding statements are false. If all #  are equal to # we write
G — (K )., and ¥ >— (£),. Both relations are generalizations of the
well-known ordinary partition symbol since if ¥, # : v<<vy are com-
plete graphs of cardinality o,f,: v<+vy then ¥ — (%)) and

v<y
_ . 2
9 > (4, ., are both equivalent to a— (8,), . -

We will mostly deal with strong embeddings, Henson asked in his
paper [2] if the following generalization of Ramsey’s theorem was true.
For every finite sequence {# @ v< k}, k< w of finite graphs there is

a finite % such that ¥ >— (“’fp)p«q holds.

This problem has been answered in the affirmative by W. Deuber
[3]and J. Nesetril [4] and by us independently. The both investigated
the problem in a more general setting. We are going to deal with generaliza-
tions of different types. First we are going to consider if the infinite form
of Ramsey’s theorem generalizes. The answer is negative. We prove

Theorem 1. Let # be the infinite complete bipartite graph. i.e.
h=hyUh,, hyNh =¢, |hyl=1h|=w, H=[hy, h;]. Then
¥ —> (X), for all countable graphs .

Let us say that % is locally finite if each vertex of % has finite

valency either in % or in the complement ¥ of ¥. We are going to
prove the following Ramsey type theorem,

Theorem 2. Let # be locally finite, #, % countable. There is a
countable % such

G > (K, KX).
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Obviously this theorem extends to the case when we have finitely
many countable locally finite graphs #,; i< k, and one countable graph
A . This, of course, gives a proof of the results of [3] and [4] for finite
graphs already mentioned.

As to the generalizations for larger graphs we will prove

Theorem 3. Let (x;: i< k) be a finite sequence of countable
graphs. Then there is a graph %, with |%|< 2% such that

G > (H)ick -

Surprisingly enough we do not know if this result extends for graphs
with larger cardinalities. We state the simplest unsolved case.

Problem. Is it true that for all graphs #, 2 of cardinality w,;
there is a % (of reasonable size) such that % >— (&, 4)?

§2. UNIVERSAL GRAPHS. PROOF OF THEOREM 1.

Let x> w be an infinite cardinal. The graph % = (g, G) is said to
be k-good if forall XCg, |X|<k and for all f: X— 2 the set
X, N={yeg: VzeX({y,z2} € G iff flz)= 1)} has cardinality > k.
The graph ¥ is said to be k-universal if every graph s of cardinality
at most x is isomorphic to a spanned subgraph of %. The following
well-known facts are all we need about this concepts.

2.1. (i) Each k-good graph is k-universal.
(i) Any two k-good graphs of cardinality k are isomorphic.

(iii) There exists an w-good graph @ of cardinality « and there
exists an w, -good graph ¥ of cardinality 2¢.

For the proof of Theorem 1 it will be convenient to have the follow-
ing representation of #.

2.2. Let T Mm<w be a one-to-one enumeration of all diadi-
cally rational numbers r€ (0, 1); r, = 0*'m,0' TR A and let
U={{n,m} n>mnar, , =1}, u=w. Clearly #% is the countable
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w-good graph.

Proof of Theorem 1. Let U, ={{n,m}€U: n<maAr, <r }

Ul ={{n,m}: n<mar, <r,}. This is an edge coloring of . It is suf-
ficient to prove that the # of Theorem 1 is not isomorphic to a spanned
subgraph of #; = (w, U} for i< 2. By symmetry it is sufficient to prove
this for i= 0. Assume the statement is false. We may assume that then
there are |A|=|Bl=w, A,BCw, ANB=¢ suchthat [4)> N U, =
=(B>’NUy=¢ and (4,B]C U,. We may assume that ny = min 4 <
< min B. Thereis A'C A such that |4'|= w and Vg =050 for
all n<n, provided m,m' €A'. Letnow n,<n, <n,<n,<n, be
such that »n,,n, €A’ and n,,n, €B. By [4,B]C U, it follows that
B Sl s for i<4. By [A]?’NU;=¢, [4,B]C U, it now follows

that rnz,rso =}'ﬂ4,n0 = (0 and rna,no = 1. Let mo = min {m: rnz’m &
* rn3.m }. Then my < n, and by the definition of A, rnz,m = ,.M,m

for m< mg. Hence either rnz’, rn4 < Jr'l,13 or rnz, rn4 > r"a’ a confradic-

tion in both cases.

