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Problems and results on number theoretic

properties of consecutive integers and related questions

P . Erd6s

Recently two old problems on consecutive integers were settled .

An old conjecture of Catalan stated that 8 and 9 are the only

consecutive powers . Tijdeman just proved that for n > 10 10500 it is

impossible to have n = xx , n + 1 = ys if L > 1, s > 1 .

Another old conjecture stated that the product of consecutive inte-

gers is never a power . This conjecture was proved by Selfridge and

myself (5] .

I hope to convince the reader that many interesting unsolved

problems remain and in fact almost all the problems are unsolved .

Denote by P(m) the greatest prime factor of a and by p(m)

the least prime factor of m . De Bruijn and others [1) determined the

density of integers for which P(n) < nom. It seems certain that the

events P(n) < n and P(n + 1) < (n 4 1)13 are independent but the

proof is nowhere in sight . I can not even prove that the density

d(a,P) of integers n satisfying

p(n) < na( , P(n + 1) < n13

exists-in fact I can not even prove that for every a > 0, S > 0 there

are infinitely many integers satisfying (1) . I will outline the proof

of the following

THEOREM 1 . To every E > 0 and rj > 0 there is a k = k(E,H)

so that the upper density of integers n for which
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P((2)

	

R (n + i)) < n2
i=1

is less than ~ .

There is not the slightest doubt that Theorem 1 remains true if

in (2) n
2-E

is replaced by nl- ~ .

Perhaps the prcof of this conjecture is not hard and I overlook

the obvious . There is no doubt that the density of integers satisfying

(2) exists but I can not prove this, which explains the use of upper

density in the theorem .

It is a simple exercise to prove that the density of integers with
P.

p(n) = p, is
1:

	

11 (1 - Pl ) .l

Put

(3)

the least

L(n,k) = max p(n + i)
1<il*t

It is again a simple exercise to prove that for every k and i

the density a(k,&) of integers n with

L(n,k) = p 2

exists . On the other hand it is a very difficult problem to determine

i for which c(k,i) > 0 . Brun's method easily gives that

a(k,i) > 0 implies I > kc for a certain c > 0 and Rosser proved [13]
i

that E > kz -

	

for every F > 0 if k > k0(F) . Probably in fact

1^ ca(k,l) > 0 implies I > k

	

A result of Rankin 115) implies that

.e
C ek(loglogloq k)-		This problem is intimately connectedlog k loglog k loglcgloglog k

with the difference of consecutive primes and is of course enormously

difficult .

On the other hand from the theorem of Mertens we obtain by a simple



sieve process that if k - - then the density of integers for which

7~c
is (1 + 0(1)) (1 - e-e

	

) where 7 is Eider's constant . We do

not give the details .

A well known deep result states that

(4)

	

P(n(n + 1)) > c loglog n

	

(see [17])

In fact more generally for every irreducible polynomial f(x) of degree

greater than one P(f(n)) > c loglog n . The estimate (4) is very far from

being best possible . On very flimsy probabilistic grounds I conjecture

that for every e > 0 and infinitely many n

P(n(n + 1)) < (log n)
2+g

but for every n > n0(e)

P(n(n + 1)) > (log n)2-e .

The basis of these conjectures is that by a result of de Bruijn

[1] the number Aa(x) of integers m < x, P(m) < (log m)a satisfies

L(n,k) < eck

(5) log Aa(x) _ (1 + o(l))(1 - á) log x .

If the integer m satisfying p(m) < (log m) Of were distributed at

random our conjecture would follow .

It has been conjectured by Surányi that the only non-trivial

solution of

(6)

	

n! = a! b :



is 10 : = 7 :6: and Hickerson conjectured that the only non-trivial

solutions of

(7)

(9)

r
n! = Ii a i 1

i=1

are 10 : = 7161 = 7 :5 :3 :, 91 = 71313121, 161 = 1415121 A solution of
r

(7) is trivial if n = a + 1 = b1 and of (7) if a1 = IT ai - 1,
i=2

n = a1 + 1 . Hickerson observed that (7) has no other non-trivial

solutions for n < 410 . Later I will outlinee the proof of

THEOREM 2 . Assume P(n(n - 1)) > 4 log n. Then if n > n0 (6)

and (7) have only trivial solutions .

