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P . Erdős and A . Hajnal , Budapest

ON SPANNED SUBGRAPHS OF GRAPHS

The aim of this note is to prove some theorems of the
following type :

We assume that C is a class of finite graphs satisfying
certain assymptotic conditions saying that both c and its
complement are large . Then we consider a class D of graphs
and show that for all GEC and , , i is isomorphic to a
spanned subgraph of c provided the size of c is large enough
compared to the size of x .

We have already considered problems of the above kind for
infinite graphs in [2] and [3] . In those cases the conditions
imposed on the elements of C were of "Ramsey type" . To explain
this expression we state a very easy result which is implicitly
contained in [ .3] .

PROPOSITION 1. Let c > o be a real number . Let C be the class
of graphs G such that neither G nor its complement contains
complete bipartite graphs [A,BI of the size lAl=lsl=c log n,
where n is the number of vertices of G . Then for each graph
H and for each GEC G contains i as a spanned subgraph

provided n > no(c,IIll) .

(In fact we can prove this for nE in place of c io€n
provided

	

cm is sufficiently small .)
We did not know for a while if the condition of Proposition 1

can be weakened to the following : C is the class of graphs
G such that neither G nor its complement contains complete

graphs of size c log n . We are going to answer this problem



affirmatively in § .4 of this paper . However our main aim is to

investigate the new phenomenae which arise if the conditions

imposed on C say that both G and its complement have many

edges .

First we agree upon some notation . A graph G = (VG ,E~

_ (v,E ) contains no loops or multiple edges i .e . E[ vJ
2=

_ [xcv: Ix1=21 . We put n(G)=[v1 .

For xf=V, ACV we put D(x,A,G)={yEA . {x, y]rL3 and

d(x,A,G)=1D(x,A,G)1 . d(x,A,G) is the degree of the vertex

x for A in G . We briefly put d(x,V,G)=d(x,G), D(x,V,G)=

=D(x,G) . We remind the reader that for any sets A,B

[ A, B1={ (x, y) . x¢y A xEA A yea] . Hence [ A,A] -1AJ 2 for any

A .

Whenever A,BCV for a given graph G=(v,,e ) we will

denote by e(A,B) the number of edges of G lying in

[A,B] i .e .

	

e(A,B) =1En [A,BI I

Especially, e(A)=e(A,A) is the number of edges of G(A)=

=(A, [AI 2n e) , which we call the subgraph of G spanned by

A .

It will be convenient to identify graphs to two partitions

of [V 1 2 . In what follows if there is no danger of confusion,

for any graph c- (v,E ) we also denote s by EO ,

I v] 2 \ E, by E1, G2 = (v,E . ) for i < 2 . Hence Ga is

G, G, is the complement of G . We briefly write

di (x,A,Gi ) = d i (x,A), D(x,A,Gi ) = D1 (x,A),

d(x,Gi ) = di (x), D(x,G2 ) = di (x) for i < 2,

xEV, A C V .
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When [ .i,BI c zí for some i < 2, [A,BI is said to be

homogeneous for G . The classes "D" will usually consist

of some homogeneous pieces .

§ .i . Assumptions on the number of edges

DEFINITION 1 . a) Let c >

which satisfy IEi 1 > cn 2

H_ Moreover, [A,BIIC E,

o, C 1 (c) is the class of graphs G

for i < 2 and n=n(G) .

b) Let
DI

be the class of graphs H=(v,E )

satisfying the following conditions .

V=AUa0 B1 , where A,BO,B 1 are pairwise disjoint,

IAI=IBoI=IB11=
s n(H) . A and B i , í < 2 are homogeneous for

for i < 2 .

THEOREM 1 . There are functions n,(c), cZ (c) > o such that

for all c > o, for all GEC 1 (c) with n(G)=n > n 1 (c) and

for all »D I with n(H) <_ c1 (c) logn, H is isomorphic to

a spanned subgraph of G .

