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1 . Introduction

If F, G, and H are (finite, simple) graphs, write F-(G,H) to

mean that if the edges of F are colored red and blue (say) in any

fashion, then either the red subgraph of F contains a copy of G

or the blue subgraph contains H . Write F - G for F } (G,G) . A

natural question to consider is that of characterizing those F for

which F 3 (G,H) for a given G and H . This question is in general

extremely difficult, although in a later section we will answer it in

a few special cases . In general we will here discuss simpler questions

of what properties such graphs can have .

One result of the type sought is already known. Folkman [1] proved

the remarkable fact that there exists an F having clique number

max(m,n) for which F } (Km Kn ) . Nesetfíl and Rödl [2] have extended'

this to more than two colors . In another direction, [3] considers

for certain G and H the question of how few edges F can have, given

that F ; (G,H) . We will consider here two major questions : Given

that F } (G,H), what can be said about the chromatic number X(F),

and given that F i (Km Kn), what can be said about the minimum and

maximum degree of F?

To make certain questions meaningful, it is necessary to require

that F be minimal for the given Ramsey property ; that is, that F lose

the property upon removal of any edge .
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2 . Chromatic Number

We first consider the question of how small X(F) can be, given

that F i (G,H) . In fact, we generalize this question somewhat . Let

G and H be sets of graphs . Write F i (G,H) to mean that if the edges

of F are colored red and blue, there is either a red subgraph

isomorphic to a member of G or a blue subgraph isomorphic to a

member of H. By the chromatic Ramsey number r c (G,H) we mean the

least c such that there exists an F with X(F) = c for which

F - (G,H) . We will evaluate r c (G,H) in a sense; we need some more

definitions . By the Ramsey number r(G,H) we mean the least integer n

such that Kn i (G,H) . Write rc (G) for rc (G,G) . Also in any of the

above definitions, if G = {G} or H = {H} we may write G or H as

an argument .

We say that ~ is a homomorphism of the graph G into the graph

H if ~ is a mapping of V(G) into V(H) and (x,y) e E(G)-> (~ (x),

~ (y)) e E(H) . The homomorphism is called onto if all points and edges

of H arise as images of points and edges of G .

For any graph G, we denote by hom G the set of homomorphic images

of G, i .e ., the set of graphs having onto homomorphisms with G . If G

is a class of graphs, we define hom G in the obvious way .

The direct product G x H of two graphs G, H is defined by

V (G x H) = V (G) X V(H)

and (x,y) e V(G x H) is adjacent to (x',y') e V(G x H) if and only if

(x,x') a E(G) and (y,y') E E(H) . Harary [4] writes this as G A H



and calls it the conjunction . Otherwise, we generally follow the

terminology of [4] . The mappings

rl : V (G x H) } V (G) ,

	

TT2 : V (G x H) - ; V (H) ,

defined by TT(x,y) = x, Tr2 (x,y) = y are called the projections of

G x H onto G and H, respectively . These are homomorphisms onto

G and H .

The following proof, and its application to corollary 1 below, are

due in part to V . Chvátal (personal communication) .

THEOREM 1 . For any classes G and H of graphs,

rc (G,H) = r(hom G, hom H) .

Proof :

	

Set n = r(hom G, hom H) . By the definition of n, the edges

of Kn-l can be 2-colored such that no subgraphs isomorphic to any

element of hom G or hom H is monochromatic of the appropriate color .

Let F be any (n-1)-colorable graph, then a, an (n-1)-coloring of

F, can be regarded as a homomorphism of F into such a two-colored

Kn-1 . Let us color (x,y) e E(F) with the color of (a(x), a(y)) .

Then no red subgraph G is isomorphic to any member of G ; for other-

wise a(G) is a monochromatic subgraph of Kn-l isomorphic to a member

of hom G . The same argument applies to H . This proves

rc(G,H) ? n .

We now prove the inequality in the other direction . It is easy to

find finite subsets G, S G and H, S H with r (hom G,, hom H I ) = n ;

just select one red subgraph belonging to hom G for each 2-coloring

of E(Kn ) and a graph in G with this image, and similarly for H .



Since r c (G,H) <_ r c (G,,H
I
), it suffices to show r c (G,,H~) _< n .

We do this by showing that if m is sufficiently large,

K(m, . . .,m) -; (G,,H~) where the left-hand graph is a complete

n-partite graph .

