QN GRAPHS OF RAMSEY TYPE

S.4. Burr, P. Exrdos, L. Lovasz

1. Intvodustion

If F, G, and H are (finite, simple) graphs, wrice F+(0,H) to
mean that 1f the edges of F are colored red and blue (gay) in any
fashion, then either the red sobgraph of F contains a copy of 6
or the blue subgraph contains H. Write F+ G for TF + (G,G). A
natural question to congider is that of characterizing theose F for
which F - {(G,H) Ffor a glven € and H. This guestion is in general
extremely difficult, although in a later section we will answer it im
a few special cases. In general we will here discuss simpler questions
of what propértiss such grapha can have.

Ome regult of the type sought 1s already known. TFolkman (1] proved
the remarkable fact that there exiats an F having cligque number
max{m,n) for which F = {Km,xul. NeSetfil and RAd1 [2] have extended
this to more than two coloers: In another direction, [3] considers
for vertain G aad H the question of how few edges F can have, given
that F+ (E,H). We will consider here two major questions: Given
that ¥ + {G,H}, what can be said about the chromatic number x(F),
and given that ¥ = (Km.Kn}. what can be said about the minimum and
maximum degree of F?

To make certain questionse meaningfol, it is necessary to require
that F be minlmal for the plven Ramsey property; that is, that F lose

the property upon removal of any edge.
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2.  Chromatio Number

We first consider the guestion of how gmall x(F) can be, given
that F = (G,H). In fact, we generalize this question somewhat. Let
& and H be seta of graphs. Write F -+ (G,H) to mean that if the edges
of F are colored red and blue, there is either a red subgraph
igomorphic to a member of G or a blue subgraph isomorphic to a
member of H. By the chromatic Ramsey number rE(G,H] we mean the
least ¢ such that there exists an F with %(F) = ¢ for which
F—+ (G,H). We will evaluate {F,H} 1n a sense; we need some more
definitions. By the Hamsey number r{G,H) we mean the least integer n
such that Kn + {G,H). Write rE(G} for rE(G,GJ. Also in any of the
above definitions, 4if G = {6} or H = {H} we may write € or R as
an argument.

We say that ¢ 1s a homomorphlism of the graph G inte the graph
H if ¢ dis a mepping of V(G) dnto W(H) and (x,y) & E{B)2{ (x),
¢ (y)} £ E{H). The homomorphism is called onta if all points and edges
of H arise as Images of polnts and edges of G.

For any graph G, we denote by hom G the set of homomorphic images
of G, 1.e., the set of graphs having onto homomorphisms with G. If €
is a class of graphs, we define hom G in the obvious way.

The direct product G x H of two graphe G, H 1s defined by

Vi{G = H) = V(G) = V(H)

and (x,¥) & V(G » H) ds adjacent to {(x',y') € V(G = HY 41f and only if

(x.x') & E(G) and (y,y"} & E{H). Harary [4] writes thiz s8 G A H
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end calls it the conjunction. Otherwisze, we generally follow the

terminology of [4]. The mappings

w2 V(G = H) + V(E), =, : VW(Gx B) = V(H),

5 2
defined by =(x,y) = x, w,(x,y) =y are called the projections of
C=xH onto G and H, respectively. These are homomorphisms onto
G and H.

The following proof, and its applicatiom to cersllary 1 below, are

due in part to V. Chvidtal (persomal communication).

THEOREM 1. For any closses € and H of grapha
rg[G,H]-r[hul G, hom H).

Proogf: Set n = rlhom G, hom K). By the definitiom of n, the edges
of K _, can be 2-polored such that no subgraphs lsomorphic to any
element of hom G orf howm H 1s momochromatic of the appropriate color.
Let F be any (n-l)-colorable graph, them o, an {n-l)-coloring of
F, can be regarded as a homomorphism of F dinto such a two-colored
"n-—l' Let us color (x,y) ¢ E(F) with the color of (a(x), aly))-
Then no red subgraph G 18 lsomorphic to any member of O; for other-
wise a{€) 1is a momochromatic subgraph of K__, lsomorphlic to a member
of hom B. The same argument applies to H. This proves

;G(G,H} =

We now prova the inequality in the other direction. It is easy to
find finite subseta G; G and H, = H with r (hom G, hom ;) = n;
just seélect one red subgraph belonging to hom G for each 2-coloring
of E{l.n) and a graph in G with this image, and similarly for H.
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Bince rn{G‘,Hj < rE{GI,HI}, it suffices o shew r,-_-(Gj'Hij £ n.
We: do this by showing that £f m ig sufflclently large,
(g, - oo m) = (GI'HI} where the left-hand graph is & complete
n-partice graph.

