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ASYMPTOTIC ENUMERATION OF K, FREE GRAPHS

RIASSUNTO. — In questo lavoro si calcola il numero di grafi con # vertici che non
contengono alcun K,, fgrafo completo con #z vertici). Fissato sz, si ottiene un valore
asintotico, per # che tende all'infinito, del logaritmo del numero di tali grafi. Una vasta
classe di tali grafi pud ottenersi spartendo i vertici in #» — 1 classi approssimativamente
eguali e collegando poi due vertici se essi sono in classi diverse. Il logaritmo del numero
di grafi di questo tipo tende asintoticamente al logaritmo del numero di tutti i grafi privi
di" Ky

Nel caso in cui m = 3 (grafi privi di triangoli} si ottiene un risultato pit forte: si
ha infatti che il numero di grafi con » vertici e privi di triangoli & asintoticamente eguale
al numero dei grafi bipartiti con » vertici.

We investigate in this paper the question of how many graphs there are
containing no complete s-gon (K,) as a subgraph; that is, no subset of m
vertices with every pair joined by an edge of the graph. All graphs considered
here are undirected, without loops or multiple edges, and with labelled vertices.
We answer the question asymptotically for the logarithm (Corollary to Theo-
rem 1) for m = 3, and asymptotically (Corollary to Theorem 2) for m = 3.

For the m = 3 case, a slight modification of the method used in (2]
for counting asymptotically the number of partially ordered sets on 7 elements
can be used. The method used here is basically the same, but divides the
graphs into cases in different ways. The idea is to divide the graphs into several
subclasses, all but one of which are asymptotically negligible. That one is
the class of bipartite graphs. Thus these graphs are ‘‘ almost all " bipartite.

THEOREM 1. For every integer k2 > 2 and every real number ¢ > o, there
are numbers o < f,(c) and n(k, c) such that the number of graphs with n
vertices, n=>=n(k,c) and at most en* subgraphs of tvpe K,, is at most
2 A-VE=IN+E) qphere

fie)—o0 as £-—>o0.

COROLLARY. Let Gy(n) be the number of graphs with n vertices and with
no subgraph of type K,. Then

2
logy (Ga(m) = 75 (1 — 57 ) +00e0).

Note: All logarithms are base 2 in this paper.

Proof of Corollary. That w22 (1 — 1/(£— 1)) + o(#n?) is an upper bound
follows from Theorem 1 by letting € — 0 as # — co. That it is a lower bound
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can be seen as follows: Divide the set of 2 vertices into £ — 1 subsets as equally
as possible ([#/(£— 1)] or [#/(k— 1)] + 1 in each) consider all graphs with
no edge joining two vertices of the same subset. There are at most
2wlA=11 =1 (#-2/ of these, or 20*/21—W¢=1)_ This construction completes the
proof.

Proof of Theorem 1. We use induction on £, starting with 2= 2. In this,

I Hn

case, given & > 0, we get Zinj ((z)) graphs. For e sufficiently small, say
7

e < ¢y, and n sufficiently large, depending on g, say »= > z(e), we get

S () <me(l2)

i=o \

< 2—@eloge+(1-28)log(1-22)) (#2)+2 log n

< g—iz(log:}n' 3

Thus for e > g9 we let #(2,¢) =1, f,(e) = 1, and for e < gy we let (2, ) =
=n(e), and f,(s) = — 2¢loge. This completes the 2= 2 case.

Next we assume that the theorem holds for £— 1 and consider graphs
on 7z vertices with at most =»* subgraphs of type K,. We consider two sub-
classes:

A(n,e): Graphs with fewer than ¢#*-1 subgraphs of type K;_;, where
¢ is such that f;_ (") < 1/(2(f—1) (—2)) for all /< e.

B(n,¢): Graphs with a subgraph H of type R¥1 (see definition
below) such that at most 2x vertices from the remaining # — (£ — 1) R ver-
tices are connected to some vertex in each of the #— 1 parts of H. Here we
take R = 2¢ ¥ o= 44&R’é*' c_']‘s, and we assume ¢ is small enough so that
%< 1say e <g. By agraph of type R” we mean a graph consisting of /
disjoint sets of R vertices each (called the ¢ parts ” of RU]) and edges between
every two vertices in distinct parts, and only these edges. Such a graph is
called a complete /Z-partite graph.