Note that there is still a gap between the results of Theorems 1, 2. The
infinite complete bipartite graph is not the smallest one for which the
above argument works, but we do not know a necessary and sufficient
condition for # >4 (Jt")% in the countable case.

§3. k-GOOD GRAPHS

Let &> w be regular and let % = (g, G) be a k-good graph. We
are going to associate with ¢ a k-complete proper ideal /., =1 as fol-
lows.

3.1. Let ACg. A€l iff there exists a sequence X, € [g]1<% of
pairwise disjoint subsets of g and a sequence ft: XE — 2: E<k of
functions such that

|An'§(XE,fs)|<n for E<k.

Obviously BC A €[ implies B € I. By the definition of a k-good
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graph, g &/ and thus 7 is proper. We now prove that I is k-complete.

3.2. Assume A €71 for v<yp<k. Let A= U A,. Then A€l
v vy

Proof. Let X;,fg’: £ < k be the sequences satisfying 3.1 for v < .

By an easy transfinite induction one can pick sets X’E(p 3 for p<k,v<y

in such a way that they are pairwise disjoint. Put X = U X;( g o=
B p<yp o,v) P

- I',9«;,"?(:0,10 for p<k. Then AN g(Xp’fp)C ug\pAp A g(XE(ﬂ,v)’lezp.u))

hence, by the regularity of « 3.1 holds for Xp,fp: p<kK, A.
Finally we need the following strengthening of 3.1.

3.3. Let A Cg, and assume that there exist sequences XE € [g]~*
(disjoint), fE: Xz — 2: £< k such that

Aniﬁ(XE,fE)EI for E<k.
Then A4 € [.

Proof. Let Y(f,p)€ [g)<* (disjoint), f(§,p)€ Y®P2; p<k be
such that

1AN G(X,, )N G(YE p), 1§ PN <k
for p<k, E<k.

By an easy transfinite induction one can pick YE’ g: £ € K for some
| K| =k such that

Y, =YE 0, g =1&p)
for some p and XE‘ Ygz £ € k are pairwise disjoint.
Let ZE = XE U YE’ hz =f£ UgE for (€ K.

Then |A N mzz’h5“<“’ for (€ K.

§4. PROOF OF THE POSITIVE RELATIONS

Let now ¢ be agraphandlet G =G, U Gl be an edge coloring
of it. Let further X € [g]<*, f: X — 2.
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We denote by #/(X,f) the set
yegVzeX(flz)=1={y,2}€G,Aflz) = 0= {y,z} & G)}
for i< 2.

Note that this is not the same as % (X, f) for the subgraph 9, = (g, G,
We will use the following notation for u€g

Y (u,i)={veg: {u,v} € G} for i<2
Yw={veg: {u,v}I€G}
Gw)={veg: {u,vI¢G}.

Obviously #(u, O) U %(u, 1) = 4 (u). We prove the following

Lemma. Let k> w be regular. Assume % =g, G) is k-good,
G= _U2 G; is an edge coloring of it, ACg, AL Let further % =
<

= (w, K) be a countable graph. Then one of the following conditions holds

(i) Thereare B,CCA; BNnC=¢; B,C&[I such that 4w, 1)n
NnCcCel forall u€B.

(ii) Thereis DC A such that ¥(D)= % (D) s isomorphic to 4.

Proof. We assume (i) is false. We define a one-to-one sequence d,,:
n< w of elements of A, by induction on #. Put first f, for the func-
tion satisfying D(f,)=n, R(f,)C 2 and f,(m)=1 iff {m,n}€ K for
m<n. Assume d €A is defined for m <n in such a way that for
D, ={d,: m<n}, 9D, )= %,(D,) the mapping m—d, isan iso-
morphism of #'(n) onto %,(D,) and for all f€"2

g1, .nnAel .

We claim that there is an element u of E&’l(Dn,f") N A satisfying the
following condition

(1) Forall Fe"2

Gu, HnglD,  NNAEI and
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uwn g D, . NNA&I.