Ta see this, let the maximal independent séts of a two-colored
K(my...m) be S;,...,8 €0 that |51| = m, It g well known (and
easy to show along the lines of the proof of Hamsey's theorem) that
given any m'\, we-'can choose m &0 large that 51 U 52 induces a

momochromacie E{m',m'). Discard the remasining poéinte Trom Sl and

5, and an arbitrary set of the apprepriate number of points from the
other §, to form {Si’} hawing m' polnts. Now, given any .m",

we pan choose: m and m' gso large that EIE u 3'3 induces in turn &
menochromatic Kim",m"). Given any m, we can cheose m large-enough
g0 that we can repeat this operition {gj timeg, finally vielding a

B, o eqm) with maximal independent sets 5. 5 8 such that all

i 1
{Ej.gj} edgea have the pame color u‘lj+ Choogse m = maxiV{FH and m
large enough as above.
Hosr g defines & 2-coloring of the sdpes of K~ &nd so by

n = r{hom 1'31, hom H'.I.:" some [ £ hom Gl or H = hom HI ancirs
monochromatically in the desired color in Kn; guppose A1t 18 G £ hom Gl'
Let G =4¢ (G'), 6" ¢ G;. Then we can find a monechromatic copy of

yes4,8 , oinee certainly m 2 E'l.rl:ﬂ'jl.

| =
@' spanned by 3 1 o

The shove shows rc{GI'Hl} £ m, complering the proof.
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£ 1. -
Corallary r, {Kt...l'ln] r {Km.HnJ .

In fact I\-’.m and I{n have no homomorphic images other than
themselvea. Indeed, i1f & is n-chromatic and contains a complete
n-graph then

tE{GJ = r(li“:l.

To see this, note that IE{GJ = rn{i{uj = r{I{n}. since
Kn c 65 and rr'{f:j = r{hom G} < r{bom Kn} = rl{;];cn}, gince hom G =

hom K“ = [I{uj .

The shove corollary was proved by Lin in [5], in fact for any
mmber of colerz. We note that Theorem 1 and corollary 2 beloew can
algo be easily generalized to more thap two colorsi but we will not
pursue this.

How, let Kl_ detnote the class of all r-chromstic graphs.
Dorcllary 2. r (KK ) = (r-1) (s-1) + 1.

In fact, hom K consists of all grapha which are not (r-1)-

chromatic. Since E(K 1}1 can beé Z-golered such thaet the two

(r=1} (s~
colors induce (r-1)} — or (s-1)-chromatle graphs Tespectively but

E':K(:-l}(a-l} = l:l cannat, the assertion follows.

5. if € 48 homomorphio o Ces
Corallary 2. IE x(6) =3 hen ‘= L8 = V¢ Lihomitan.

Thus rE{Gzn +1} = 5 if n =z 2. We leave the-straightForward
proof to the reader, Similar finite characterisations can in

principle be given in other cases, but this Is probably impractical
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except perhaps for tc{G,H}, where (G} = 4, »(B) = 3,

We obtain a moch morxe difficult questien that that of

Corollary 2 1f we consider

M = min r (G).

T mk ©
T

Clearly,

/ 2

;E{G} = IE{KIJ Ll 0 G 3 B

2

whenee H oz (e=1) + 1.
Congeature 1. min rﬁ(G) = I[r—lfll2 + 1.

This conjecture would follow Erom

Conjecture 2. %G H) = min (x(G), x{H}); or, equivalently, if
¥(G) = ¥(H) = r rthen x(C = H) =71,
It is clear that = holds here.

We will prove & weakened version of conjecture 2, whence
conjecture 1 will fellow for . = 3, 4.
THEOREM 2. Let (G} = x(H) =t @nd suppose sach potnt of 0 dis
contgined in o eomplete (r-1)- graph. Then x(6 » H) = T.

We remark this proves conjecture 2 im pgee r = 4.

Proof: If a 4is any r-coloring of 6 then a' defined by
a'lx,¥) = ulx) 4s an r-coloring of & = H. Thus (G = H) = .

We prove now that G = H Is net (r-1) chromatic. Suppose
indirectly that G = H has an (r-l)-coloring o. Let us label the
points of H by 1,...,n. We may assume this ordering is such that for
gach i, M contains a complete (r—-1)-graph whose wvertices are

i, 1#1, ...y d+v-1 for some 1 = v = r=] and r=-v=1 polnte less than 1.
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For each v €& V{G), uy{x} = gly,x) cannot be a legitimate coloring of
H, di.e., there are two polnts 1,4 & V(H) such that uy(i} = uyij},
{(i,§) = E{H). BSelect, for a fixed vy, such a pair [iy.jy) with
i}r minimal and set uy(ijr} = uy(j]r) = B{y). Now R cannot be
a legitimate coloring of G, whence there are y, z £ V(8) such that