The following examples show that the theorem is in some

sense best possible .

EXAMPLES I_ Let Gk n be a graph withll'I k•n n A C V

IAI=k and
Ek,n [A, 2 .

2
Clearly, Gk ncC 1 (2) if k [cal

	

and n is large

enough . Gk
n

does not contain spanned subgraphs

of the following kind v'=A'i1B',A'nB'=p

	

[A',B'1C

	

and

I A') 2 , [ B'I 2C
El-i

for some i < 2 , where A' , B' are both

large .

We will often use the following



LEMMA 1 . There are functions c(c',c",a) > o and n(c',c",a)

such that for all c',c" > o, o < a < 1 and graphs

cd V,B ) with n=n (c) > n(c',c", a) and for all A C V

with JAI ? f c'logn] and Ie(A,V-A)I >: c"loge n there are

sets A'CA, s'CVAA with [A',a']C E, IA'1 >: c(c',c",(%)logn,

la'[ >_ na . For the lemma see e .g . [1] .

PROOF OF THEOREM 1 . Assume c 1 (c), n(c)=n . Let Ad

{xCV: di (x) > do for i < 21 for d > o. We claim

(1)

	

JAd I >_ d

	

if d > o

	

is small enough, and n is

large enough .

To see this, put Ti d [xEv. di (x) <_ dn) for i < 2 .

Consider the following inequalities : To,cPT1,d=9

	

for

a <
2 Because of this 1TO,d [ [T1,d1 S

nd(ITo d I+T 1 d ])

By the assumption on the number of edges,

2 < dn 1
Ti

	

(n-ITi,d l) 2
en _

	

,d1 +	2

	

for i < 2 .

These inequalities imply that
ITO,PTI,dl 5 0-d)n

provided d is small and n is large enough .

We now fix some d 1 > o depending on c which

satisfies (1) . Using the fact that the partition relation

(2) n y (logn ) 2
2log2 ,

holds for sufficiently large n (see e .g . [4] or [ 5] },

it follows that there exists a number d 2 > o

	

such

that Ad has a subset A2 , JA 2 [ >_ d2logn which is homogeneous
1

for c provided n is large enough. Note that di (x,V\A) >_

2:

	

n holds for xEA 2 and i < 2 . Applying Lemma 1 twice we

get a number d3 (depending on d 1 ,á2 and a) such that there
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exist pairwise disjoint subsets ACA 2 , B!CVkA 2 for i < 2

satisfying the following conditions :

JAI > d3logn, IB .I >_ n o for i < 2 and

[A,B2]c E for i < 2 provided n is large enough. Applying

(2) with n o in place of n we get that there are B .CB2

such that IBi [ -a 21o g2 n and Bi is homogeneous for G

for i < 2 provided n is large enough .

Let c,(c)=3min(d3, 2loage ) . The subgraph

establishes our claim .

H-G (AUBoUB1)

§ .2 . Assumptions on the degree of vertices

DEFINITION 2 . a) Let 6 > o and let C2 (6) be the class of

graphs satisfying diW ? (1 + 6)n for i < 2 and vEV .

b) Let D2 be the class of complete bipartite

graphs [x,x] and their complements i .e .

H=< V, E) C=D2 i f f V=AVB, N1B=Q,

[AI=IBI and [A] 2,[B] 2C Ei

	

[ A,B]C E1-i for some i < 2

and A,BC:V .

THEOREM 2. There are functions n2 (6), c2(6) > o such

that for all 6 > o, for all GEC2 W with n(G)=n > n 2 (6)

and for all t D with n(H) 5 c2 (6)logn, H is isomorphic

to a spanned subgraph of G .

Before we prove the theorem we show that it is best

possible .



EXAMPLES 2 . Let n be even and o < a < i . Let 62n,a
be a graph satisfying the following conditions :

Gn a = ( V,B ), IVI=n, V=AVB, IAI=IBI= z .