In fact the second requirement holds for all but fewer than k ele-
ments of ¢,(D,,f,) hence it holds for u€ B' for some B'C
c ¢'(D,.f,)N A, B'¢l If the first requirement fails for all u € B’
for some f€”2, then there are a subset BC B', B¢ and an f€"2
such that for C=9(D,, NN A, C&I and $(u,1)NC< for all
u € B. This contradicts our assumption that (i) is false. It follows that (1)
holds. Let d, € ¥'(D,,f,)N A satisfy (1).

Considering that for fe”"*12

$'D,, . N=9'D,.iIm)nsd, 1) if fin)=1

and

$\D,,,.N=9'D,,fin)ngd,) if fin)=0

the new d, satisfies all the necessary requirements. Put D = {d, :
n<w}. Then ¥(D)= %,(D) and n—d  is an isomorphism of X
onto % l(D}. This proves the Lemma.

Proof of Theorem 2. Let 4, # be countable graphs. Assume
is locally finite. Let % be the countable w-good graph and let G =
=G, U G, be an arbitrary edge coloring of it. If there exists 4 C g such
that ¥(A4)= % (A) is isomorphic to % we are done. Hence by the
Lemma, we may assume that for all 4 €/ (i) of the Lemma holds.

Let # = (w, H). Since # is locally finite there exist functions
YE “w, YEY2 such that ¢ is strictly increasing ¢(0) > 1 and

Vm=en){n,m}eH iff y(n)=1).

We are to define a strong embedding of . into the color 0. We de-
fine a function , on the interval [k + 1, (k)] by the stipulation
Y, (=0 for {k,j}¢H and y,()=1 for {k,jlEH. Note that
Vi (0(R) = Y(k).

We now define sequences 4, B

. m Of subsets of g by inductionon n
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as follows. Put Ay =g I. Assume that A4 , B{.J has already been de-
fined forsome n< w, i<n, j<n -1, insuchaway that 4 , BJ.J. &1
the sets ,*.‘3'1.,0,.4n are disjoint, B;‘,o i Bi,;‘" G (u, 1)n B!,o el for
uEBI.,O, i<l<n and 9(u,1)NnA, €l for “EB;',O’ i<n We wil
define Bl.,n_l. for i<n and A, _ . First we choose two sets B, C'cA.;
B',C'¢l, B'nC' =¢ insuchawaythat 4(u,1)NnC' €/ forall u€B'.
We now distinguish two cases (i) n+ 1 & R(yp), (i) n+ 1 € R(yp).

Case (i). Put B, . =B', A =C, B, .=8B for j< n.
n,0 j.n

i hin—j-1
Case (ii). Let k=¢ Y(n+ 1). Put Bjn_j = Bfﬂ-l for j<k<n
(since (k) >k + 2 by the assumption). We now claim that there is a

u€ B, ,  such that

n+1

(2) 9, 0)n B,

a1 €L FWOB,, gl for k<j<n

gu,0ONB gl Y(u)NB g1,

g, 0NnC el, GguynNnC &l .

By 3.3 and by the assumption Bj‘n_i_ , @1, B',C' & [ these requirements
hold for all but finitely many elements of u of B, , , &/ provided
%(u, 0) is replaced by %(u). Considering that by the inductive assump-
tion %(u, 1) ﬂBLn_j_ €1 for k<j<n and 4w, 1)NnB €1,

%(u, 1)n C' € it now follows that (2) holds for all but finitely many
elements of Bk,n—k' Let a, Dbe an element of Bk,n_k satisfying (2).

Let now k<j<mn. Put

B;-,n_;- = B;’,H—j-—l N %(ak) if wk(j) =0,
Bj.”—f = Bf.!l-)l'_l n 'y(ak’ 0) Ef i’bk(}) = | .