(y,yz) ¢ E(G) and @(y) = A{z}. Thus we know
(1) ﬂ(?:iy) = EEF.JyJ =a(z,i,) = alz,4,),

and (v,2) eE(G), {ir,j?} cE(H), {iz,jz} £ E(H). We canmot have

iy - :I.z since then {y,iy} would be adjacent to {z,jzj in
contradiction with (1). So we may suppose 13 < ia+ By the
definition of the ‘ordering of WV(H), there is & complete (r-1)-graph
K& H whose vertices are 1?, i? L ey l.F =y -1 ‘apd r-v-1

points less than l.__lr {(1=v=r-1). Since {y,ly} and {z.lzj are

non-adjacent by (1}, j.z ¢ V(i) and so, :f.g z i}’ + v .

How the points (z.k)} (k € V(K)} are all adjacent to (F,iy}
(for k¢ iy} oT Eo {y.jy} (for k = IF}' Therefore these r-1
pointe only get r-2 colors, since none of them can be colored
ul{y,i?} = u{}_',iz]. Thus some two of them, say (z,lLl:ll and (k,kz}l.
must have the same color: u{z,kl} = m{z.kz}. Since kl’kE € i;’

this contradicts the choeice of i, -
THEQREM 3. Conjeature 1 ie valid for T = 4.

Progf: Let us 2-color the complete {{r-l}z+l]—graph in all possible
wavs; let By aeeeatiy be these Z-colorings. At least ona of the two

colors mist form & graph with chromatic number = r; let Hi be a
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monochromatic subgraph of oy with chromatic numher * r, Consider

C= Il.l X e X H'.
Then Hiaeees Illl ¢ hom G and so,
r (G) = r (hom G) = (e-1)? +1,
by the choice of the graphs Hl""'ﬂs' S0 1f 0 hap chromatic number
z r we are findshed. This follows Immediately if Conjectura 1 is
valid, but, making use of the freedom we still have in the cholce of

“1'“"“:1 ve can prove %(G) = r for r = &.
By Theorem 2 it sufficems to prove

LEMMA 1. TIF the edges of the complets I-graph are S-coloured, there
adieta a monoohromaitio subgraph B with chremotie mumber 4 such thot
gach vertar of B {n sontained in a triemgle of H.

Proaf. Let the edges be colored red and hlue, and let G, and G

1
denote the subgraphe formed by red and blue edges, respoctively.

z

If 1({;1] = 3 then 3I=coloring the peoints of BI one color class will

have at least & pointe. Thhglmaliinﬁ.lndumnklthis

complete G-graph as H.

Thus we may suppose x{ﬂl} * & and similarly 1{!}3] * 4. 1F each point
of Gl is gontained in a triangle of GI we can take H = Gl. S0 we may
suppose there exiwis o paint = contained in no red eriangle and

gimilarly, there 1a a point =, contained in no blue triangle.

Euppose:int:l*xr Then there are = 5 edges adjacent :qxl.i.nm

of tha two colors, say in red. The podints z with ta.x.l‘.l red must
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form & blue complete graph and we can take this as H,
Finally, suppose * # Xy and let the edge {xl,x2:| be red (say). The
points 2 with (z,xlj red span a blue complete graph containing %,
hence their number is at most 2. The number of blue edges adjacent to
%, is at most 3 (otherwise we coold find a red Kﬂ as before) and LF
{a,;l} is red (z o xz} then {a,xz} 18 hlue. ‘Hus there are gt least

7 by red

edgos. If these 5 points induce a monochromatic triangle we have a

3 points which are all commected to ¥, by blue edges and to x

monochromatic Kﬁ again; otherwise, there is a red 5-cycle here which

forms a red S5=-wheel together with Then we can take this S5—wheel

Xy
ag H. This completes the proof of bémma 1, and hence of Theorem 3.
J. Mindewan onmd Mozt Degreeg

We now consider 6{F) and A(F}, the minimum and maximum degress of F.
It i= necessary toe make a definition. We say F is (0,H)-irreducible
if F =+ (G,H) but F <+ (G,H) for any proper subgraph F' of F; we make
the obvious definition of G=irreducibility.
J. Weferfdl conjectured that there are Infinitely many non-igomorphic
Kf-irreducibla graphe for any fixed r. We are going to describe a
conatruction which will answer this comjecture in the affirmstive, but
first we consider & and A,
Among other thipgs the next theorem gives a new way to give s lower
bound to the classical Ramsey numbers.
THEOHEM &. thz = min A(G) = r(Kr}HI, where the mintmum e token over

@ll G for whick € + K .
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Proof. The right-hand equality is obvilious by corellary 1 to Theorem
1. The lower bound can be proved as follows. Construct a hypergraph
H on E(G) whose edges are sets of edges of complete r-subgraphs of