To see this, let the maximal independent sets of a two-colored

K(m . . . .m) be Sl , . . .,Sn , so that IS,I = m . It is well known (and

easy to show along the lines of the proof of Ramsey's theorem) that

given any m'., we can choose m so large that S 1 U S 2 induces a

monochromatic K(m',m') . Discard the remaining points from S 1 and

S 2 and an arbitrary set of the appropriate number of points from the

other S . to form {S,'} having m' points . Now, given any

we can choose m and m' so large that S' 2 U S' 3 induces in turn a

monochromatic K(m",m") . Given any m, we can choose m large enough

so that we can repeat this operation n( 2 ) times, finally yielding a

K(m, . . .,m) with maximal independent sets S . S, such that all

(S
i
,S,) edges have the same color a . . . Choose m = maxjV(F)I and m

J

	

iJ

large enough as above .

Now a
iJ

. defines a 2-coloring of the edges of K n and so by

n = r(hom Gl , hom HI), some G c hom G, or H c hom H, occurs

monochromatically in the desired color in K
n

; suppose it is G e hom G1 .

Let G = ~ (G'), G' c G1 . Then we can find a monochromatic copy of

G' spanned by 51 , . . .,Sn , since certainly m ? IV(G')I .

The above shows r c (G1,HI ) <- n, completing the proof .



CoroZZary 1 . r c (Km'Kn ) = r(Km
K
n

) .

In fact K
M

and Kn have no homomorphic images other than

themselves . Indeed, if G is n-chromatic and contains a complete

n-graph then

re (G) = r(Kn ) .

To see this, note that r
c
(G) L r

c
(K

n
) = r(K

n
), since

K c G, and r c (G) = r(hom G) 5 r(hom
K n

	

n
) = r(K ), since hom G 2n -

	

-

hom K = {K } .
n

	

n

The above corollary was proved by Lin in [5], in fact for any

number of colors . We note that Theorem 1 and corollary 2 below can

also be easily generalized to more than two colors ; but we will not

pursue this .

Now, let Kr
denote the class of all r-chromatic graphs .

CoroZZary 2 .

	

r c (K r ,K s ) _ (r-1) (s-1) + 1 .

In fact, hom K consists of all graphs which are not (r-1)-

chromatic . Since E(K(r-1)(s-1)) can be 2-colored such that the two

colors induce (r-1) - or (s-1)-chromatic graphs respectively but

E(K(r-1)(s-1)
+ 1) cannot, the assertion follows .

5 if G is homomorphic to C 5 ,
CoroZZary 3 .

	

If X(G) = 3, then r (G) _c

	

6 otherwise .

Thus r
c (C2n +1 )

= 5 if n >_ 2 . We leave the straightforward

proof to the reader . Similar finite characterisations can in

principle be given in other cases, but this is probably impractical



except perhaps for rc (G,H), where X(G) = 4, X(H) = 3 .

We obtain a much more difficult question that that of

Corollary 2 if we consider

Clearly,

M = min r (G) .
r

	

GEK

	

cr

;e(G) '- re (K r ) _ (r-l) 2 + 1,

whence

	

M ? (r-1) 2 + 1 .r

Conjecture 1 .

	

min rc (G) _ (r-1) 2 + 1 .

This conjecture would follow from

Conjecture 2 .

	

X(G x H) = min (X(G), X(H)) ; or, equivalently, if

X(G) = X(H) = r

	

then

	

X(G x H) = r .

It is clear that <- holds here .

We wí11 prove a weakened version of conjecture 2, whence

conjecture 1 will follow for r = 3, 4 .

THEOREM 2 . Let X(G) = X(H) = r and suppose each point of

contained in a compZete(r-1)- graph . Then X(G x H) = r .

We remark this proves conjecture 2 in case r = 3 .

Proof:

	

If a is any r-coloring of G then a' defined by

a'(x,y) = a(x) is an r-coloring of G x H . Thus X(G

We prove now that G x H is not (r-1) chromatic . Suppose

indirectly that G x H has an (r-1)-coloring a . Let us label the

points of H by 1, . . .,n . We may assume this ordering is such that for

each i, M contains a complete (r-1)-graph whose vertices are

i, i+l, . . ., i+v-1 for some 1 <_ v <- r-1 and r-v-1 points less than i .

x H) = r .