Put

B 0=B’ﬁ€3('ak) if Y(n) =0

n,

B, o=B0%a ) if Y=

n,

= C' 0 gay) if  Yn+ =Yk =0

n+

A,,,=Cn%@, if Y r+D=yk=1.

n
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In both cases A Bf,n-—} &l for j<n, ArH-l’Bn,O are disjoint and
do not meet any of the B; ;, for j<n. Finally by the choice of B’, "
we have %(u, 1) N A, 1€ I for ue Bn,o' Thus the sets An"Bn,m are
defined for all n,m and a; is defined for all k < w since for all &
there is n+ 1 € w with ¢(k)=n+ 1. The elements a, are all different.
Put A ={a;: k< w}. Weclaim that ¥(4)= % (4) and that the map-
ping k—rak is an isomorphism of # onto %(A) . Let k <s by given.
Assume first n+ 1 = (k) <s. Then by the construction a, € B, for
some j, Bs,i (- Bs,o C A“_ 1

A C 9(a,) if  Yk)=0,

n+1

Ay © 9(g o) if vk)=1.
Hence

{ay, a1 € G if {k,s}€H,

{ay,a,}€ G, if {k,s}eH.

Assume now that k<s<nmn+ 1=¢(k). Then ¢k) <ep(s),
“;EAs,m—s for m = p(s) — 1, hence; A= CA,‘,,_,, A”m_s C9(a,)
if ybk(s) = 0, Agp_C %9 0) if ¢, (s)=1. It follows again that
{ag,a}&¢ G if {k,s}€H and {ak,a,}GGO if {k,s}€ H. This proves

Theorem 2.

Proof of Theorem 3. Let ¢ be agraph, |¥|=2“, whichis w,-
good. Let ¥, = (w,H;): i<k<w be a countable graphs and let G =
= Uk G, be an edge coloring of ¥ by k colors. Let / be the w,-

i<
complete ideal corresponding to %. Let C,Dg I, CNnD=¢. We say
that C,D is a good pair for the color i if forall C'CcC, D'CD;

C',D' g I thereis u€ C such that ¥(u,i)n D' I. First we claim

(3) 3i3A¢ INB(BCAABelI=3C,D(C,DCB and C,D isa
good pair for the color i)).

To see this assume (3) is false. Suppose that forall A€ and i<k
there is a B for which the requirement is false. It follows that there is a
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sequence B, D ...D B, , in such a way that the requirement is false
for Bi with i, and Bo’ - ,Bk_l & I. It results that no pair C,D & I,
CnD#¢; C,DCB, , isgood for i<k. Let now C,DC B, ,,
CnD=g¢, C,Dgl. By induction we can pick two sequences
¢>Cy>...0C,_, and DD>D,>...0D; , suchthat C,D;&],
Yw,ij)nD,;€l for ueC, i<k Then C, _ ,D,_, €I and
Yu,)ND,_, € I forall uecC,_ 1p i< k. Considering that % (u) =

= i!cjk %(u,i) forall u, and that ¥(w)n D, , &¢I for all but fewer

than w, elements of g, this is a contradiction.

Let i and A satisfy (3). We define sequences A,,B,: n<w by
induction on n as follows. Put A, = A. Assume A, and B,&[ are
already defined for i<n so that A, C A. By (3), then there is a good
pair for i, B,,A, €¢I, B, CA,,6 A, ,,CA,CA, B,NA,  , =9¢.
This defines the sequences 4 ,B,: n< w. Obviously the A4, are de-

creasing the B, are pairwise disjoint and mgn B_CA4..

We now define a sequence b, € B, and a sequence Bn’m for m<n
for n< w by induction on n as follows. Put JES";',I0 = B, for k< w.
Assume n<w; b, , m<n and Bk,0 >...D2 Bk’n is already defined
for all k, and Bk’nef.

We claim that thereisa u€ B, , such that

G, )N B, ,EI
4) _ ' forall n<k<w.
ff(u)an,n &7

The second requirement holds for all but countably many elements
of Bn,n hence for all u € B' forsome B'C Bn’n CB,, B'¢ I Assume
G(u,)n Bn,k ¢ [ fails for some k, n<k<w forall u€B’'. Let then
B, ={u€B: 4, in B, €1} There is k, n< k< w such that
B & 1. Considering that B, , €¢I, B, CB,, B, , CA, , this conua-
dicts the fact that the pair B, ,4,,, isgood for i. Let now b, bean ele-
ment of B satisfying (4). Put JBk‘,El+l = Bk‘n N %@, if {(nk}e

nn L
€H, and B =B, ,N%0,) if {n,k}¢H. Then B, , &I

k,n+1
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