G. Then & + K means H is not Z-chromatic. By Theorem 3 in [6], it

follows that some edge {x,¥} of G 1s contained in at least

(5)-
(2)
Let d be the degree of x; then

z{;) = i3
T (r—l‘)

2

complete r-graphs.

whence
& 2r.n’?.
if v 2 6. The cases with r = 5 can be settled by direct considerations.
(They alsc follow by our next theorem.)
THEOREM 5. min &(G) = {r-1} (s-1),
where the minimum fe taken over all (E_,K )-irreducible grapha.
Proaf. Suppose first that G +—{K¥,Ks} and some x & V(&) has degree
< {r=1) (=-1).
G being (RT,KB}—irreducible, the edges of G-x can be 2-colored such that
no complete r-graph or s-graph is monochromatie in the appropriate
color and congider such & Z-coloming with red and blue, say. Let 8

denote the set of neighbors of x, and let T T, be a maximal set

L -
of disjoint complete red (r-1)-graphs spanned by 5. By |s8] = (r-1)(s-1)
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we have k = g-2. Lot us color wow all sdges comnecting x to
'rl.....rk hlua, all edges connecting x fo S-Tl-...-'th red, We claim
that no sppropriate monochromatic complste graph arises. In fact,
cach blue complete graph comtaining x can contain at most one point
of aach '[1""'71:' whénoce 1t has at most k+l £ s=1 points. Each red
complece graph containing x has &t most -2 points in 5—1:1-... .-‘Ik

(by the maximality of { ri.....lrkl:r. thus the same conclusion holds
again.

The coloration defined sbove shows G /{K_,K ), a contradiction. Thus
x must have degres = (r-1)(s-1).

The construction of a lr-imm:ible graph G with &(G) = {r-1)(=s=1) will
depend on a lemma.

LEMMA 2., Tor gny t,8 2 8 there existe a graph G and two dndependent
odges & and f ef (G push that

el Bk K ),

b)) ﬂrwl—mtw-two}'l{ﬂwhm»ot'wls#
monochromatis in the appropriate color, ¢ and f have different
oolars.

‘A graph € with properties a, b will be called a megative (e,f)—eignal
I£ G, 15 a negative (e,,f,)-stgnal sender and G, is a negative (=,,f,)-
signal sender then by fdentifying £, and e, we get a pesitive
ﬂr'l_‘:‘l-niml sender: . graph & such that ¢+lrllr,'ll]. but if we
'iﬂiis_t"l[ﬂ] red and blue such that =np appropriate monochromatic complete

'mlmﬁmnlh f, must have the same color. By forming chains
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of slpgnal senders analogously we Can construct positive and negative
(a,f)=-gignal senders such that the distance between & and f is

arbitrarily large.

Before proving Lemma 2' let us complete the proof of Thesrem 5. Without

loss of generality, we may assume that r £ 8. Let sl,...,s be

g=1

disjoint sets with Isil = r=1. let x# Sy VienUS W {x] span a

1
complete praph K. Form an edge & disjolnt from K. If f 18 an adge of
K such that f connects two points in different Ei's, construct a
positive (e,f)— signal sender in which e and f have distance = 3 and
which has no other point in K. All of these signal senders should
have no points In common except at thelr end-edges. Call the union of

K and all the signal senders G. Then G -+ {Kr.KBJ- Ta aee this, suppose
that E{G-x) is colored red and blue so that no red K.r or blue Kn

oceur, Then, since © = 8, the sipnal senders force that all the edges

connecting different 5,'s must be blue (except that colors can be

i

reversed if r =s)}. Conseguently, &1l edges within each S.{ must be red.
Thera iz now no way to color the edges emanating from x witheut

forming a red Kr or a hlue Kg.

Also G-x-+b{Kr,K5}: for we can color all edges gpanned by -any 51 Ted
and the edges connecting different msets Si blue, This coloring extends
to the signal senders so that no K‘.I’.‘ or .K.s is monochromatic in the
gppropriate color. Since the distance of e and f 18 = 3 snd the signal
senders are nearly disjoint, there is no other Kr or Ka in G than these
in K and in the signal senders. Therefore, no rad E_or blue Ks COCUrsS

by the above coloring.
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If the signal sgenders are minimal In the senze that removal of an

edge from one destroys its properties, then © is (Kr.Ka}-irrEdu:i.ble.

To see this cbserve first that (G-g) +» {K:'Ka"" where & € E{K). Moreover,
comgider the removal of an edge e mot in K. This permits the color of
some edge between two S’_'ﬂ to go free, and it is easy to see that im

this case again (G-a) %&(-Kr,llg}. This completes the proof of Theorem 5.