More generally one could conjecture

nl + kl < n, the equation

kl

	

k2

(8)

	

(n1 + i) = II (n2 + j)
i=1

	

j=1

has only a finite number of solutions .

A common generalization of (8) and of our theorem with Selfridge

would state as follows : For every r there is a k so that

r
kj

R II (ni + j) = x~, k, .> k,
nl+i

> ni + k
i-.11 j=1

	

i

	

j

has no solution in positive integers .

If true (9) is no doubt very deep . I can not even prove it for

r = Z = 2 . It also seems likely that for every rational r the

number of solutions (in n l ,n2,r,,,k2 ) of

ft

that for kl > 3, k2 >



is finite .

I further conjectured that for min(kl ,k2 ) > 3 the two integers

k2

	

k2

(10)

	

II (ni + j) and n (n2 + j), n2 > nl + ki
j--1

	

j=1

can have the same prime factors only finitely often . For kl C 5

and 12 < 5 Tijdeman found many examples where the two integers have

the same prime factors . e .g . 19 20 21 22 and 54 55 56 57, I am

much less sure of my conjecture now . Perhaps if the two integers in

(10) have the same prime factors then n2 > 2(nl + kl ) . I am very far

from being able to show this and cannot even prove that if n1 and n2

are between two consecutive primes then the two integers (10) cannot

have the same prime factors .

Is it true that for infinitely many r there are two integers

pr < nl < n2 < pr+l satisfying P(nl) < pr+1 - pr , P(n2) < pr+l - pr ?

I expect that the answer is affirmative but that there are very few r 's

with this property. In fact it is not hard to prove that the density

of r`s for which there is an n with P(n) C pr+l
- pr' pr < n < pY4l

is 0, but n = 2k shows that there are infinitely marry such r 1 s .

A well known theorem of Sylvester and Schur States that

for n > 2k[6] . I proved [7 ) : for sufficiently small cl

II (nl + i) = r ~n (n2 + J)s n2 ? nl + k-1' ~n( ,"2) 2: 3J1

P((k)) > min(n- k + l,clk log k)

These is no doubt that (11) can be replaced by

l+c
(12)

	

P(( k) ) > min(n - k + 1,c`k

P( ( k)) > k



Tn so r -mt papers K- Raw cl-dra [14] made corisidCrablc

progress towards proving (12) . The final truth probably is
1

(13)

	

P((k)) > min(n - k + 1,e ck 2 )

2
or perhaps only ek

	

In any case I do not believe that (13) will

be decided in the foreseable future since it is intimately connected

with sharp estimates of the difference between consecutive primes .

Here I call attention to the well-known conjecture of Cramer

(1~+)

	

lim sup
PnT1

-,

	

1
n-~ - (log n)

This is clearly hopeless with the techniques which are at our disposal

at present (and perhaps for the next few hundred or thousand years) .

Put

A(m;pl, . . .,pr) = II pal , where pii llm
i=1

Mahler proved that for every r, k and E > 0 if n > n0 (r,k,E) then

k

	

1+E(15)

	

A( II (n + j) ; ply . . . ,pr ) C n
j=1

The proof of (15) uses the p-adic Thue-Siegel Theorem and is not

effective . It would be very desirable to make (15) effective and also

to replace E by a function tending to 0 as n -4 - . Of course,

there are limits to such an improvement . It is easy to see that for

infinitely many n

and I expect that

A(n(n + 1) ; 2,3) > e nlog n



(16)

	

lim sup A(n(n + 1) ; 2,3)/~jogn = -n-

Perhaps the proof of (16) will not be very difficult but at the

moment I do not have a proof .
aY

	

a .
Let n = II p • 1 , S (n) =

	