Let G(7,c) be the class of all graphs with # vertices and at most
en* subgraphs of type K.

LEMMA. G(n,e)=A(n,c) uB(n,c), for n sufficiently large, say
7 = n(e).

Proof. Consider a graph G with » vertices and at most ex* K;, and
suppose G€A(n,c)u B(n,ec). It therefore contains at least enf~1 K, ;
subgraphs. By a theorem of Erdés [1], for # large enough, depending on R
and ¢ (and thus only on 2), we can find a subgraph H in G of type R*1,

Now since G is not in B (% , €), there must be at least an vertices connected
to at least one vertex in each of the £— 1 parts of H. Thus some set 51 of
£ — 1 vertices, one from each part, is common to at least cm[R‘e_l subgraphs
of type K,.
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Consider the family of sets of 2— 1 vertices of G forming subgraphs
of type K; 4, but excluding §;. There are at least ¢#*~1 — 1 of these. Thus
again by the theorem of Erdés [1], there will be a subgraph H' of type R¥™Y
where not all £— 1 parts of H' contain vertices of S;. Again, since G is not
in B(z, ), there will be a set Sz of #— 1 vertices, one from each part of H',
such that S; is common to at least an/R*™' subgraphs of type K,.

We repeat this argument [(¢/2) #*-1] times, each time eliminating one
set of £#— 1 vertices, and always leaving at least (¢/2) %'~ other K;_,. That
this process can be continued is a consequence of the theorem of Erdés [1],
which guarantees it for » large enough, depending on ¢. But repeating the
argument [(c/2)7" '] times guarantees the existence of at least [(¢/2) 7 1S,

and thus at least % (an/R*) (¢/2) Wt K, (to account for the possibility that

a given K; may contain up to £ of the S;). However, this exceeds e, a

contradiction. This proves the lemma.
We next obtain bounds for A, =1A(%,¢c)| and B,=|B(2,¢)|. Let

G,=1G(n,g)|. We already saw that log G, = (1 — 1/(f — 1)) %2 (in the
proof of the Corollary). By induction on £ we have, for » large enough,

e

2

log A, < (1 — 1/(k— 2)) + fo1(¢))

,2
< (= 1/t — ) — =) 5
Thus

P
—
L

el ) = msa—s) 5

Next we consider B(#z,2), and we estimate B, by (over-) counting
the numbers of ways to form graphs in B(z,¢) by starting with one on
n—(£— 1) R vertices and at most enf K, subgraphs. By definition of
B(n,c), we can obtain all graphs in B(%, <) by adding one of type R
to one on # — (£ — 1) R vertices.

First we choose (#— 1) R-sets (at most (;)&‘l choices), and then we
choose a graph on the remaining vertices with at most zz* K; (at most
G,_@-1r choices). Next we choose at most asn vertices to be connected to all
#—1 of the R-sets (at most 7 ([;L]
most 2¢6-DR= ways). We then connect the rest of the » — (£ — 1) R vertices
by choosing for each of these vertices one of the R-sets to which it will not
be connected (at most (£#— 1)""%"P® choices), and then connecting them
(at most 20—RG¥-1E-BR ways, This completes the construction of all graphs
in B(n,e) and gives

log (

) choices|, and then we connect them (at

B,

__—_Gu—a—nn') < %R log 7 -+ log n

—n(alog a4 (1 —a) log (1 —«)) + (£— 1) Ran
+n—(E—1)R)logd—1)+m—(k—1)R)(#—2)R.
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For « sufficiently small (and thus ¢ sufficiently small) and # sufficiently large,
depending on R, « (and thus on £), we get

By — L
log ( Gn—(}—l)ll}) < (£—2)Rn + dn
where

4 = 100 #Ra = 100 #2811 1,

d is thus a constant independent of e. We get

(2) lOg('G,;'_%‘-_nx') = (([ - é—l-:) + (é—d.) R) (f—1) Ra.