A gimilar arpument vields

THEOREM 6. [f'r,s = 3, thers gre tnfinitely momy non-igomorphic

(K r,xﬂ}-—ﬁm:ﬁmﬂble grapha.

Praof. Let one of the signal senders used in the ahove comstruction

have arbitrarily large distance between e and £.

We note that by elaborating on the ideas of Theorem 5 it is poseible to
copatruct a CK.r.KB}+1rreduc:1bla graph with arblitrarily many points of
degree (r-1)(s-1), incidently yielding another proof of Theorem 6.

We are now ready to conslder Leems 2 again, but we do so by proving
another lemma which yields Lemma 2 almost immediately.

LEMMA 3. If r,e = 3, thers srfeta a graph G with te adjocent edges

e and £ eatinfying (a) and (b) of Lemma 3.

Froof. Let m = rﬂ{r,KE}—z. Then E{KmH_} has some colorings with
rod and blue such that no K.r ar K-s is monochromatic in the appropriate
color: Let 0 = ay € isa % aq = m be the possible numbers of red edges
adjacent to any point in such 2-colorings of E(K_,,).

£laim 1. a; 1{ 0. Soppose there is a 2=-coloring of E{Em'l"l} with no

appropriate monochromatie Kr ar KE syuch that a certain point x Is
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adjacent to blue edges only., Take a new point x', comect it by
blue edges to all points uE'Hm*l—x and by a red edge to'x. Then we

obtain a Z-colering of E[Km+z} having no red Kr or hlue RE. which
contradicts the definition of m.

Similarly it follows that % # m.

Claim 2. There exists en m-uniform hypergraph H and two points x, ¥
x, ¥ € V(H) such that
(a) The verticea of R can be 2-colored such that esch edge contains
BysBgyreny OF Bq red vertices;
(b} For any Z-coloring of V(H) for which each edge contains

nl...+. or uq Ted vertices % and y have different colors;

fe) H contains no circuits shorter than 4.

To prove this claim let us consider a hypergraph Hﬂ which contains no
cilrcuits shorter than 4, and which ig 3-chromatic. The existence. of
such an B_ has been proved by probabilistic methods in [7], and
constructively in [8]. Then by 8 # 0, 2 # m, E_has the property
(*) For any 2-coloring of vfﬂc} there is an edge E = E(HD} such that
the number of red points In E is different from nl..,..aq. In fact;
the number of red points In E 48 0 or m. Consider now a hypergraph
Hn with property (*) and with wminimum number of edges. Let

E = {xl,,.,,xm] £ H and take m points Yyaee-a¥y not in H. Let
Hi =H - {E} + {Ei} where E; = {yl""'yi’xi+l""'“i]'
Clearly Hn haz property (*} whila Elm fails to have this property. So

there 18 3 0 =41 £ @ such that Hi does not have property (%) but Hi-l
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dosg, We claim H = Hi' X=X Y=Yy satlafy the conditions of
Claim 2. In fact, (a) ims satiefi=sd gince H'l does not have property
(*}. (B) i satisfied wince if ni had & 2-coloring whare x and 2
ara colored alike and each edge contains Byauuny OF 'q red vertices
then ddentifylng xy anyd Y, the same coloring would show that B 4 does
not satisfy (#). Finally, (c} holds: crivially.

We now comstruct our graph as follows. Let V(6) = V(H)u {v}, Connsct
v to all points of V{H); connect two polnts of V(H) 1f they belong to
the same edge of H. Note that (c) impli=a that every ll_ ar l:s in this
graph is contained in a set of Eu {v], E ¢ E{H}, and each edge of G
spanned by V(H)} belongs to a undgue edge of U.

Hort l:-:h»[!_r.tnl follows by (a) easily: Suppose V(M) is 2-colored such
that each edge E of W contalns &,,8,,..., or uq tod points. Lat us
color the edge (v,u) (u c V(H})) with the color of u. Then for each
edge E of B, the edgen of tha complete (whl)-graph K spanned by
Euiv} are partially 2-colored; the nmber of red edges adjscent to v
1!11. 1=<1i=%qand hmhrmdgﬂui:matli. we can complete
this 2-coloring of E(K) without preducing a red K_or blue K . Doing
o for esch E & E(H} we obtain a 2-coloring of L(G)}. This produces no
rod ls‘.t or blue K’. since asch ‘Er or E_ in G in eontailned in some sat
Eufv],E ¢ E(H).

A smimiler srgpument shows that for each Z-coloring of E(G) in which no
t' or ll s monochromatic in the appropriate color the edges (v,x) and
(v,y) have differont colers. This completes the proof.
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Progf of Lemmz 2. Take three coples G;» 1 =1,2,3, of the graph &

of Lemma 3, with edges &, fi as in that lemma. Tdentifv £, with

1
2, and f2 with ey in such a way that 8 is disjoint from E3 snd T, and
fl iz disjoint from £, and such that the Gi'a have no points in

common not Implied by the gbove identifications. Then 1t iz clear that

the resulting graph satisfies the requirements of Lemma 2.