II p
1
. 1 , Q,+l(n) = n/S r(n) . S . Golomb

i 1

	

r

	

a.~1-
called the integers with n = Qh(n) powerful numbers and stated many

interesting problems about them [121 . Denote the integers with

n = QT,(n) r-powerful . As far as I know an asymptotic formula for the

r-powerful numbers was first proved in [8) • Denote by uir) < u2r) <

the sequence of r-powerful numbers (all their prime factors occur with

an exponent > r) . I asked Mahler nearly fourty years ago : Is it

true u(2+ ) = u(k2) + 1 for infinitely many k i .e . are there infinitely

many consecutive powerful numbers . Mahler immediately answered yes .

x2 - 8y2 = 1 has infinitely many solutions and these give two consecu-

tive powerful numbers . Is it true that the number of solutions of

u (2 ) - uk2) = 1, ur < x is less than (log x) c ? Are there infinitely

many solutions which do not come from a Pellian equations? For many

interesting problems on the differnece of powerful numbers, see [12) .

It is very probable that (3)

	

(3)uk+l uk

uk+í -
t,k 3) > (uk3) )c for athat in fact It is very

believe that uk+2 -
13(2) > (á(2) )c

for some c > 0 but can not even prove that uk+,, - uk2) = 3 does

not have infinitely many solutions . Trivially u (2~ - uk2) > 4 since

hard to estimate uk+2 - uk2) . I

among four consecutive integers exactly one is twice an odd number

and hence is not powerful . I have only such trivial lower estimations

for uk+i - t 2) . Put

= 1 has no solutions and

certain c > 0 .



Ot - lim inf(u(2i - un2))n=a

	

log u(2)n

As stated ce = 0 but perhaps o!2 > 0 and maybe a2 = a3 =

The following problem seems very interesting to me : Is it

true that for every E > 0 and r if n > n0 (F,r) then

8
(16)

	

Q2 1I (n + i)1 C n
2+E

i=1

If (16) is true then it seems very difficult to prove . By Mahler's

result for every .e > 2

L
(17)

	

lim sup q2
(

TI (n + i)1/ 2 >

	

1
i=1

	

n

and probably for I > 3 the lim sup in (17) is infinite . In the

opposite direction I can not even prove that for k > 2

lim Q2
\

Tt (n +
i)~/n£

= 0
n=~

	

i=1

All these questions can of course also be asked for r > 2 .

I have no idea how large Qr(n(n + 1)) can become for r > 2. In

general try to determine

I

	

1
/

Pr = lim sup log Qr( II (n + i)) /log n

It would be of interest to determine or estimate Qr(2n + 1) and

Q,(n'. + 1) for r > 2 . One would expect that these numbers can be

powerful for only a finite number of n .

It is well known that there are infinitely many triples of squares

in an arithmetic progression, but four squares never form an arithmetic



many quadruples of relatively prime powe=fUL numbers wt cl, form nr,

arithmetic progression? Relative primeness is obviously needed .

In general denote by A(r) the largest integer for which there are

A(r) relatively prime r-powerful ni-hers in arithmetic progression

and by A~(r) the largest integer for which infinitely many sets of

A'(r) relatively prime r-powerful numbers are in arithmetic pro-

gression . On rather flimsy probabilistic grounds I conjecture

A-(r) = 0 for r > 4, but A-(3) = 3 [9] . Incidentally is it true

that 2ui = ui+l + ui-l has only a finite number of solutions where

the ui are consecutive powerful numbers?

Again on flimsy probabilistic grounds i conjecture that u 3j +

~ 3) = ut3)

	

4)has infinitely many solutions (u i ,u j ,ui ) = 1 but u iu

	

+

u~4) = U(4) has no solutions (or at most finitely many solutions) . More

generally it is probably true that the sum of r - 2 r-powerful numbers

is never (or at most finitely often) r-powerful . A famous conjecture of

Euler stated that the sum of k - 1 k-th powers is never a k-th power .