H is



For each y e V(G), a y (x) = a(y,x) cannot be a legitimate coloring of

H, i .e ., there are two points i,j e V(H) such that ay(í) = ay (j),

(i,j) e E(H) . Select, for a fixed y, such a pair (iy ,jy ) with

íy minimal and set ay (iy) = ay (jy ) = s(y) . Now ( cannot be

a legitimate coloring of G, whence there are y, z c V(G) such that

(y,z) e E(G) and S(y) = S(z) . Thus we know

(1)

	

a(Y,iy) = a(Y,jy) = a(z,iz) = a(z,j z),

and (y,z) EE(G), (iy ,j y ) EE(H), (iZ ,j z) e E(H) . We cannot have

iy = iz since then (y,iy) would be adjacent to (z,j z ) in

contradiction with (1) . So we may suppose iy < i z . By the

definition of the ordering of V(H), there is a complete (r-1)-graph

K S H whose vertices are íy , iy + 1, . . ., iy + v - 1 and r-v-1

points less than i y (1<-v<-r-1) . Since (y,iy) and (z,i z )

non-adjacent by (1), iz ~ V(H) and so, iz ? í
y

+ v

Now the points (z,k) (k E V(K)) are all adjacent to (y i )
, y

(for k # i
y

) or to (y,j y) (for k = i y) . Therefore these r-1

points only get r-2 colors, since none of them can be colored

a(y,í
y

) = a(y,iz ) . Thus some two of them, say (z,k l ) and (z,k 2),

must have the same color : a(z,k1 ) = a(z,k2 ) . Since kl ,k2 < íz ,

this contradicts the choice of iz

THEOREM 3 .

	

Conjecture 1 is valid for r = 4 .

Proof.

	

Let us 2-color the complete ((r-1) 2+1)-graph in all possible

ways ; let a 1 , . . .,aN be these 2-colorings . At least one of the two

colors must form a graph with chromatic number ? r; let H,i be a

are



monochromatic subgraph of ai, with chromatic number >_ r . Consider

G = H1 X

Then Hl , . . ., HN c hom G and so,

rc (G) = r (hom G) < (r-1) 2 + 1,

by the choice of the graphs H1 , . . .,HN . So if G has chromatic number

r we are finished . This follows immediately if Conjecture 1 is

valid, but, making use of the freedom we still have in the choice of

H1 , . . .,HN we can prove X(G) = r for r = 4 .

By Theorem 2 it suffices to prove

LEMMA 1 . If the edges of the complete 10-graph are 2-coloured, there

exists a monochromatic subgraph H with chromatic number 4 such that

each vertex of H is contained in a triangle of H.

Proof.

	

Let the edges be colored red and blue, and let G 1 and G 2

denote the subgraphs formed by red and blue edges, respectively .

If X(G1) = 3 then 3-coloring the points of G I one color class will

have at least 4 points . This gives a K 4 in G 2 , and we can take this

complete 4-graph as H .

Thus we may suppose X(G1 ) >_ 4 and similarly X(G 2 ) ? 4 . If each point

of G1 is contained in a triangle of G I we can take H = G1 . So we may

suppose there exists a point x l contained in no red triangle and

similarly, there is a point x 2 contained in no blue triangle .

Suppose first x l = x2 . Then there are >_ 5 edges adjacent to xl in one

of the two colors, say in red . The points z with (z,x 1) red must



form a blue complete graph and we can take this as H .

Finally, suppose x I

	

x2 , and let the edge (xl ,x 2 ) be red (say) . The

points z with (z,x l ) red span a blue complete graph containing x 2'

hence their number is at most 2 . The number of blue edges adjacent to

x2 is at most 3 (otherwise we could find a red K 4 as before) and if

(z,x l ) is red (z # x2) then (z,x 2 ) is blue . Thus there are at least

5 points which are all connected to x I by blue edges and to x 2 by red

edges . If these 5 points induce a monochromatic triangle we have a

monochromatic K4 again; otherwise, there is a red 5-cycle here which

forms a red 5-wheel together with x 2 . Then we can take this 5-wheel

as H . This completes the proof of Lemma 1, and hence of Theorem 3 .

3 . Minimum and Maximum Degrees

We now consider S(F) and A(F), the minimum and maximum degrees of F .

