PauL ERrDOS

PROBLEMS AND RESULTS
IN COMBINATORIAL ANALYSIS

RIASSUNTO. — Nei primi quattro paragrafi si discutono problemi estremali sui grafi
e sugli ipergrafi. Qui si pone soltanto un problema: sia |S | = #, & vero che se |A;| = 3,
A;cS,i=1,2,---,2=c#® & un arbitrario insieme di /= z#® terne di S, esiste sempre

un sottinsieme di £ elementi di S che contiene #— 3 terne tra quelle fissate? Szemeredi
ha dimostrato questa congettura (formulata da W.G. Brown, V.T. Sos e l'autore) per
£=6, ma per £ > 6 il problema resta aperto.

Un paragrafo ¢ dedicato a problemi combinatori sui sottinsiemi e 'ultimo paragrafo
fornisce vari problemi e risultati (non collegati tra loro) considerati dall’autore ¢ dai suoi
collaboratori.

During the last few years I have written several papers on this and
related topics. As much as possible I will try to avoid overlap with previous
papers. As is always the case the choice of my problems is purely subjective
I only discuss questions on which I worked and of course do not claim
that these problems are more important then others which I neglected. In
this paper I will mention several problems related to block designs, a topic
about which I do not know too much, but my collaborators and I often used
results obtained by others; perhaps some of the experts in this field will be
able to settle some of the questions which baffled us so far.

In the first four sections I discuss some extremal problems on graphs
and hypergraphs.

At the end of each section I give references, here is a list of my papers
on combinatorial problems.

FProblems and reswits in combinatorial analysis, « Proc. Symp. Pure Math.» XIX, ¢ Amer.

Mat. Soc.», 1971, 77-89.

Some unsolved prodlems, « Michigan Math. Journals, ¢ (1957), 2091-300 and ¢ Publ. Math.

Inst. Hung. Acad. Sci.», 6 (1961), 221-254.

Extremal problems among subsels of a set (with D. J. Kleitman), Proc. second Chapel Hill

Colloquium 1970, 146-170 see also « Discrete Math. », 8§ (1974}, 281-294.

FProblems and resulls in chromatic graph theory, proof techniques in graph theory 1969, Acad.

Press 27-35.

Some unsolved problems in graph theory and combinatorial analysis, Combinatorial Math. and
its Applications Oxford conference 1969, Acad. Press g7-109.

1. G” (;m) denotes an r—-graph of n vertices and s edges (i.e.
r—tuples).  f(n;G” (k,7) is the smallest integer for which every
G f(n; GV (k; 2)) contains a G” (£;7) as a subgraph. New and
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interesting complications arise if we also prescribe the structure of our
G* (#;7). Recently several papers appeared on extremal graph problems.
Perhaps the most interesting unsolved problem is the original problem of
Turan which he formulated in 1940. Denote by KY (¢) the complete r—graph

of ¢ vertices (and (f) edges). For the sake of convenience if we speak

of ordinary graphs we will omit the upper index. Turan’s problem states:
Determine f(z; K” () for every ¢#> 7 and also determine the structure
of the extremal graphs i.e. the graphs G” (% ; f (% ; K” () — 1) which do
not contain a K% (#).

This problem was solved by Turan for » = 2 and every ¢ but for » > 2
nothing definite is known, though Turan has several plausible conjectures.
It is easy to see that for every # and ¢

(1) lim £ K® @) (1) = w (¢, 7)
exists and that «(4,2)=1— :—_1_—1-, but for » > 2 none of the values

a(¢,7) are known.

Let » >2,2< /<74 1. It would be very interesting to determine
fe; G (r +1,0), (for fixed » and / there is only one G (» + 1,72)).
It is again easy to see that

tlim £ (2 G ¢+ 1, 0)[(7) =8¢0

exists and is positive but none of the f(»,/) are known.
The case » = 2 is trivial here, » > 2 ,/= 2 is not trivial, very likely
(2) oGO+, =2 (" ) +0M.
Put
g@m=n+1 , g@Brt+n=@r+DF+1,

g(3n+2)=n(fz+r}2-—‘—z.

Katona conjectured and Bollobas proved that every G® (n; g (1)) con-
tains three edges e, , ¢, , eg so that ¢, contains the symmetric difference of ¢,
and e5. It is easy to see that is best possible. This is one of the few exact
results on extremal problems on hypergraphs, the analogous questions for
¥ > 3 are unsolved,

P. TURAN, Eine Extremalaufrabe ausder Graphentheorie (in Hungarian), «Mat es Fiz Lapoks
48 (1941), 436-452 see also colloquium « Math.». 3 (1954), T9-30.