Let ¢; be sufficiently small so that for each fixed £ < ¢, there is a number
#'(e) such that (1), (2) and the lemma hold for all % = #'(e).
We have from the lemma and (1)

GN g An + Bn g Bu + Gn 2“{”;‘2"]‘1
or

G, < B, (1 — 27"y,
Then from (2) we get

Gn

log(Gjhfé—ﬁ!i)é(l_ﬁ ,é—l-: + {,é—d]}R) (— 1) Ra

— log (1 — 2-024)

I 2d

it ] e

\

). Thus if

d n—(k—1)R)?
IGE(Gn—u-UR)é(l— )é'IT+ {é—il)R) (n—(k—1)R)

2
we get

for n sufficiently large, say # =>#''(¢) = #'(c

+K,

a 72
loch”)g(l_él—1+(,§z ) ;

]
—1I1)R 2 +K.

Let K be large enough so that

log (G,,) < ([ . ‘{._I 2d ) 2

=T e o =T e
—1 T ®B—nR]) 2 +K

for all # < #''(g). Then by the last remark, this inequality holds for all #.
Now let #(g) = max (n'"(c) , (2K (£ — 1) R)/&)}}). Then

log G, < (1 —(1/(A— 1))+ 3d[(A— 1) R)#2[2 for all n>n(e).
The proof of Theorem 1 is complete if we let f,(e) =1 for ¢ > g,

and f3(e) = 34/(A— 1) R for e < ¢, and if we let n(k,c) = 1 for ¢ > g,
and n(£,e) = n(c) for e <e,.
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We now turn to the case £ = 3, or triangle-free graphs. We show that
“ almost all”’ such graphs are bipartite. That is, if T, is the number of triangle-
free graphs on a set of n vertices, and if S, is the number of bipartite graphs
on the set » vertices, then

THEOREM 2. T, = S,,(I + 0(%))

To prove Theorem 2 we use some lemmas, each concerning a special
subclass of triangle-free graphs. We consider a set V of m 4 1 vertices.

LEMMA 1. Let A(V) be those graphs on N with a vertex v connected to at
most m|64 others. Then

Proof. All graphs in A(V) are obtained as follows: a vertex v is chosen
(m -+ 1 ways); a graph on V— { v} is chosen (T,, ways); and the connections

to v are chosen (at most m([m,?64]) Wa_vs). This gives

log ( L% GV ) < log m + log (m + 1) + log (IWKGH) ml4 ,

for m sufficiently large.

LemMma 2. Let B(V) be the graphs on NV with a vertex v connected to a set
Q of [ma] vertices, where the set R of all vertices commected to any vertex of Q
satisfies | R | =mf2 L+ ym®8.  Then log (| B(V)||T,) < m|2 —mBl4 for m
sufficiently large.

Proof. Graphs in B(V) are all obtained as follows: v is chosen (m - 1
ways); a graph on V— { # } is chosen (T,, ways); a set Q is chosen to satisfy

the conditions for R (at most ([:Z*]) Way‘s); and # is connected to V— ({2 }UR)
(at most zmR-m'2 ways). This gives

i
< 2mt log m + mj2 — —;- i T BT

T 4

log

for m large enough.

LeMMA 3. Let C(V) be the graphs on N with a vertex v connected to a set
Q of [mt] vertices where the set R of vertices conmected to any vertex of Q satisfies

l g ! \V } | ) m-!u'lz — mﬁ;"B

for s sufficiently large.

Proof. All graphs in C(V) are obtained as follows: v is chosen ((» + 1)
ways); Q is chosen ((E?};il) ways); a graph on V— ({2}UQ) is chosen

(T,s—(mby ways); R is chosen (at most E_[,-'f%d e (m -——j[m ]) < mj2 ([ !2]) ways);
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the connections from Q to R are chosen (at most 270m2-4»" ways): and
finally the remaining connections of # are chosen (at most 2™ ways). This
gives

|C(V ) m.a,-'z - 239/8 32 o #19/8
b (Tm [m‘h) 2 2 = 2 4
for m large enough.

LEMMA 4. Let D(V) be the graphs on N with two adjoint vertices x and v,

58
<
o

with their corresponding Q. , Q, and R, , R, as above, with ‘ R,|— —

and similarly for R,, andwith |(V—RI0O(V—R))| = R-. T}zm

log (

N

D\ k i
-
)“m 160 !

For m large enough.