AMso of interest 18 how large A{G) can be for a (Kr‘Kh}_irrEducible
graph. The following result answers this gueation, which once again
proves Nefertil's conjecture.

THECREM 7. If T,8 = 3, then there exist (KI,KE}-irPeducible graphs
with arbitrarily Tlavge A.

Fraof. We will be concise. It 4s sufficient to show that there
exist minimal sipgnal senders with arbitrarily larpge A, &ince then ona
can construct the desired grephs in many ways. To show the ewlstence

of such signal senders, consider the proof of Lemma 3.

That proof dmvolwved a hypergraph Hn which was 3-chromatic and had no
circuits shorter than 4., Replace that hypergraph with one which 1s
3~-chromastic and which has no circuits shorter than n, where n is any

Integer = 4. Again, that this can be done is guaranteed by [7] or [8].

The hypergraph H inherits this property, Examining the rest of the
proof, one sees that the graph G formed as in thet proof has a cycle
not containing v having at least n points and that v therefore has

degree =z n. It is elear moreover that In any graph formed from G by

removing edges and retaining the properties of G, v must still have
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degree = n. Procesding now as in the proof of Lesma 2, we construct
a minimal signal sender having maximum degree = n, completing the
proot.

We note that this construction cam be used in the other results of
this section. For instance, there exist Ilr,l.l-lrrndur.ihle grapha
G with &(E) = (r=1)(s=1) and with A{C) srbicrarily large.

A question we have not answered is that of how large & can be in a
(K

r..l‘:l—!._tmdu:_ihll graph. Very likely it, too, can be arbitrarily

large.
The methods of this chapter also let us consider the commectivity =
af flr,[.}-lnidm:lhlt graphs,

THEOREM 8. If r,e =3, them

wox@ «{3 iEle

whera the mintmum {a taken over all (n’r,li.:—{mduaibh G.

Froof. 1t is trivial that min e(G) = 2. How assume r=s and suppose
G is a {'lt_,l_}-itrlducibh graph with £{G) = 2. Then G is the amion
of two graphs c1 and 61 with only two polnts x.¥ In common. Since

G is {lr,lH}-ln:educ.ihh. Gi-;‘-p {tr.l'J, i=1,2. If G does not contain
the edge (x.y) it is immediate thar c-fs (K_.K)), a contradiction. 1f
@ contains (x,y), note that GJ. and G, may each be meparately colored
so that (x,y) is red and neither contains a red Kr or a blue K!. gince
if any such coloring yields a blue (x,y) tha colors may be reversed.
Combining these two colorings in G, we see that again 6 +»(K ,K),

a contradiction.

To see than min <(G) = 3, take three coples Gl. i=1,2,3, of a
minimal graph G having the properties of Lemma 3 with edges €5 fi s

L]
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in that Iesma. Form & graph H by identifving £, with €y, £, with &

1 2 3*
and f, with e, in such a way that the edges form & 11’3 and- guch that
the Gi'E have mo other points in commpn. It is clear that =(H)=1 and
that H 1= EKr,KB}—irtaduuihle. Pinally, ascume without loss of
gemerality that r < s. We conetruct a (Kr,KB}eirrﬂdumihla graph G with
k(G) =2, Form & complete r-graph K and a disjoint edge e. For every
f & E(K) connect ¢ and f with a positive signal sender in which e and
f have distance = 3 and which has no other peint in E, while also
asguring that no Lwo signal sendere have a point in common except at a
and possibly K. It is clesr that the resuitlng graph H can be 2-colored
8o that ig conteins no red K‘E or blue Ks; but K will be monochromatic
and therafore blue. Take two copies H' and H" of H with distinguished
eomplate r-grapha K' and K". Connect an edge of E' to one of K" with
a negactive signal ﬂend;r to form & graph F. Clearly F + (K_,K ) and
¥ (F)=2. Furthermore, F certainly retains the latter property when it

18 converted to a (Kr,KE)-irreducible graph by possibly removing edges.

This completes the proof.

Another significant graphical paramster is the adpe commectivity A,
Very likely win A(G) = {r~1}{s“1}, where the mindeuss 1e taken over all
{Kt,KB}4irreducihle grapha, but we have not heem able to prove this.

Certainly (r=1){s-1) is an upper bound by Theorem 5.