KATONA, NEMETZ, SIMONOVITS, On a problem of Turan in the theory of graphs, «Mat.
Lapok », 75 (1969), 228-238 see also ]. Spencer, Turan's theorem for #£-graphs, ¢« Di=
screte Math.», 2 (1972), 183-186.

B. BOLLOBAS, TVree graphs without lwo triples whose symmetric difference is contained in
a third, «Discrete Mathe ., 8 (1974), 21-24.
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P. ErRDOS, Extremal problems in graph theory, Proc. Symp. Theory of Graphs. Smolenice,
1963, 20-36. Some recent results on extremal problems in graph theory. Theory of
graphs. International Symposium Rome 1966, 117130, On some new inequalities
concerning extremal properties of graphs, * Theory of graphs Proc. Coll. held at Tihany
Hungary ", 1066, 77-81.

M. SIMONOVITS, A wmethod for solving extremal graph problems in graph theory, stability pre-
blems #bid, 279-310. Extremal graph problems with conditions, Comb. theory and its
applications «Coll. Math. Soc. J. Bolyais, 1970, vol. I1I, ggg-1o12 (North Holland),

P. ERDOS, M. SIMONOVITS, A limit theorem in graph theory, « Studia Sci. Math. Hungar.»,
I (1969}, 51-57.

2. In this section » = 2. We will discuss bipartite graphs. C, denotes
a circuit of / edges. First we discuss f(n; Cs). Brown, Renyi, \'T Sos
and I proved that

Fl 8= (:— + o0 'i')) 7372,

We in fact showed (using finite geometries) that if # = p? - p + 1
where p is a power of a prime then

fR+2+1;,C)>(p+ 1) 2 +p(p+ )2 == (5+p)+ 12
It is not impossible that in fact

(1) FBR+p+1:Co==(P+p) +p2+1

but we were unable to prove (1). Our attempts to prove (1) were not entirely
wasted since they led us to discover the so called friendship theorem.

Our graph G (p2 +p+1; ; (p® + )+ pz) contains many triangles.

It is perhaps true that if G (#) contains no C4 and no Cs then it has at most

(1 + o) 2

2 ¥z

3|2
and E. Klein constructed a bipartite G(% : % {140 (I))) without a Cs.
. 2}z

edges. If true this is certainly best possible since Reiman

A simple argument shows
(2) f.(?z;c4)ggn3-'2+§(: + 0 (1)).

2) easily follows from the simple observation that if v, is the valenc
/ ¥ I y
(or degree) of the vertex x, and G (#) contains no Cs then

® (=)

(3) easily implies (2). It would be tempting to conjecture that

(4) f(n;Ci) = mw2 + % + o (m



but T could only prove

for certain ¢ > o. (3) follows easily by considering the smallest p satisfying
P2+ p -+ 1=>n The following question might be of some interest here.
Let |S| =, determine subsets A,CS, |A; NA,l <1 |A)| = }n+0(1)
so that as many pairs (x, ¥),2x €S, y €S as possible should be contained
in the A’s. Is it in fact possible to find such a system A, which contains
all the pairs with a possible exception of ez of them? In view of the
recent surprisingly strong results of Wilson the following problem could be
asked: Let:
w(f) Fu(* ) +al 1) (1) o

o; >en?, i =1,2,3 Let |[S|=wun Is it possible to find a family of
subsets {A;} of 5, |A, NA, | <1|A;|=£4-+7, o<i< 2 every pair is
contained in one and only one A and there are at most «, sets of size
E+i=o0,1,2)

More generally one could ask: Let

o FL n
5.(4)=()
What is the necessary and sufficient condition that one can find sets |A;| = u;
so that every pair of S should be contained in one and only one A;? It is
no doubt hopeless to find a good necessary and sufficient condition but
perhaps useful necessary and useful sufficient conditions can be found. Also
it might be often useful to try to findsets A, , |A;| <# |A,NA,] <1 so
that all but o (») (or all but o (#2)) of the pairs of S are contained in an A;.
Kovari V. T. Sos Turan and I proved that ((K (#,/) denotes the com-
plete bipartite graph of £ black and /7 white vertices)
(6) o KU, D)< (3 4 0@@) w2
It seems likely that (6) is in fact an asymptotic formula, this has been
proved (as stated) for /= 2 but is open for / > 2. Brown proved

fn;K(3,3) >

but nothing is known for /> 3. The following finite geometry type construc-
tion would be needed: Let |S| = #, find ¢, # subsets of S of size > ¢, #!~W
so that the intersection of any / of them is < /. Such a set system would
immediately give f(n; K (/,/)) > en?~U9; in fact this is what Brown did
for /= 3. A finer analysis might vield the asymptotic formula, but this
worked only for /= 2.