This has been disproved a few years ago for k = S . Lander and Park- ,*,-.

proved (Math . Comp . 21 (1967), 101-103) that 27 5 + 84 5 + 110 5 + 133 5 =1446 .

R .B . Killgrove found in 1964 that 1176 2 + 49
i
` = 354 (R .B . Killgrove, The

sum of two powers is a third, sometimes) .

Imitating Hardy and Littlewood denote by g p(r) the smallest

integer so that every integer is the sum of gp(r) or fewer r-powerful

numbers and Gp (r) is the smallest integer so that every sufficiently

large integer is the sum of G
P
!r) or fewer r-powerful numbers . I would

expect that gp ',r) will in general be much smaller than g(r) but that.

Gp(r) will be close, in fact often equal, to G(r) . A simple counting

argument`güv, s GP(r) > r, in fact the lower density of the integers

See comment

	

end of paper .



which are not the sum of r or fewer r-powerful numbers is positive .

Perhaps in fact this density is 1 . This is easy to see for r = 2

but certainly will be very difficult for r > 2 .

Landau proved that the number of integers n < x which are the

sum of two squares is (c + o(l))	X	1 • It seems likely that
(log x)2

the number of integers n < x which are the sum of two powerfull

numbers satisfies a similar asymptotic formula but as far as I know

this has never been proved . It is not known whether the density of

integers which are the sum of three cubes is 0 . Davenport proved that

the number of integers not exceeding n which are the sum of three
47, 54-Epositive cubes is > n

	

and as far as I know this has never

been improved (2) .

Is it true that p(2) = 3? If the answer is affirmative determine

the largest integer which is not the sum of three powerful numbers . Is

it true that the number of solutions of n = ui2) + U(2) is o(nE)2 .

Clearly many more problems can be formulated here, but I leave this to

the reader . Denote by f(c,x) the number of integers i < x for

which

1i+1 - ui2) < e(ui2) y

Then it is not difficult to prove that

hm f(x,x) - K(c)
x= -

exists and is a continuous function of c . K(0) = O,K(2) = 1 - o, a > 0 .

Clearly u(2) - ui2) < 2ui2) + 1 with equality for infinitely many

squares u (
i
2) = m2 . It would perhaps to be of some interest to

calculate K(e) explicitly . I do not think that this would be



very diTPi- 1-1 = h-- not dons -

Denote by h(n) the number of powerful numbers u (2) in

(n2 ,(n + 1)2) . It is not hard to prove that lim sup h(n) _ ~. and
n =

that the density di o£ integers n for which h(n) = 2 exists and
o.

d E = 1 . It seems much harder to estimate how fast h(n) can
k=0
tend to infinity . I suspect that there is an ae so that for all

n > n 0 (e), h(n) < (log n) % but for infinitely many n, h(n) > (log n) 'Y- z .

Let k be an integer . Put

I conjectured long ago that

In other words for every e > 0 and k > k0 (e) among k consecutive

integers there always is one for which Ak(n + r) < ek .n+r, 1<r<k

A,(m) = 11 pQ1

pOIM
p< k

lim k max ( min Ak(n + r)) = 0
k-- O<IK- 1 k

Conjecture (19) seems very difficult and I made no progress with it . More

precisely : It would be of interest how fast max ( min Ak (n+r)) = f(k)
Osn<m 1<_r<_k

can tend to infinity .

The following problem seems much simpler : Put

k

	

l/k
f(n i k) =(Ak( II(n + 0

It is well known that

?~ logp,=log k+c+o(l)U
p
o
~ p

for a certain absolute constant

	

It is not difficult to prove that



Por every e

k > k0 (F-,71) the density of integers n for which

(20)

	

(1 - e)ck < f(n ; k)l/k < (1 + 0 ck

is greater than 1 - ~ . The proof of (20) is by an averaging

argument and second moment considerations and I hope to return to it

on another occasion .