It is necessary to make a definition . We say F is (G,H)-irreducible

if F - (G,H) but F --14 (G,H) for any proper subgraph V of F ; we make

the obvious definition of G-irreducibility .

J. Ne6etr`il conjectured that there are infinitely many non-isomorphic

K
r
-irreducible graphs for any fixed r . We are going to describe a

construction which will answer this conjecture in the affirmative, but

first we consider S and A .

Among other things the next theorem gives a new way to give a lower

bound to the classical Ramsey numbers .

THEOREM 4 . 2r/2 <_ min A(G) = r(Kr )-1, where the mínimum is taken over

aZZ G for which G -> Kr .



Proof .

	

The right-hand equality is obvious by corollary 1 to Theorem

1 . The lower bound can be proved as follows . Construct a hypergraph

H on E(G) whose edges are sets of edges of complete r-subgraphs of

G . Then G 3 Kr means H is not 2-chromatic . By Theorem 3 in [6], it

follows that some edge (x,y) of G is contained in at least

complete r-graphs .

Let d be the degree of x ; then

whence

if r >_ 6 . The cases with r <- 5 can be settled by direct considerations .

(They also follow by our next theorem .)

THEOREM 5 . min 6(G) _ (r-1) (s-1),

where the msn&mum is taken over aZZ (Kr ,Ks)-irreducible graphs .

Proof.

	

Suppose first that G -} (Kr ,Ks ) and some x e V(G) has degree

< (r-1) (s-1) .

G being (Kr Ks)-irreducible, the edges of G-x can be 2-colored such that

no complete r-graph or s-graph is monochromatic in the appropriate

color and consider such a 2-coloring with red and blue, say . Let S

denote the set of neighbors of x, and let Tl , . . ., Tk be a maximal set

of disjoint complete red (r-1)-graphs spanned by S . By ISI < (r-1)(s-1)



we have k < s-2 . Let us color now all edges connecting x to

Tl , . . .,Tk blue, all edges connecting x to S-T 1- . . .-Tk red. We claim

that no appropriate monochromatic complete graph arises . In fact,

each blue complete graph containing x can contain at most one point

of each T l , . . .,Tk , whence it has at most k+l <_ s-1 points . Each red

complete graph containing x has at most r-2 points in S-T1- . . .-Tk

(by the maximality of {T,, . . . . T k}), thus the same conclusion holds

again .

The coloration defined above shows G -/-), (K r ,K s), a contradiction . Thus

x must have degree >_ (r-l)(s-1) .

The construction of a Kr
-irreducible graph G with ö(G) _ (r-1)(s-1) will

depend on a lemma .

LEMMA 2 . For any r,s >_ 3 there exists a graph G and two independent

edges e and f of G such that

(a)

	

G--f-s (Kr'KS) ,

(b)

	

for any 2-coloring of E(G) such that no K
r or K

s is

monochromatic in the appropriate color, e and f have different

colors .

A graph G with properties a, b will be called a negative (e,f)-signal

sender .

If G1 is a negative (e l ,f1)-signal sender and G 2 is a negative (e 2 ,f2)-

signal sender then by identifying f l and e 2 we get a positive

(el ,f 2 )-signal sender : a graph G such that G -4-iD-(Kr ,Ks ), but if we

color E(G) red and blue such that no appropriate monochromatic complete

graph arises then el and f2 must have the same color . By forming chains



of signal senders analogously we can construct positive and negative

(e,f)-signal senders such that the distance between e and f is

arbitrarily large .

Before proving Lemma 2 let us complete the proof of Theorem 5 . Without

loss of generality, we may assume that r

	

s. Let Sl, . . .,Ss-1 be

disjoint sets with IS,I = r-1 . Let x 0 S 1 u . . .u Ss-1 v {x} span a

complete graph K. Form an edge e disjoint from K . If f is an edge of

K such that f connects two points in different S,'s, construct a

positive (e,f)- signal sender in which e and f have distance >- 3 and

which has no other point in K . All of these signal senders should

have no points in common except at their end-edges . Call the union of

K and all the signal senders G . Then G - (Kr ,Ks ) . To see this, suppose

that E(G-x) is colored red and blue so that no red Kr or blue Ks

occur . Then, since r < s, the signal senders force that all the edges

connecting different S . 's must be blue (except that colors can bei

reversed if r =s) . Consequently, all edges within each S i, must be red .