Before closing this chapter I mention a few other extremal problems
on bipartite graphs which we considered. Simonovits and I proved that
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every G (n ; [¢#®5]) contains a cube; it would be very interesting to decide
if the exponent 8/5 is best possible; by the way our proof is surprisingly
difficult.

At first we thought that for every bipartite graph G f(n; G) is of the
form el TUH or cx?-1H hut Simonovits and [ showed that this is not so;
we then modified our conjecture and guessed that for every G there is a
rational «, 1 < o << 2 so that

(7) S n; Q) —c (G)

and conversely for every « there is a corresponding graph for which (7}
holds, we are very far from being able to decide this question. In the next
chapter we will see that for hypergraphs (> 2) f(x# ; G”) can have a much
more complicated form.

It is known that f(n, Cy) < ¢ #'*U® (for a very much more general
and thorough investigation see the forthcoming paper of Bondy and Simo-
novits, probably f(n;Cy) = ¢y #0® but this is known only for £ < 3.
and £= 5 (R. Singleton « Journal Comb. Theory», 1 (1966), 306—332; C.
Benson, «Canad. J. Math», 18 (1966), 1091-1095). The general case
could be settled if the following block design like structure would exist:
|S|=mn, A,CS, 1<r<cmn, |A|>¢n' We now define a graph as
follows: The wvertices are the A,, two vertices are joined if the corre-
sponding sets have a non empty intersection. This graph should have
girth > £ (i.e. it should contain no C, for / < £).

It seems certain that for every 2> 1
S (n; Copfntt A0 — ¢,

Define G — ¢ as the graph from which the edge ¢ has been omitted.
I proved #(n; K (r,»)—e) < e V=1 and very likely

F o K (r, ) — )=t -

but this is not even known for » = 3.

Simonovits and I investigated a few other special graphs. Define G;,
as follows: It has 1 4 & (f) vertices x; ¥, Vi 5 ,“‘,z{*é). x is
joined to all the ¥’s and each 2z is joined to » y’a (distinct 2's to distinct
r—tuples). Gi, = G;,—x (i.e. the vertex x and all edges (x, y)1 <i< £k
are omitted from Gy;,). Estimate f(»;G,) and f(n;G;,) as accurately
as possible. I proved, that f(m;Gse) < ¢#¥? G3o 1s a cube with one
vertex omitted and Giy is Cg). Is it true that f(n;Gu,) < g #"°? and
more generally f(n;G;,) < ¢, #?~U"? The first inequality may very well
fail for £#> 3 and the second for 2=4 ,r=3. If £=» 4 1 the inequality
holds and is essentially a consequence of the result of Kovari and the
Turans. Perhaps f(n;Gj,) is of the order of magnitude »*~ ™% with
€, —> 0 as £-—> oo, but we could not settle this even for » = 2,
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Simonovits and I in fact proved that every G (»; ¢#%%) contains a cube
with one edge omitted (this graph of course contains Gj;). An edge ¢
of G is called inessential if

fr;G—e)>gn;G)

in other words the omission of ¢ does not decrease the order of magnitude
of f(n;G). (The same definition can of course be made for vertices).
Clearly every graph which is not a tree has a subgraph without an inessential
edge. It would be worth while to try to characterise these graphs e.g. is it
true that every symmetric (bipartite) graph has this property? (symmetric
heve means that the automorphism group is transitive).

It seems certain that every edge of K (#,7), or the »—dimensional cube
is essential but this is known only for »=2. On the other hand it is easy
to see that every vertex of valency one is inessential.

Let now G have chromatic number greater than two. Then perhaps
it is more reasonable to define an edge {or vertex) whose omission does not
change the chromatic number K (G) to be inessential if

WA G_@_:;(I —_K'(?I)“—_r) = "’(f(’z;G)~'i§ (r = TGI):"))

or in fact an edge is said to be strongly inessential if

) fr;G—e)=f(n;G).
A theorem of Dirac and myself states that
(10) fn; K(r)—e)=f(n,K{r—r1)).