Denote by g(n ; k) the mimher of integers i, 1 < í < k for

which n + i =_ 0(mod pa), p C k, pa > k . Clearly max g(n ; k) _ 7r(k)
n

for every k, but it is easy to see that for k > k0 (c,TI) the density

of integers n for which

is greater than 1 - rj . I omit the simple proof .

Before I finish the introduction (which is really the main part

of the paper) I state a few miscellaneous problems and results . Put

uk = 1,

> 0 and rj > 0 there is a k 0(e,Tj) so that for

(1 - £) l~g < g(n,x) < ( 1 + g) 1 $

(n)
k - ukvk

where all prime factors of t- are less than or equal to k and

all prime factors of vk are greater than k. The theorem of Sylvester

and Schur states that for n > 2k vk > 1 and Eggleton,Selfridge and I in

a forthcoming paper hope to determine all the cases for which

Ecklund;Selfridgeand I investigated the smallest nk > 2k for which

also E . F . Ecklund Jr . and R.B. Eggleton, Prime factors of consecutive

integers, Amer . Math . Monthly 79 (1972, 1082-1089) .

uk > vkv

our results are very far from being best possible [4] . (See



or r °z l (,i - 2X),
and by dos k the greatest divisor not exceeding n of (k) .
Ecklund (3) proved that if n > 1, n # 7 then po k < 2

and Selfridge

and I proved po k < c

	

and very likely if n > k2~
pn,k < k'

	

k
for a finite number of exceptions . Probably do k > en for a certain

absolute constant c [16} (see also M. Faulkner, On a theorem of

Sylvester and Schur, J . London Math. Soc . 41 (1966), 107-110) .

Is it true that for n > 4,I
ton

is never squarefree? Probably

for n > n
0

there is an odd prime p for which p
() .
n21 `n

	

Probably

the number of integers k, 1 < k < n for which
(kn)

is squarefree

~2nn1

paper of Graham, Ruzsa I Straus and myself [10] .

Denote by v(m) the number of distinct prime factors of m . Let

n = (1 + o(l))k
a

. Is it true that [11)

is o(nE ) . The prime factors of

Put

Denote by pn,k the greatest prime factor

V(( k 11= (1 + o(1))k log(1 + a!) ?

n
(21)

	

n: = II ai , al < a2

	

an ,

i=I

where investigated in a recent

where the a`s are integers . It easily follows from Stirling's

formula and from some elementary prime number theory, that in (21)

al < e (1 - log n )

e > 0 and n > n0 al >
e

(1- e) is possible . Selfridge and Straus

proved that for al>
3

is possible . Many further extremal problems

on the representation of n: as products can be stated . Let qn

be the greatest prime not exceeding n . There is a representation

(21) with an - qn . Further consider

for some c > 0 . I conjectured that for every

except



n : = bl , . . .,bm , bl C . . . C bm < n .

It is not very difficult to prove that

min or=n- (l+ 0(1» log n

It does not seem easy to determine m very accurately . Here is another

question : Put

s
n! = rI d i , n < dl <

	

* < ds
i=1

Determine or estimate min ds . (s is not fixed) It is not hard to

prove that ds < 2n is impossible for n > n0 . 6! = 8 9 10 and

14 : = 16 . 21. 22 . 24 . 25 . 26 . 27 . 28 shows that d s < 2n is possible .-

It would not be difficult to determine all the solutions of d < 2ns -
but I have not done this . It is not easy to determine min ds but I

can show min dfi < 2n + o(n) .-

Now we prove Theorem l . The proof will use TuAn's method and

will be very simple . Denote by pl < . . . < pr the primes in the internal

,n2_E, log?n )' Denote by fk(m) the number of primes p i, 1 < i < r

for which there is a t, 1 < t < k ) satisfying

m + t = 0(mod p i,) .