There is now no way to color the edges emanating from x without

forming a red K r or a blue Ks .

Also G-x 4* (Kr ,Ks) ; for we can color all edges spanned by any S i red

and the edges connecting different sets S,i blue . This coloring extends

to the signal senders so that no Kr or K s is monochromatic in the

appropriate color . Since the distance of e and f is ? 3 and the signal

senders are nearly disjoint, there is no other Kr or Ks in G than these

in K and in the signal senders . Therefore, no red Kr or blue K s occurs

by the above coloring .



If the signal senders are minimal in the sense that removal of an

edge from one destroys its properties, then G is (Kr ,K s )-irreducible .

To see this observe first that(G-e)-~* (Kr ,Ks), where e E E(K) . Moreover,

consider the removal of an edge e not in K. This permits the color of

some edge between two S i 's to go free, and it is easy to see that in

this case again (G-e)-f-i(Kr,Ks) . This completes the proof of Theorem 5 .

A similar argument yields

THEOREM 6 . If r,s ? 3, there are infinitely many non-iso arphic

(Kr,Ks)-irreducible graphs .

Proof .

	

Let one of the signal senders used in the above construction

have arbitrarily large distance between e and f .

We note that by elaborating on the ideas of Theorem 5 it is possible to

construct a (Kr ,K s )-irreducible graph with arbitrarily many points of

degree (r-1)(s-1), incídently yielding another proof of Theorem 6 .

We are now ready to consider Lemma 2 again, but we do so by proving

another lemma which yields Lemma 2 almost immediately .

LEMMA 3 . If r,s ? 3, there exists a graph G with two adjacent edges

e and f satisfying (a) and (b) of Lemma 2 .

Proof .

	

Let m = r(Kr ,KS)-2 . Then E(Km+l) has some colorings with

red and blue such that no Kr or K s is monochromatic in the appropriate

color . Let 0 <_ a i < . . . < aq <_ m be the possible numbers of red edges

adjacent to any point in such 2-colorings of E(I,,,+ ,) .

Claim 1. al # 0 . Suppose there is a 2-coloring of E(Km+l) with no

appropriate monochromatic Kr or K s such that a certain point x is



adjacent to blue edges only . Take a new point x', connect it by

blue edges to all points of Km+l x and by a red edge to x. Then we

obtain a 2-coloring of E(Km+2 ) having no red Kr or blue Ks , which

contradicts the definition of m .

Similarly it follows that aq m .

Claim 2 . There exists an m-uniform hypergraph H and two points x, y

x, y e V(H) such that

(a) The vertices of H can be 2-colored such that each edge contains

al ,a2 , . . ., or a
q

red vertices ;

(b) For any 2-coloring of V(H) for which each edge contains

al , . . ., or a
4
red vertices x and y have different colors ;

(c) H contains no circuits shorter than 4 .

To prove this claim let us consider a hypergraph H o which contains no

circuits shorter than 4, and which is 3-chromatic . The existence of

such an H0 has been proved by probabilistic methods in [7], and

constructively in [8] . Then by a l ~ 0, aq # m, H0 has the property

(*) For any 2-coloring of V(H 0 ) there is an edge E e E(H 0 ) such that

the number of red points in E is different from al , . . .,aq . In fact,

the number o£ red points in E is 0 or m . Consider now a hypergraph

H0 with property (*) and with minimum number of edges . Let

E _ Ix,	xm} e H and take m points yl , . . .,ym not in H . Let

Hi = H - {E} + {Ei} where Ei = {yl, . . . . yi'xí+1' . . .,xm} .

Clearly Ho has property (*) while Hm fails to have this property . So

there is a 0 < i < m such that Hi does not have property (*) but Hi-1



i

does . We claim H = Hi , x = xi , y = yi satisfy the conditions of

Claim 2 . In fact, (a) is satisfied since H i does not have property

(*) . (b) is satisfied since if H i had a 2-coloring where x i and yi

are colored alike and each edge contains a l , . . ., or aq red vertices

then identifying x i and yi the same coloring would show that H1-1 does

not satisfy (*) . Finally, (c) holds trivially .