K () — ¢ perhaps has as many inessential edges as possible. Simonovits
remarks that this is false. If » = 25 and we omit from K, s independent edges,
in the remaining graph every edge is inessential. The following conjecture

very likely holds: Assume G has » vertices and e, ,---, ¢, are edges
of G then f(n;G—¢—, -+, —e_1) <f(n;G) and perhaps even
fn;G—e—,---,—e, 1)< (1—20o)f(n;G). (Simonovits disproved these
conjectures).

Finally it is possible that (8) and (9) is possible for a bipartite graph
only if it has vertices of valency one. Let G be bipartite and f (i ; G) > en?2+<
then perhaps every vertex of valency 2 is inessential.

W. G. BROWN, On Graphs that do not contain a Thomsen graph, «Canad. Math Bull.», g,
(1966), 281-285.

P. ErDOs, A. RENYIL, V. T. S0, On a problem of graph theory, « Studia Sci. Math. Hungars,
T {1966), 215-235.

1. REIMAN, lfber ein Problem von K. Zarankiewicz, v Acta Math., Acad. Sci. Hungarica »,
9 (1958), 269278, the proof of E. Klein is given in P. Erdds, On sequences of integers
no one of whick divides the product of two others and on some related problems, « Tomsk
Gos Univ. Ocen. Zap.», 2 (1038), 74-82, see also On some applications of graph
theory to number theoretic problems, « Publ. Ramanujan Ipst. Numbers, 1 (1969},
131-136.
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. ERDOs, M. SIMONOVITS, Some extremal problems in graph theory, « Combinatorial Theory
and Applications Coll. Math. Soc. J. Bolvai», 1 (1969}, 377390 (Academic Press).
J. A. Boxpy and M. SimoxoviTs, Cycles of éven length in graphs, « Journal Comb.
Theory», Ser. B, 16 (1974), 97-105.
T. Kovari, V. T. Sos, P. TURAN, On a pgroblem of K. Zarankievicz «Coll. Math.», 3
(1954), 50-57.
ERDOS, O an extremal problem in graph theory, « Coll. Math.», 13 (1965), 251-2354.
ERDOS, On some extremal problems in graph theory, « Israel J. Math.», 3 (1965), 113-116,
.M. WILSON, An existence theory for pairwise balanced designs. 1. Composition theorems for
mophivms. 11 The Structure of PBD-closed sels and the existence conjectures. «J. Comb.
Theory Ser.», A 13 (1942), 220-245, 246-273. An existence theory for pairwise
balanced designs. 111. Proof of the exisfence conjectures, «ibid», 18, (1975), 71-79.
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3. Now we discuss some extremal problems on hypergraphs. Brown,
V.T. Sos and I conjectured that

(1) f#;GP6,3) =00,

in fact we thought it likely that it is less than #2?-¢ for a certain ¢ > o.
Szemeredi recently proved (1) but 1. Ruzsa proved ( (#) denotes the
cardinality of the largest set of integers not exceeding # which does not
contain an arithmetic progression of £ terms).

(2) F(n;G®(6,3) > cnrg (n) > ¢ n’exp (logn)'?

where the second inequality of (2) follows from a well known result of
Behrend.

This is the first example of an extremal problem on hypergraphs where
the asymptotic formula is certainly not of the form ¢; #*. It is not known
if this Ruzsa-Szemeredi phenomenon can also occur for » = 2.

About a year ago Szemeredi proved 7 (%) = o (%), his paper will
appear in «Acta Arithmetica», one of his decisive lemmas used in his proof
also is needed for the proof of (1). This connection was certainly quite

unexpected for all of us. More generally one can conjecture that for
every £> 6

(3) Sn;G® (b, b—3) = 0(Y).

At the moment of my writing these lines this is still open for 2> 6
but Ruzsa proved
S5 G% (7, 4) > enry (n)
and perhaps

Fn;GP(k, b—3) > caurs(m),

but Ruzsa proof does not seem to work in general. Ruzsa and Szemeredi
will write a joint paper about their results.

A related problem is the following one: Is it possible to find a Steiner
system for every u > n, (£) so that for every 3 < » < £ the system should
not contain a G? (r;r — 2). Doyen informs me that he can do this for
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£ = 6 and infinitely many #. Instead of a Steiner system one could ask:
For which # and ¢ can one find a G® (#; ¢#”) which does not contain a
G? (r;r—2) for 3<r< &P

It is quite possible that many other new types of problems could be
found with equally unexpected answers.