We have determined in Section 2 the mindimum value of x3 dn [9] dc is
shown that for {KT,KS}-itreducible graphie there is no maximum. Other
interesting pavameters are the point and edge covering and independsnce

numbers. The construction in Theorew 6 shows that all four of these
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parameters can be mode arbitrarily large in a {I' ,K')-—irt&d!.ﬂ:lhla
graph. Very likely the minima of these parameters are determined by
(-t, where Fr(lr.l‘]. That the minimm number of points and edges are
determined by lt follows from the definition of t and from Corcllary 1

to Thecrem 1 respectively.

Finally, we note that all the questions we have studied in this seccion
could be asked far (0,H)-Lrreducible graphs in generdl.
¢, Eeplisit Chonaoterizations.

In this section we discuss the few © for vhich it has been
possible to characterize those F sstisfying ¥ + G. Our first resulr is
for stars; the argument is essentially doe to U.5.R. Murty (personal
communication).

IMBORIM 9. A necennawy mnd auffiotent vondition that G K,  fa that

8(G) = 20-1 or, if B {4 even, that 0 haz o compoment whick iz regular of
dégree 20-2 and which has an odd meber of pointe.

Eroof. It is clearly only necesgary to consider comnected G. Clesrly
1f 4(6) 2 2n-1, then 0 + K, . Suppose u 3 even and G is regular of
dogree In-2 and has an odd npumbar of points. Then “"‘1,11' for IF not,

then € is the union of two graphs, each regulur of degree n-1, which s
impossible since n-l 14 odd. This proves sufficlency.

To prove necessity, first consider a graph © which is regular of dagres
26-2 and suppess that either n s odd or € has an even mumber of points.
Then ¢ has aa eslerian cireult, which necessarily has an even mumber of
eidges. Color the sdges of this enlerisan circuit alternately red and
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blue, ylelding a 2-coloring of G. The red and blue graphs are each

regular of degree n-1, ao u«hlﬁ =

Finally, 1=t G be a graph which is not regular of degree Zn=-2 and for
which A(G) = 2n-2. We can clearly add edges to G in such & way that the
resulting graph elthar has exactly two points of odd degree or has one
point of degree < In-2, which {® necessarily oven, while preserving the
property 4 5 2n-2, In the latter case add one more point and join it
to the point of degree < 2n-2. Thus In any case G = 6', where

K{G'} = 2n-2 and ' has exoctly two points of odd degrese. Jain these
tvo points by an eulerian trall, and color ite edges alternately

red and blue. Then each of the monmochromatic graphs in the resulting
2-coloring has maximum degree 5 m-1. Thus G'++ l.'l..ﬂ and hence

G-hlll u This complates the proof.

The problem of characterlzing those ¢ for which G + “1,-_."‘1 .n} ‘B
difficult, even in the case m=2, n=3. For Instance, the Esct that
I.':-,p'-:vi.'l:1 1"1 3} when G is a bridgeless cublc graph is egquivalent to
Fetersen's theorem [10]. Although some work has been dome [11], a
complete charscterization does not seem to have been published of
those cuble graphs G with bridges for which G -+ l:lcl 2,111_ 311 and sven
» £ ]
this would not be enough, since there exist ﬂl,z.llﬂ)—tmﬂnnihh
graphs with points of degree two. (Clearly there can be no point of
degree ene in such a graph).
Ona other graph that can be dealt with is 2&1. that is, a graph

connlating of 2 disjoint adges.

—18&=




THEOREM 10. G = HE if end only 1f G contging three digjoint edges or

a f-eycle.

Proaf. Clearly G+ 2K, if 3K, © € or C; = G. Now consider any graph

G such thae G o+ ZKZ. Let v be the point of largest degree in G. HNow

Ekz £ G~v, sinceé dtherwise we may coler Che edges of G-v red and the

rest hlue, showing that 5 21(2. Every edge incident with v may be
asgumed to have a point in common with this ZRZ, gince otherwise ZKE e G
Hence deg{v} < 4. If deg(v}=4, G contalns Kl i ZKZ. that 1a two triangles
with & point in common. But xl + z's;z—.f—s 1;2. and sdding any edge to

Kl + EKI’ with or without a mew point, leads to a graph contalning 65

or 3K, respectively.

Consequently we may assume deg{v) = 3. But if deglv) = 3, we sae

that G containa a graph Gl congleting of a triangle (v Ve ?2} connected
to a path (v ¥y v#}. How Gl-ffEKﬁ, g0 eXtra edges are nNecesgary.

Fut {W,".‘fﬁ.} is dizallowed and {vl’vﬁ} or (vﬁ'vt,.] lead to C.. Moreover

2
{vyav'), {vl,v’}. ar {“4=V'}' where v' is a new point, lead to & IK,.
The only cther edges that can be added ave (v;.v,), (v,,v,) or (v,,v'),
where v' is a new point. But adding any number of these edges alone
atill pives a graph 62 guch that GZ-HEKZ' S0 we may assume deg(v) = Z.
thulmhimﬁhmhtuHEECuCEE& This completes the
proaf.
Thus there are only two ikgnirteducible graphs. Also by Theorsm 9
there is only one Klin—lrreducibla graph when n 18 odd. However it

geems very 1ikely that for almost all G and H, there are infinitely
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many (G,H)~irreducible graphs, as in the case where © and H are
complete graphs. The nusber ia Timite nevertheless in some Further
cases, as the nixt theorem shows.