We now construct our graph as follows . Let V(G) = V(H)u {v} . Connect

v to all points of V(H) ; connect two points of V(H) if they belong to

the same edge of H . Note that (c) implies that every Kr or K s in this

graph is contained in a set of Eu {v}, E e E(H), and each edge of G

spanned by V(H) belongs to a unique edge of H .

Now G -71--r(Kr ,KS) follows by (a) easily: Suppose V(H) is 2-colored such

that each edge E of H contains al ,a2' . . ., or aq red points . Let us

color the edge (v,u) (u e V(H)) with the color of u . Then for each

edge E of H, the edges of the complete (m+l)-graph K spanned by

E u{v} are partially 2-colored ; the number of red edges adjacent to v

is ai , 1 <- i <- q and hence by the definition of a i , we can complete

this 2-coloring of E(K) without producing a red K r or blue Ks
. Doing

so for each E e E(H) we obtain a 2-coloring of E(G) . This produces no

red Kr or blue K s , since each Kr or Ks in G is contained in some set

E U {v},E e E(H) .

A similar árgument shows that for each 2-coloring of E(G) in which no

Kr or K s is monochromatic in the appropriate color the edges (v,x) and

(v,y) have different colors . This completes the proof .



Proof of Lemma 2 . Take three copies Gi., i = 1,2,3, of the graph G

of Lemma 3, with edges ei , f i as in that lemma . Identify f1 with

e2 and f2 with e3 in such a way that e 1 is disjoint from e
3
and f 3 and

f1 is disjoint from f3 and such that the Gi 's have no points in

common not implied by the above identifications . Then it is clear that

the resulting graph satisfies the requirements of Lemma 2 .

Also of interest is how large A(G) can be for a (K r,K s)-irreducible

graph . The following result answers this question, which once again

proves Nesetfil's conjecture .

THEOREM 7 . If r,s >_ 3, then there exist (K r Ks)-irreducible graphs

with arbitrarily large A .

Proof .

	

We will be concise . It is sufficient to show that there

exist minimal signal senders with arbitrarily large A, since then one

can construct the desired graphs in many ways . To show the existence

of such signal senders, consider the proof of Lemma 3 .

That proof involved a hypergraph H 0 which was 3-chromatic and had no

circuits shorter than 4 . Replace that hypergraph with one which is

3-chromatic and which has no circuits shorter than n, where n is any

integer ? 4 . Again, that this can be done is guaranteed by [7] or [8] .

The hypergraph H inherits this property . Examining the rest of the

proof, one sees that the graph G formed as in that proof has a cycle

not containing v having at least n points and that v therefore has

degree ? n. It is clear moreover that in any graph formed from G by

removing edges and retaining the properties of G, v must still have



degree ? n . Proceeding now as in the proof of Lemma 2, we construct

a minimal signal sender having maximum degree ? n, completing the

proof .

We note that this construction can be used in the other results of

this section . For instance, there exist (K K
s
)-irreducible graphs

r

•

	

with d(G) _ (r-1)(s-1) and with A(G) arbitrarily large .

A question we have not answered is that of how large S can be in a

(Kr,K s)-irreducible graph . Very likely it, too, can be arbitrarily

large .

The methods of this chapter also let us consider the connectivity K

of (Kr ,Ks)-irreducible graphs .

THEOREM 8 . If r,s ? 3, then

min K(G) = S2

	

if r # s
l3 ifr=sf

where the minimum is taken over all (K r,Ks)-irreducible G .

Proof.

	

It is trivial that min K(G) ? 2 . Now assume r=s and suppose

•

	

is a (K ,K )-irreducible graph with K(G) = 2 . Then G is the-union
r s

of two graphs G 1 and G 2 with only two points x,y in common . Since

•

	

is (Kr ,K s )-irreducible, Gi-y4 (K r ,K s), i=1,2 . If G does not contain

the edge (x,y) it is immediate that G-fi (Kr ,Ks), a contradiction . If

•

	

contains (x,y), note that G1 and G2 may each be separately colored

so that (x,y) is red and neither contains a red K
r
or a blue K

s
, since

if any such coloring yields a blue (x,y) the colors may be reversed .

Combining these two colorings in G, we see that again G -/y(Kr,Ks),

a contradiction .