Denote by K (1) the »-graph of A/ vertices and (f) /" edges. The
vertices are divided into £ disjoint classes of size / and every r—tuple whose
vertices are in different classes in an edge of our graph [ proved that
for every » and % there is an &, > o so that for # > #»,(&,7,¢5,) every
G (n; #""*%7) contains a K (7). This is an extension of the result of
Kovari and the Turans stated in Chapter 2. For z > 2 nothing seems to
be known about the best possible values of the exponents g ,. Every
G® (n , cn'™™) contains a K§ (2) but it is not known whether the exponent
11/4 could not be decreased.

W. G. BrowN, P. ErDOs, V. T. 508, Svme extremal prodlems on r-graphs, New dircctions in
the theory of graphs, Proc. third conference on graph theory at « Ann Arbor Acad.
pressw, 1973, 33-03, On the existence of triangulated spheves in 3-graphs and related
problems, « Studia Sci. Math. Hungar. ».

P. ERDDS, On extremal problems of graphs and generalized graphs, «lsrael ]. Maths, 2 (1965),
183-190.

F. BEHREND, On sefs of inlegers which contain no three terms in an arithmetic progression,
« Proc. Nat. Acad. Sci. USA», 32 (1964), 331-332.

4. Some remarks on a theorem of Stone and myself. Stone and I
proved that for # > n, (s, %,/) every G (?z : ’:—2 (I - _Ei—l -+ s)) contains a
KP () (for £ = 2 this is again a weaker form of the Kovari-Sos, Turan
theorem). Our original proof did not give a very good dependence of #»
on / and e,

A very much sharper result in this direction was just published by
Bollobas and myself, a further improvement which is nearly best possible
has recently been obtained by Bollobas, Simonovits and myself: Chvatal
and Szemeredi obtained a further very significant improvement.

Recently I succeeded to extend this theorem to r—graphs as follows:
To every #,e,? and / there is an #ny=1n,(e,#,?,/) so that every

G2 (n e (t,7) + ¢) (f)) contains a K (/) where « (¢, 7) is defined by (1)
of chapter 1. Here we do not yet have a good estimate of # in terms of ¢, £
and / (unlike for » = 2).

The following problem is open and seems very challenging to me: Let
G () i=1,2, -, m—>o00 be a sequence of #r—graphs of #; vertices.
We say that the family has subgraphs of edge density > o if there is a
sequence of subgraphs G (m,) of G (»,), m; — oo, so that G (m;) has at least

(¢ + o (1)) (’f") edges. The theorem of Stone and myself implies that every
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G (n: —:i (I —-% B s)) contains a subgraph of density 1 — z‘_—:-_: and it is

easy to see that this is best possible. Thus the possible maximal densities of
subgraphs are of the form 1 — — , 1 </< oco. Now it may be true that

for # = 2 there are also only a denumerable number of possible values of
the maximal densities of subgraphs. As stated at the end of the previous
chapter I proved that every »-graph of density € contains a subgraph of

density = -:7 The simplest unsolved problem states: Is there a constant
. 1
%, > 0 so that every s—graph of n vertices (» large) and (% —+ s) #n” edges

contains a subgraph of density > :—: -+ o, . This is unsolved even for »» = 3.

Perhaps every G (3% ; #® + 1) contains either a G® (4;3) or a G® {5 4),

(1,2,3,0,2,8,0,2,5,3,4,90raGO(s,35),(1,2,3,,2,4),
(1,3,5,2,4,5),(3,4,3).

The same unsolved problems on the possible maximal densities arise
on multigraphs and digraphs as stated in a recent paper of Brown, Simo-
novits and myself.

By the methods of probabilistic graph theory it is easy to prove that
to every € and o <« < 1 there is a C =C (g, &) so that for # > #,(C , ¢, o)

1/(r—1)

there is a G (?z i cx(” )) so that for every m > C (logn) every spanned

r L,
subgraph of it m vertices has more than (o —¢) (’:) and less than (& 4 €) (’f)

edges and it follows from the results of my paper on graphs and generalized
graphs that this result is best possible («el Journal Math.» 2 (1965),
183-190).

P. ErD6S, A. STONE, On the structure of linear graphs, « Bull. Amer, Math, Soc.», 52
(1946), 1087-1001.

B. BOLLOBAS, P. ERDOS, O the structure of edge graphs, « Bull. London Math.», 15 (1037}, 317~
321.

B. BoLLoBAs, P. ErRDOs and M. SIMOROVITS, On the structure of the edge graphs 11,
« J. London Math. Soc.», T2 (1976), 219-224.