To prove our theorem we only have to show that for k > k 0 (E,~) the

number of integers m < n for which fk(m) = 0 is less than

We evidently have by the theorem of Mertens

c.n

	

o(n)

	

.

0

n

	

r
( 22

		

f(m) = k -7, n + 0(,n) _ im(log ? - log(z - E)) + o( 1 )
m_1

k

	

i=1 pi

n .



Further we have by a simple argument

(23)

	

Z fk(m)2 =

	

L

	

h(n i pí ,p~) + k

	

P
+ 0(,n)

m=1 1<í<j--X

	

1<í<r 1

where h(n ; pi ,p~) denotes the number of integers u satisfying,

(24)

	

1 < u < n, u + r l = 0(mod p i ), u + r2

	

0(mod p,)

for some 1 < rl < k, 1 < r2 < k. In a complete system of residues

(mod p ip s ) the number of u's satisfying (24) is

since p .p <

	

n

	

= o(n) we have
1 1

	

(log n)2

(25)

	

h(n ; pi )p~) = k
2
p .n p • + 0

n

i ~

	

1

thus from (23) and (25)

n
(26)

	

ú fk(m)2 _ k2cEn + kcEn + o(n)
m=1

From (22) and (26) we obtain

clearly k2 . Thus

(27)

	

E (fk(m) - kcE )2 = E fk(m)2 - 2keE L fk(m) + nk2eE _
m=1

	

m=1

	

m_1

kcEn + o(n) .

Equation (27) immediately implies Theorem I . If (2) holds then

fk(m) = 0 and the number of these integers is by (27) less than
ne

(,l + (3(1)) kE which proves our theorem .

I had difficulties with extending the theorem for the primes
i

greater than n' since if plp
j

~ o(n) (25), (26) and (27) will

present difficulties .



To prove Theorem 2 we need the following Lemma . Assume

n! _- 0(mod a I!a 2 :) . Then al + a2 < n + 3 log n .

The Lemma was a problem of urine in Elemente der Mathematik 1968, 111-113

It follows easily from the fact that if a l +

al : a 2 : is divisible by a higher power of 2 than n!

Assume that

a2 >n

k
(28)

	

n! = II a i , n - 2 > al

	

ak > 2
i=1

Let qn be the greatest prime not exceeding n. Equation (28)

clearly implies al > qn. From the prime number theorem a l > n - o(n) .

Further (28) clearly implies by (28) and our assumption P(n(n - 1)) >

4 log n, (in (11 1 the product runs over 1 < t < n - al)

(29)

	

a2 > P(n'(a l + t) ) > 4 log n .

To prove Theorem 2 assume first assume first al > n - log n . By

(29) and our Lemma it immediately follows that (28) cannot hold .

Assume next al < n - log n . Then al = n + o(n) and (11)

implies

a2 > c 1(n - a1 ) log(n - a1 ) > c2 (n - a1 ) loglogn

+ 3 log n then

and hence by our Lemma (28) cannot hold for n > n 0 .

The proof of Theorem 2 could be improved in many ways . The

primd number theorem is not needed and n0 could be determined

explicitely . We did not attempt this in view of the fact that the

assumption P(n(n - 1) > 4 log n can certainly not be justified by

the methods which are at our disposal at present .



(30)

Finally w outline the proor ar

Theorem 3 . Let n > n 0 (e) . Then

Legendre's formula easily gives

t
n! = r1 (m + i)

i=1

has no solutions for m < (2 - ~)n .

It is very likely that the only no non-trivial (t > 1) solution

of (30) is

	

6! = 8 . 9. lo .

It is easy to see by trial and error that (30) has no other small

solution (say for n < 1000) . If (30) is solvable there can be no

prime p satisfying m < p < m + t . Thus by Stirling's formula and

pr+l <
TT

pr for pr > 29 it is easy to see that we can assume

m>4n, t<m- log n

(32)

	

2a2 >
n2+

1 , 22 < (m + t)2t/log 2

where 2a2 11n : , 2D2 iÍ r, (m + i) . Thus if (30) holds
i=l

(33) 2t(m + t)(n + 1)/log 2
> 2n
-

(33) and (31) easily implies Theorem 3, we suppress the details .