To see than min K(G) <_ 3, take three copies Gi , i = 1,2,3, of a

minimal graph G having the properties of Lemma 3 with edges ei , f i as



in that lemma . Form a graph H by identifying f l with e 2 , f2 with e3 ,

and f3 with el in such a way that the edges form a K11,3 and such that

the Gi 's have no other points in common . It is clear that K(H)=3 and

that H is (K r,Ks)-irreducible . Finally, assume without loss of

generality that r < s . We construct a (Kr ,K s )-irreducible graph G with

K(G) =2 . Form a complete r-graph K and a disjoint edge e . For

f e E(K) connect e and f with a positive signal sender in which

every

e and

f have distance ? 3 and which has no other point in K, while also

assuring that no two signal senders have a point in common except at e

and possibly K . It is clear that the resulting graph H can be 2-colored

so that is contains no red K or blue K ; but K wí11 be monochromaticr

	

s

and therefore blue. Take two copies H' and H" of H with distinguished

complete r-graphs K' and K" . Connect an edge of K' to one of K" with

a negative signal sender to form a graph F . Clearly F } (Kr ,K s ) and

K(F)=2 . Furthermore, F certainly retains the latter property when it

is converted to a (K r,K s )-irreducible graph by possibly removing edges .

This completes the proof .

Another significant graphical parameter is the edge connectivity a .

Very likely min a(G) _ (r-1)(s-1), where the minimum is taken over all

(Kr ,K s )-irreducible graphs, but we have not been able to prove this .

Certainly (r-1)(s-1) is an upper bound by Theorem 5 .

We have determined in Section 2 the minimum value of X ; in [9] it is

shown that for (Kr ,Ks )-irreducible graphs there is no maximum . Other

interesting parameters are the point and edge covering and independence

numbers . The construction in Theorem 6 shows that all four of these



parameters can be made arbitrarily large in a (Kr Ks)-irreducible

graph. Very likely the minima of these parameters are determined by

Kt , where t=r(K r ,Ks ) . That the minimum number of points and edges are

determined by Kt follows from the definition of t and from Corollary 1

to Theorem 1 respectively .

Finally, we note that all the questions we have studied in this section

could be asked for (G,H)-irreducible graphs in general .

4 . Explicit Characterizations .

In this section we discuss the few G for which it has been

possible to characterize those F satisfying F } G. Our first result is

for stars ; the argument is essentially due to U .S .R . Murty (personal

communication) .

THEOREM 9 . A necessary and sufficient condition that G Kl,n
is that

A(G) ? 2n-1 or, if n is even, that G has a component which is regular of

degree 2n-2 and which has an odd number of points .

Proof .

	

It is clearly only necessary to consider connected G . Clearly

if 4(G) ? 2n-1, then G } Ki

	

Suppose n is even and G is regular of,n~

degree 2n-2 and has an odd number of points . Then G } K1 n , for if not,

then G is the union of two graphs, each regular of degree n-1, which is

impossible since n-1 is odd . This proves sufficiency .

To prove necessity, first consider a graph G which is regular of degree

2n-2 and suppose that either n is odd or G has an even number of points .

Then G has an eulerian circuit, which necessarily has an even number

edges . Color the edges of this eulerian circuit alternately red and

of



blue, yielding a 2-coloring of G . The red and blue graphs are each

regular of degree n-1, so G -74Kl,n'

Finally, let G be a graph which is not regular of degree 2n-2 and for

which A(G) s 2n-2 . We can clearly add edges to G in such a way that the

resulting graph either has exactly two points of odd degree or has one

point of degree < 2n-2, which is necessarily even, while preserving the

property A s 2n-2 . In the latter case add one more point and join it

to the point of degree < 2n-2 . Thus in any case G c G', where

A(G I ) <- 2n-2 and G' has exactly two points of odd degree . Join these

two points by an eulerian trail, and color its edges alternately

red and blue. Then each of the monochromatic graphs in the resulting

2-coloring has maximum degree < n-1 . Thus G'-/-'~K 1 n and hence
>

G -/-',Kl n' This completes the proof .
>

The problem of characterizing those G for which G -
(K 1 1,m' K 1,n ) seems

>
difficult, even in the case m=2, n=3 . For instance, the fact that

G-7">(K1 2 , K1,3 ) when G is a bridgeless cubic graph is equivalent to

Petersen's theorem [10] . Although some work has been done [11], a

complete characterization does not seem to have been published of

those cubic graphs G with bridges for which G } (K 1 2' Kl 3)' and even>

	

>

this would not be enough, since there exist (K12' K13 )-irreducible
>

	

>

graphs with points of degree two . (Clearly there can be no point of

degree one in such a graph) .