P. ERDOS, On some extremal problems on r-graphs, « Discrete Math.», T (1971), 1-6.

W. G. BrRowN, P. ErRDOS, M. SIMONOVITS, Extremal problems for dirvected graphs, « J. Comb.
Theory », ser. B. 15 (1973), 77-93.

5. In this chapter I discuss various combinatorial problems on subsets.
First of all T call attention to my paper with Kleitman quoted in the introduc-
tion. Here I mainly discuss problems not considered in our survey paper.

First we consider some problems related to a result of Ko, Rado and
myself. Let |S| =% ,A,CS|A;|= 4. Denote by ¢#(n;%,7,) the size
of the largest family A;,, 1<;<{¢(n;k,r, o) satisfying [A;NA,l <~
and every element is contained in at most af{(n;k,7,0) of the A’s.
t(n;k,r, <o) is the size of the largest subfamily with the same properties
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but now every element is contained in fewer than «f (% ; 2,7, < «) of the
A’s. Ko, Rado and I proved that for > 2 £
(1) t(n;k,l,])s(”—’).

e E—1

For s > 2 £ equality holds only if all the A’s have a common element,
For #n > ny (£ ,7) we further proved

n—0r
(2) tik,r)=(,27)

Our estimation for #, (£,7) is probably very poor, but Min observed
that (2) does not hold for all » > 24 We conjectured that

(3) t(q.[;zz,z,I}ZL.‘(ii)__(zzZ)Q{

2

(3} if true is best possible. We state in our paper several other problems
most of which has been settled since then, but as far as I know (3) has not
been settled as vyet.

Hilton and Milner proved that for 2 = 2 4.

(4) [(n;é,l'{l):I+(;::)H(’;:§‘i71)‘

Equality in {4) occurs if (and no doubt only if 2 > 2, (£,7)),4A,; is an
arbitrary Z-tuple x, is not in A;. All the other A's contain x; and have a
non-empty intersection with A;.

Observe that for fixed 4

tm; o,1,1)=_» :—0([))"_1(2)’
but from (4)
ek, <=ty ()

Now Rothschild, Szemeredi and 1 took up this investigation. We first
of all showed that for o = 2/3

o ro H—2 "—
Ir\SJ fkﬂ,,é,I,2f3)-=3(/é__2)'—-2(é_-§)-

Equality if and only if (until further notice # is supposed to be large), there
are three elements and the A’s contain at least two of them.
We further proved

trik,t<2f3) = (1 +o()en(})-

The extremal family is obtained as follows: give three elements x;, x5, x3
and a set Ay not containing any of them. All the other A’s meet A; and
contain at least two of the x's.



Let now &> o be sufficiently small. We are fairly sure that a family
of size 2(n;#,1,2/3—¢) is obtained as follows: Let x;,---, 25 be five
elements, the A's contain three or more of them and # (»; £, 1, o) is constant
between 1/2 and 3/5. There seem to be only a finite number of values of
tni k1,0 for 37 <a<2/3. t(n;#%,1,3/7)is probably obtained as follows:
Consider a set BC S, |B| = 7 and the 7 Steiner triples of B. The A’s are
all the sets which meet B in a set which contains at least one of these triples.
We also are fairly sure that

o ¢ (n
t(n;‘éslr<3/fj<'”4_(é)'
More generally we conjecture that

! ’ c »n
f( s AL T, < ( )
% <F——~l—|—IJ At \ &

If there is a finite geometry on Pl -+ 1 elements then it is easy to see

that
/ ¢ (n
it )= 5 ()
! P—I41 n \A
but if there is no such finile geometry we conjecture that

{ ¢ "
t(%,é, I '_ZE;.I—T' 1—) < ST (é)

Needless to say these last two conjectures are very speculative. See a
forthcoming paper of A. J. W. Hilton on this subject.

Kneser made the following pretty conjecture: Let |S|=2# -+ £
define a graph G, ; as follows: Its vertices are the (2,;;_,5) n-tuples of S.