With a little more trouble I can prove that if n / 6 then (30)
n

has no solutions for m < 23 . At present I do not quite see how to
n

prove that (30) has no solutions for m < 2n. I cannot believe that

this will be very hard . The following question just occured to me :
k-•1

Let uk t 1 be the smallest integer for which 11 (uk + i) _- 0(mod n:)
i=0



Clearly 1 = un C un-1 C • • • C ul = n : - 1 . The study of this

sequence might lead to interesting problems .

At the meeting in Oberwolfach on number theory Nov . 2-8, 1975,

Schinzel informed me that he also considered G p (r) and gp (r) .

Ivic made some numerical explorations and on the basis of this, now

conjectures that every n > 119 is the sum of three powerful

numbers . Schinzel also -pointed out to me that I made a numerical

mistake and G
P
(r) > r does not follow by a simple counting

argument and in fact is open at present .



RFF'F=Cgg

1 . N . G . de Bruijn, On the number of positive integers < x and free

of prime factors > y, Nederl . Akad . Wetcnsh Proc . 59 (1951),

50-60 (see also Indigationes Math) .

2 . H. Davenport, Sums of three positive cubes, J . London Math . Soc .

25 (1950), 339 -34 3-

3- E. F . Ecklund Jr ., On prime divisors of the binomial coefficient,

Pacific J . Math . (29) (1969), 267-270 .

4 . E. F . Ecklund Jr ., P . ErcZs and J . L . Selfridge, A new function

associated with the prime factors of (k), Math. of Computation,

28 (1974), 647-649 .

5 . P. Erdős and J. L. Selfridge, The product of consecutive integers

is never a power, Illinois J . Math . 19 (1975), 292-301 . Tijdeman's

paper will appear soon .

6 . P. Erdős, A theorem of Sylvester and Schur, J . London Math. Soc .

9 (1934) 282-288 .

7 . P. Erdős, On consecutive integers, Nieuw Arch . Weskunde, 3 (1955),

124-128 .

8 . P . Erdős and G . Szekeres, Uber die Annahl der Abelschen Gruppon

gegebener ordnung and uber eín verwandtes zahlentheoretishes Problem,

Acta Scí Math . Szeged, 7 (1934), 94-10 3-

9 . P . Erdős and S . Ulam, Some probabilistic remarks on Fermat's last

theorem, Rocky Mountain J . Math . 1 (1971), 613-616 .

10 . P. Erdős, R. L . Graham, T . Z. Ruzsa and E . G . Straus, On the prime

factors of (nn), Math . Comp . 29 (1975), 83-92 .



11 . P . Erdős, & r die Anzahl der Prumfaktoren von (k), Archiu

der Math . 24 (1173), 53-56 .

12. S. Golomb, Powerful numbers, Amer . Math. Monthly 77 (1970),

848-852 .

13 . Halberstam and Richert, Sieve Methods .

14 . K . Ramachandra, Note on numbers with a large prime factor,

J. London Math . Soc. 1 (ser 2) (1969), 303-306, see also Acta .

Arith 19 (1g71), 49-62 .

15 . R. A. Rankin, The difference between consecutive prime numbers,

J. London Math. Soc . 13 (1938), 242-247 .

16 . A Schinzel, Sur un probleme de P . ErcTás, Colloq . Math . 5 (1958),

198-204 .

17. S.V . Kotov, The greatest prime factor of a polynomial, (Russian)

Mat . Zametki 13 (1973), 515-522 .


	page 1
	page 2
	page 3
	page 4
	page 5
	page 6
	page 7
	page 8
	page 9
	page 10
	page 11
	page 12
	page 13
	page 14
	page 15
	page 16
	page 17
	page 18
	page 19
	page 20