THEOREM 11. Fop amy m and n, the member of lﬂz.nlz}-{wm:fbh
graphs is finita.

Pooaf, We will show that Lf G 1& {mbtz,n[t&)-hriduni.hh, then

A(E) = 2aZn-3. This is sufficient to show that the number of -such
graphs is finice, since certalnly soch a graph has no more than

min-2 independent edges as well, and no isclates. In fact, one can

sze {mmediately that any such graph has rather leas than Hmii points.

Assums the comtrary, that there is an tﬁ! .ntxl—irnduutbh G with =
point u of dégree * ¥méln=2. Let v be any point adjacent to u. Since
G 1s (mk, ,nxz:rnirrl'dur.ihln. G=uv has at least one edge-coloring with
no red mk, and no bluw nk,; congider any such coloring., This coloring
must give both a red (l—l}l2 and a blue {n-l]l(.zi naither matching wsing
u or v, for otherwise uv could be colored in addition so =3 to give mo
ndﬂzm&mhhu Ilﬁ- Fix such s pair of sonochromatic matchings,
which certainly use no more then Zmi?n-4 points,

Since A(G) = Zm#2n-2, there {8 a point w adjacent to u which {s not
used in edther matching. But now we see that the edge uw could not
have been colored muccesafully in G-uv, a contradictlom. This

complates tha proof.

With only a little wore effort one can show that A(G) 5 Zarkin-4, but

in fact it probably must be such smaller still. Moreover, it seema
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likely that aa {mKE,nKQ}—irtEﬂu:ihle graph can have no wmore than

m42n-2 points,

It would be interasting to gEC some more exact characterizations such
as those of Theorems 9 and 10. This might be possible for star forests
in general, but it seems difficulc even for such a simple graph as ?h*
the path oin four poifnts. In [9], which pursues the ideas of this paper
Further, it i shown that for any n 2 3 there are infinitely many P“-
irreducible grapha. The constructions vsed shed 1ittle light on exact
characterizations. It would be of interest to determine more cases

where the number of irreducible graphs is finite or infimite. Ferhaps

the ceses wé have found are the only finite cases.

A3 a Final observation, we note that -all the concepts and guestions
considared in this paper ean be gensralized to more than twe colors,

a8 can some of the results, especlally those of Section 2.

—=189=



[11 I

E2] a.

[3] E.

[4T F.
[5] 5.

71w

[B] L.

[9] 5.

[1a] I,

[11] A.

REFEREMCES

H. Folkman, Graphs with Monochromatie Complete Subgraphs 4n
Epery Bdge Coloring, STAM J, Appl. Math. 1B(1970), 19-24.

Nefetf1l and V. RSd1, The Ammzey Property for Graphs with
Forbidden Complets Subgpraphs, J. Combinatoriasl Theory B, to
Appear.

Erdits, R.J. Faudree, R.H. Schelp and C.C. Rousseau, The Sias
Ramesy Numbsr, to appear.

Harary, Graph Threory, Addison-Wesley, Resding, Mams., 1969.

Lin, On Ramsey Mmbere and K, -Coloring of Graphs, J.Combinatorial
Theory 12 (1972}, B82-92.

Efdds and L. Lovasz, Problema gnd Beaplte on §-Chicematio
Hypergraphe and Somes Related Questiode, in Collog. Math. Socc.
Jénos Bolyai 10, Infinite and Finite Sats, Keszthely,
Hungary, 1973, Wol. II, 609-5627.

Erdés and A. Hajnal, On Chromatic Number of Graphs ond Set-
Systems, Acta Math. Acad, Sci.Hungar . 17(1966), 61-99,
Lovdsz, On Chromotic Number of Finlte Set-Systems, Acta Math.

Acad. Sci. Hungar. 19(1968), 53-67.

A. Burr, P. Erdfs, R.J. Faudree, and R. H. Schelp, Un Ramsey-
Mirimal Graphs, to appear.

Petersen, Die Theorie der Reguldven Geaphen, Acta Math. 15
(1891), 193-220.

Errera, [ foloriage des Cartes, Mathesis 36 (1922), 56-60.

Somerset, N.J., U.5.A,

Hungarian Academy of Sciences

Szegad University
Szepged,

Repaived March 28, 1978
Hungary.

-190-




	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20
	page 21
	page 22
	page 23
	page 24