One other graph that can be dealt with is 2K 2' that is, a graph

consisting of 2 disjoint edges .



THEOREM 10 . G - 2K2 if and only if G contains three disjoint edges or

a 5-cycle .

Proof.

	

Clearly G } 2K2 if 3K 2 c G or C5 c G. Now consider any graph

G such that G } 2K2 . Let v be the point of largest degree in G . Now

2K2 c G-v, since otherwise we may color the edges of G-v red and the

rest blue, showing that G -4i 2K2 . Every edge incident with v may be

assumed to have a point in common with this 2K2 , since otherwise 3K2 c G .

Hence deg(v) 5 4 . If deg(v)=4, G contains KI + 2K2 , that is two triangles

with a point in common . But K1 + 2K2 --f->2K2 , and adding any edge to

K1 + 2K2 , with or without a new point, leads to a graph containing C 5

or 3K2 respectively .

Consequently we may assume deg(v) < 3 . But if deg(v) = 3, we see

that G contains a graph G I consisting of a triangle (v vl v2) connected

to a path (v v 3 v4 ) . Now G1-fi 2K 2 , so extra edges are necessary .

But (v,v 4 ) is disallowed and (v l ,v4) or (v2'v4) lead to C 5 . Moreover

(vl,v'), (v2' v'), or (v4 ,v'), where v' is a new point, lead to a 3K 2 .

The only other edges that can be added are (v l ,v3), (v2 ,v3) or (v 3 ,v'),

where v' is a new point . But adding any number of these edges alone

still gives a graph G2 such that G2 -f+ 2K2 . So we may assume deg(v) <_ 2 .

But this leads immediately to 3K2 c G or C5 c G . This completes the

proof .

Thus there are only two 2K 2-irreducible graphs . Also by Theorem 9

there is only one K1 nirreducible graph when n is odd . However it

seems very likely that for almost all G and H, there are infinitely



many (G,H)-irreducible graphs, as in the case where G and H are

complete graphs . The number is finite nevertheless in some further

cases, as the next theorem shows .

THEOREM 11 . For any m and n, the number

graphs is finite .

Proof .

	

We will show that if G is (mK 2' nK2)-irreducible, then

A(G) < 2m+2n-3 . This is sufficient to show that the number of such

graphs is finite, since certainly such a graph has no more than

m+n-2 independent edges as well, and no isolates . In fact, one can

see immediately that any such graph has rather less than 2(m+n) 2 points .

Assume the contrary, that there is an (mK2'nK2 )-irreducíble G with a

point u of degree ? 2m+2n-2 . Let v be any point adjacent to u. Since

G is (mK2'nK2 )-irreducible, G-uv has at least one edge-coloring with

no red mK 2 and no blue nK2 ; consider any such coloring . This coloring

must give both a red (m-1)K 2 and a blue (n-1)K2 , neither matching using

u or v, for otherwise uv could be colored in addition so as to give no

red nK2 and no blue nK 2 . Fix such a pair of monochromatic matchings,

which certainly use no more than 2m+2n-4 points .

Since 4(G) ? 2m+2n-2, there is a point w adjacent to u which is not

used in either matching. But now we see that the edge uw could not

have been colored successfully in G-uv, a contradiction . This

completes the proof .

Witb only a little more effort one can show that A(G) <- 2m+2n-4, but

in fact it probably must be much smaller still . Moreover, it seems

of (mK2'nK2)-irreducible



likely that an mK2 ,nK2)-írreducible graph can have no more than

2m+2n-2 points .

It would be interesting to get some more exact characterizations such

as those of Theorems 9 and 10 . This might be possible for star forests

in general, but it seems difficult even for such a simple graph as P 4 ,

the path on four points . In [9], which pursues the ideas of this paper

further, it is shown that for any n ? 3 there are infinitely many P n-

irreducible graphs . The constructions used shed little light on exact

characterizations . It would be of interest to determine more cases

where the number of irreducible graphs is finite or infinite . Perhaps

the cases we have found are the only finite cases .

As a final observation, we note that all the concepts and questions

considered in this paper can be generalized to more than two colors,

as can some of the results, especially those of Section 2 .
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