Proof. All graphs in D(V) are obtained as follows: x,y are chosen
{at most (m - 1)* ways); a graph on V—{x,y} is chosen (T, ; ways);
Q, and Q, are chosen so that R, and R, satisfy the conditions above

(at most ([:;])2 Ways); and finally x and v are connected as follows: Let

S=(V—R,y)N(V-—R,). Then x can be connected to (V— R, —
in at most 22A+ED IS ways, and similarly for ¥ and (V—R,) — ‘% ‘%
can then be connected to x and ¥ in 3'5| ways, since x and y are to be adja-
cent. This gives at most 27+7"" L |5 |log 3—2|S| ways. Then
DV} m
log ( - ) < 3w log m -+ m + m5® — 3 (2 — log 3)
PR
=m 160

for #z large enough.

LemMa 5. Let E(N) be the graphs on N with vertices x , v adjacent
respectively to sets Q,,Q, of [mt] wvertices, where Q,,Q, are connected to
R, , R, , respectively, with |!,R_,,| - m/z' < m B2, and similarly for R,.. Fur-
ther let no two vertices of R, be adjacent, and assume u , v € R, have no common
| E(V]

5
Proof. Graphs in E(V) are obtained as follows: x, 3,2 ,v are chosen

(at most in m* ways); a graph on V— {x, v, %, v} is chosen (at most T, _3
ways); Q, and Q, are chosen so that R, and R, can satisfy the conditions above

adjacent vertex. Then log( < %5 m for m sufficiently large.

\2
(at most ([::*1) ways); x and y are connected to V—R, and V—R,

LY

respectively (at most 27+7'" ways); finally # and # are connected to V—R,
(at most 372+#"%2 ways). This gives
i
log(l,ll:: Va ) < 3mif log m + 2m%8 - m (I + lois) &2 I—ssm

g

for m large enough.
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LemMma 6. Let F (V) be the graphs on V with v ,Q and R as above, with
|f R| —m|2, < m382, and with a vertex u not adjacent to any vertex of R nor
to any vertex adjacent to v. Then

log (1, 2) < 5

Proof. Graphs in F(V) are obtained as follows: # , v are chosen (at most
(m + 1)* ways); a graph on V—{u,v} is chosen (at most T, ; ways);

Q is chosen (at most ([::é]) ways); then 2,7 are connected to V—R
(at most 37272 ways). This gives
log (%) < 2mt log m + m¥® + % log 3
< % m for s large enough.

LEMMA 7. For m sufficiently large,
?ji-g——l—m—zlogmglogsmgﬂf +m

(Recall S,, is the number of bipartite graphs on m vertices).

Progf. To obtain bipartite graphs on . vertices we divide them into two
subsets (at most 2” ways), and connect the two parts (at most 277 ways).
This gives log S,, < m?/4 + m.

To get a lower bound we must construct a special subclass of bipartite
graphs and count them without duplication. We do this as follows. First
we divide the vertices into two sets of sizes [#2/2] and #z — [m/2]. There are

at least —; ([:2}{21)

gives a contribution of(

ways to do this. Not counting the effect of duplication this

[gm) 2l == -1 ways to construct the graphs.

The only graphs counted more than once here are those with more than
one connected component. Suppose the vertices are divided into two subsets
K and L, with £ and / vertices respectively, such that no vertex of K is connec-
ted to any in L. Using the upper bound established above, we get at most
2+ ERETL guch graphs for fixed K and L. The upper bound we have for

S,, includes all multiplicities obtained in the construction above. Thus to

p s ! b LIEA =
{more than) compensate for multiplicities we subtract Mo (é ) SR,

This can be rewritten as

[m/2] pes
2”,:{.“_,,, (;: 2{_,#(»,_&)),'2) = = 2(=m+1)2 omifddm
=1

Hence we get

’

- |

" ) — ol ) tm 2%

[n/2]

o 2(m',-'4}+m (2 =2 logm ___ 2—»1.-"2—!-103 m—})

o —(m+1)2

¥ ()4 (2—3— Iogm)
B 2(»!',."4)—:—»:—2 log m

for m large enough.
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COROLLARY. For m large enough

Sie.

log (g ) <—m|2 +3logm.

w1

LemMA 8. Let S(N) be the bipartite graphs on V. Then AN) U---
- UFN)YUSIV) contains all the triangle-frec graphs on N, for m suffi-
ciently large.