Two vertices are joined if the corresponding #-sets are disjoint. Denote by
K (G) the chromatic number of G. Kneser conjectured K (G, ;) = £ + 2.
K (G,) < £ + 2 is immediate but the opposite inequality seems to present
great and unexpected difficulties. Szemeredi proved (unpublished) that
K (G, tends to infinity uniformly in £ Hajnal and I and no doubt many
others tried to attack this problem by the following extension of our theorem
with Ko and Rado. Let [S|=#n=2&-+1,A,CS5,B,CS 1<i<¢,
1<j<4#, the sets A;,:++, By,--+ are all distinct, A; NA, 1 <4 <, <4,
and B; N B;, 1 </, < j, <% are all non empty. Is it true that

©) a+n< (32 )+(320):

Equality in (6) if all the A's contain 1 and all the B’s contain 2 but
not. 1. A.J.W. Hilton proved that (6) does not hold in general. For the

applications # — f2< (2: ;) -+ (:___?) -+ (z:?) would suffice,
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Knesers conjecture can be extended to »—graphs. Let |S| =z + £
The vertices of our »—graph are the £-tuples of S. The edges are the sets
A;

17

"J*l\!', H IA,}[:.é ' [gjgr

and any two of the » A-sets are disjoint. The chromatic number or this »
r—graph should be £ - 2.

B. Grunbaum asked the following geometric question:

Let there be given # points in the plane, join any two of them by a line.
What are the possible number of lines one gets. The number of lines is

clearly at most (z) and it can never be (:)-—-I and (Z) — 3. I showed

that there is an absolute constant ¢ so that every en’? < ¢ < ( )—3 can

n
2
occur as the number of lines determined by an #-set. It follows from a
result of Kelly and Moser that the order of magnitude ¢#%?2 is best possible
but the exact value of ¢ is not known.

In this connection the following combinatorial problem is of interest.
Let |S| = n, define I, as a set of integers, with the following property:
z €1, if there is a family of subsets A, CS 1 < £ < ¢ so that every »—tuple
of S is contained in one and only one of the A’s. Let us first investigate

the » = 2. Clearly all integers in I3 are g(:), 1€l and (:)——l and

(:) — 3 is not in ls. A Theorem of de Bruijn and myself states that no

integer 1 <<f<# is in [s. Trivially z €Iz and (:) —2€ly. I showed
without much difficulty that there are absolute constants ¢; and ¢, so that
every integer # ¢y nt <t < (:) — 3 is in I». It seems likely that ¢, = 1/2.
If w=p"+ p+ 1 (ie if there is a finite geometry) it is easy to see that
everypz—{—zp—i—f]f;: n 4 2fn + et <t < (’:) — 3 belongs to I..

On the other hand A. Bruen recently provéd that if % = 4% then 7¢I,
if #<t<F+ A

It seems that the results of A, Bruen and Bridges will give that there
is an absolute constant ¢ > o so that for every = there is a 7 not in Iy which
is >n+4cjn.

It was observed by Hanani that the smallest nontrivial value of I3 is
%2 and it follows from the existence of Mobius (or inversive) planes

that I3 contains all integers ¢, (I +o(M)nlf <t < (:) except the integers
(;) — %, where ¢ is not of the form ,—; o%; (;) - I) 5 a0

For # > 3 it is much more difficult to get sharp results for I,. It is easy
to see that if #>1,7€ 1, then # > ¢»#2. This follows from the fact that not
many of the sets A, can be larger than (1 4 2)712 %2 (for otherwise
[A;,NMA;| =7), (see e.g. Hylten—Cavallius, on a combinatorial problems,
“Colloq. Math.” 6 (1958), 56-65). But it seems hard to prove that I, contains
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an integer 1 < # < Cwf2.  The problem is to find ¢ #"# sets A, of size of
the order of magnitude #!2 so that every »—tuple of our set |S| = 2 should
be contained in one and only one of the A,’s. Such a construction in known
for » = 2 and » = 3, but it is open for » > 3.

Before closing this section I state one of the many unsoved problems
in our survey paper with Kleitman: Let |S| = ,A, CS,1 <7< ¢ assume
that for no three distinct A's A, NA; = A, or A;UA, =A,. We con-

]) + 1. Clements observed that this

#
n

|2

jectured that for even # max /= (

conjecture if true is best possible.
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6. In this last chapter I state a few miscellaneous problems which my
colleagues and 1 considered recently.
Let G (z;/) be a graph of » vertices and / edges. Goodman, Posa and

I proved that the edges of our graph can be covered by at most [i—z] edge
disjoint cliques where the cliques are in fact all edges or triangles. The com-
plete bipartite graph shows that [”Tz] is best possible.

It is not quite clear what is the best possible result if we want to

2
cover G (n i [”T] —l-l) by edge disjoint cliques, though Lovasz has some
results here.

Gallai and 1 conjectured that every G (n; £) can be covered by at most
cn edge disjoint circuits and edges. We could only prove this with ¢z logn
instead of ¢x.