Choose Eq A,B] to be"sufficiently random" on [A,BL We

can certainly find an B with di (x,A) ; di (y,B) >_ 2 -rnlog 2n

for xEB, yEA, i < 2

	

for sufficiently large n .

It is well-known that for o < a < i there is a

k(a)

	

and a graph Gn
a

on z vertices for sufficiently

large n, such that the degree of each vertex is not less

than na and G'

	

contains no [A',B'] with IA'1=18'1=

=k (a) .

See e .g . [5] for a method to prove this .

Now choose Gn ,a to be a copy of '

	

on A andn C9

to be a copy of the complement of G' , , on B

It is easy to see that di (x) >_ 4 n+na for í < 2

37< a < i and xEV, and still there is some k'(a) such

that no Gn ,a contains a copy of an element x of D 2 with

n (A) >_ k' (a) .

PROOF OF THEOREM 2 . In what follows in the proof if we choose

constants and claim that all GEC2 (6) satisfy certain properties

we always mean that all GEC2(6) with large enough n(G) have

these properties .

Let c C2 (6) and n(G)-n

Frist we claim that there is a 6' > 0 such that

(i) For all disjoint pairs Ao,A 1cv, satisfying

ei (Ai) <_ 26'n 2 for i < 2, IV\ (A0
I
)I > 6'n holds .
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This comes from the inequality

IAO I IA i I 2 (4 + 6) (IAOI+IAiI)-2(ei(AI)+e2(A2))-I V- (AoYA1) In .

We now fix a number 0 < a < 1 for the rest of the proo

The next claim to prove is

(2) There is a number di > o such that either c has a

spanned subgraph 1£ L?2 with n(H) >- 2d i logn or for all

Acv, IAI > 6'n there are B^A and i < 2 such that

fB[ z n a and there is no CcB, Ict z loge with

I C) 2c e ,

Let Acv, JAI >

for i < 2 . Clearly,

> 4 IA I > 4 6'n . tie may

(3)

6n . Let

Now either A =B satisfies0

else there is a

Ai={xEA i : di (x,A) > 4 JAI)

an i < 2 such that IA i I >there is

assume that IAO I > q 6'n > na .

our second claim with i=i, or

Cra, ICI > logn such that [C] 2c s1 . By

Lemma 1,there is a number 0 < di < 1, depending on a and

6' only,such that there are B'CC, A'CA\B', IB'I >_ d i logn,

IA'I > na and [A',B 'I c sO . Again, either A'=B satisfies

our second claim with i=1 or else there is an A ^CA',

IA"I Z d ilogn with [A"] c s 1 . However, in this case

H-c(A'UB') shows that the first part of (2) is true .

We may assume in the rest of the proof that the second

part of (2) is true .

The following is our main lemma

There is a number d2 > 0 such that either c has

a spanned subgraph BQl 2 with n(H) >- 2d21ogn or else

for all A,BCV, JAI, IBI : na and for all i < 2 the

condition that no CcA or CCB, ICI >_ logn satisfies



[c] 2c aj implies that the inequality

e i (A,B) <_ s'IAIIBI

	

holds as well .

We are going to use the following corollary of a

theorem of Erdös and Szekeres(see [51) .

(4) For all c' > o there is a c" > o

	

such that

n - (c'logn, c"logn)2 holds for sufficiently

large n .

To prove (3) let now A,BCV, [ALIBI ? na and j < 2

be given, and assume that ;C] 2c aj , cCA or C(-- B implies

ICI < logn .