Proof. Let G be a triangle-free graph not in A(V) through F(V). By
AVY, B(V) and C(V), every vertex in G is connected to some set Q which
in turn is adjacent to a set R of vertices with || R]| -—m;’z[ < 1w,

We claim that G contains no pentagons (5-cycles). For let @, 6 ,¢c,d,¢
be the vertices of such a pentagon, in order. For each of these there is a
corresponding Q and R, say R, ,---, R,. By D(V),

((V—R)O(V—R)[<Z, [(V—R)N(V—R) <.
Since (V—R,), (V—R,), (V—R,) all have (m/2) + § m>® vertices, we get
[(V—R)N(V—R,)| = (m|2) — (3 m*8|2) —m[20. Similarly, |(V—R,N
N (V—R,)| = (m|2) — 3 m*8|2) — m[20. This implies that
IV —=RBIn ¥ =Rl 2L — Lm— =
for m large enough, contradicting D (V), since @ and e are adjacent. Thus G
has no pentagons.

Now consider any two adjacent vertices x and y in G. Let S, and S,
be those vertices distance 1 from x and y respectively, and R, , R, those at
distance 2. Since there are no pentagons, R, and R, are disjoint. S, and S,
are disjoint also, as there are no triangles. Thus by A(V), B(V) and C{V),
|R,| and | R, | are both m/2 4 m?8j2. Since there are no pentagons or trian-
gles, no two vertices of R, are adjacent, and similarly for R,. (Also for
S, and S,).

By E(V), every two vertices of R, have a common adjacent vertex,
and similarly for R,. (Strictly speaking, we first choose a set Q of [mb]
vertices from S, (resp. S,) so that the two vertices under consideration are
adjacent to Q, and then apply E(V)).

Now consider a vertex z not in U={{x,%}US, US, UR,UR,). By
A(V), z must be connected to some vertices in U. By definition of the S’s
and R’s, z can be connected only to R,UR,, and not {x,¥}US,US,. But
if 2 is connected to # € R, and v € R, then by A(V), v must be connected to
some other vertex o € R,, and by our observation above, 7 and # must both
be adjacent to some other vertex £ Then ¢,w ,v,2,# form a pentagon,
which is forbidden. Thus z can be connected to only one of R, and R,. But
by F (V) there can be no such z.

Thus G consists entirely of x,5,5,,5,,R,,R,. We claim G is bipartite
with parts {x} US,UR, and {y JUS,UR,. We already know that within
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cach of R, , R, , S, , S, there are no edges. Furthermore x cannot be connected
to S, nor R, or a triangle would result. Similarly y is not connected to S,
nor R,. Finally, there can be no edges between S, and R, nor R, and S5, or
there would be a pentagon.

Thus G € S(V) and the proof of Lemma 8 is complete.

Proof of Theoresm: 2. We prove the following statement by induction on #:

T,<(1+{Cln))S, for all #, where C is large enough so that
T,<(1+(Cln)S, for # < N, and N is large enough so that all the lemmas
above are valid, and N = 1010,

For n = N statement is true by choice of C. We assume that it holds
for all 2# <<, where s > N, and we show

Tepr < (l +?r—i1') St

By Lemma 8, we need only show that

[AV)] + .- 4 | F{V) C
Trit = w1

for |Vi]=n+1.

We use induction and the inequalities from the lemmas to show that

each of |[A(V)|[/Sus1," |F(V)|[S,+1 are less than 1/6 ;—_{C_-[ - The argu-
ments are all similar and we give only a couple here.

lewl _ [€) Tu-th Secwbt | S
Sut1 Tu—[n&] Snn[rxé] Sn-—[ué]-}-l Su+1
ln‘f‘_ln”’ J C
<A (S )
T ( + n— [14]

- (z—t"—ln#nmz log ,,)Jtn!1+1

A Cc ) 1 C
= o —1f8nt® (I e _} e
i — [nd] 6 n1

F(\r) - | FfVH _Tn—-] Snv—l_ Sn
Sn+1 Tu-1 Su—1 Sﬁ Sﬂ-{—l

& 27.!3;: (I _1|,_ c ) g—(#—1)+6logn

=T
1 C
< 6 n +1 ’

These complete the proof of Theorem 2.
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