Perhaps every G (# ;) can be covered by at most f (z; K (#)) — 1) edge
disjoint edges and K (#)'s, if correct this is perhaps not hard to prove
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(f (n; K (#)) is Turan’s function introduced in chapter one). This conjecture
was in fact proved by B. Bollobas.

Let now G (n;/) be an r—graph of # vertices and / edges. Sauer and
I conjectured that its edges can be covered by at most f (s ; K (» 4 1)) —1
edge disjoint K” (» + 1)’s and edges (i.e. K" (#)'s). For r= 3 already
this conjecture seems difficult (if true).

Another problem of Sauer and myself states. Determine or estimate
the smallest g (¢, ») so that every G (n ;g (¢, #)) contains a regular subgraph
of valency ¢. Clearly g (2 ,#) = n but we have no idea of the value of or
even the order of magnitude of g (3, #).

At the meeting in Rome R. Guy told me that I conjectured that the
vertices of every tree of # vertices can be numbered by the integers 1 .-+, »
so that the integers corresponding to two vertices which are joined are
relatively prime. This seems a nice conjecture which is perhaps not very
difficult. I certainly do not remember having ever stated it. The conjecture
in fact is due to Entringer.

Is it true that to every ¢ > o there is a ¢ so that every G (#; [#1+%])
contains a subgraph which is not planar and has at most ¢, vertices?

An old conjecture of Hajnal and myself states that there is a function
F(#£,7) so that every graph of chromatic number =/ (£,7) contains a sub-
graph of chromatic number £ and girth =/ (the girth of G is the length
of its shortest circuit. This is unsolved even for /= 4.

Another conjecture of Hajnal and myself states that if G is A-chromatic

- >clogk

where n; < ny < --- are the C, contained in G. We can not even prove

that X ”L tends to infinity together with 4.

V. T. Sos and I observed that if |S|=# and A.CS,|A;| =3,
1 <i<mn-+1 then there always are two A's which have exactly one
common element. The proof is easy. We then made the following more
difficult conjecture. Let n# > s, (£). Is it true that if A;CS|A;| =4,
1<i< (::z) + 1 then there are two A’s which have exactly one common
element? This conjecture was proved by Katona for £= 4 but is open
for 2> 4. It is clearly related to the Theorem of Ko, Rado and myself
discussed in the previous chapter.

The following problem can be stated here whose solution would be
useful in n—dimensional geometry (see D. G. Larman and A. Rogers, The
realisation of distances within sets in Euclidean space, ‘ Mathematika ™ 19
(1972), 1-24).

Let m > o be given. Prove that there is an € = ¢ (n) > o so that if
IS|=n,n>n3(s,m) and A;CS,1 <7< ?,¢> (2—¢)" are subsets of S
then for every 7, mn <r < (1/2 — ) n these are two A’s whose intersection
has exactly » elements.
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Let |S|=2n,A,CS,1<7<¢ Is it true that if the number of
indices 7, , 7, with A; N A;, empty is at least 22 then #> (1 — ) 2#+1? More
generally for given z and 7 determine or estimate the maximum number
of pairs 7, ,7y, 1 < 7 < 7y <¢ for which A, NA;, = @.

A well known theorem of Van der Waerden states that if one splits the
integers into two classes at least one of them contains an arbitrarily long
arithmetic progression. As stated in section 3 Szemeredi proved 7, (%) = o (%)
which is a very significant strengthening of Van der Waerden's theorem,

Graham and Rothschild conjectured that if one splits the integers into
two classes there always is an infinite sequence of integers »; < 7, < ---
so that all the sums

(1) Ze;n,, g, =0 or 1, ZE,—<00
h i

are in the same class. This conjecture was recently proved by Hindman.
A simpler proof was very recently found by Baumgartner. Both paper
appeared in the «Journal of combinatorial theory». I then conjectured that
if ag <ay, <--- is an infinite sequence of integers of positive density
there always is another infinite sequence #;--- and a z so that all the
integers (1) translated by # are a's. Straus found an easy counterexample.
But perhaps it is true that there is an infinite sequence #;--- and a ¢ so
that all the integers ¢ | Ze;n;, 5,8, = 1 or 2 are a's.

Finally I state a conjecture of Faber, Lovasz and myself which seems
very fascinating to me:

Let |Ajl=n,1<k<n;|ALNAL| <1,1 <A <A <n Isit true that

n

one can color the elements of U A; by # colors so that each A; contains
i=1

an element of each color?
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