Assume that the second claim of (3) is false i .e .

e i (A,B) >_ 6'IAIIBI

Clearly there is a number d3 > o such that there is a

subset A ICA, JA I [ 2t d3 1Á1 and satisfying d i (x,B) >_ d3 IBI

for all x<--A I*

By (4), we can choose a number d4 > o such that

damn ~ (logn, d4logn) 2 holds. Then there is a subset A2CA,

JA2I=[d4logn] such that [Á2] 2c al _i .
Now we choose a number

o < g < a . By Lemma 1,, there is a number d5 > o such that

there are A3CA 2, B I CB\ A 2 satisfying IA .I ? d5logn,

IBI I ? no and [A 3'B I]c ai . By (4) again, there is a number

db > o such that n o - (loge, dblogn) 2 . There is a subset

B? BI

	

such that IB2 1 >_ d 6logn and [B2 ] 2c E,_, . Let

d2=min(d 5,d6 1 . c(A auB2 ) shows that d2 satisfies the first

claim of (3) . In the rest of the proof we may assume that

the second claim of (3) holds . We now derive a contradiction .

This will yield that Theorem 2 is true with c2M-2min(dl,d 2) .
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Let fi J < m) be a maximal pairwise disjoint system

of subsets of v satisfying the following conditions :

IBJ I >_ n ° for j < m ; for each j < m there is an

i (j) < 2

Put

such that Icl < logo for all CCBi, [C]2C Ei
(J)

Ai = v (Bj : i(j)=i A j < m) for i<2.

Let now i < 2 . By (3), ei (BJ ,B Q ) <_ s'IBJ I1B~l holds

for all pairs with i(j)=i(e)=i, j,z < m . It follows that

e i (Ai ) 5 C fei(B
J
.,B e ) : 10)=i A J . C < m) <_

<_ b*

	

(IBi llBj l : i(j)=i(f)-i A j, R < m)< 2b'IA i 1 2 <_ 2ó'n2

Then, by (1), 10 (AÓ 1 )I > b'n . (2) implies that there

is a set Bcv1 (Ao 1 ), IBI t no' and an i < 2 with

IBI >_ n a such that Icl < logo holds for all ccB

Ic1 2c Ei . This contradicts the maximality of the system

(Bj : j < m} .

§ .3 . Strongly c,k-universal graphs

DEFINITION 3 . a) Let (7- v,E ) be a graph, n(c)=n,

For each xE[vlk and a, : x - fo,i) we write

x(X.4')l=x(X,y~,G))=fuEV~X : VuCX((u,v}EE (u) )}

Note that for k=t, Ixl=:, x=(ul we have



K(x,Q) = D(u, Eg(u) ) , and K(g,g)=v in case k--O .

b) We say that c is strongly c,k-universal

for some c > o, k ? 1

	

if for all Kq v]K and for all

m : x - Io,1} we have

I K(x, 9) ( k cm .

C) C3 (c,k) is the class of strongly c,1:-universal

graphs . Clearly, C 3 (c t "OV can hold only if c <
1

The concept defined above is a generalization of

k-superuniversal graphs introduced in [7] . We only mention

a few results and problems concerning this concept .

DEFINITION 4 . Let jM v,E ) be a graph, n(H)=k . Let

t ? 1 . Hf-< V', E')

	

is said to be an z muitipU of H

if there are pairwise disjoint sets A,,, . .,Ak , and an

enumeration x 1 , . . .,xk of the vertices of H such that,

k
V = u AJ , JA J I= t, AJ is homogeneous for H' for

J=1

1sJ<_k and

[A J ,A tIC E 1 iff (xJ,x t}GE! for 1 <_ J < t <_ k, i < 2 .

Using a computation similar to the one needed for the proof

of Lemma 1, one can prove

THEOREM 3 . Assume c > o, k,t >_ 1 . Then for all graphs

H with n(H)-k+1 and for all oeC3(c,k), c contains a

spanned subgraph isomorphic to some t-multiple of H provided
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n-n(G) is large enough (n > n(c,k)) .

We omit the proof .

We only mention a class of c,2-universal graphs .

EXAMPLES 3. Let 1w v',s' )

	

be a 2-super universal graph .

i .e . a graph such that for all xq v'] 2 and for all

x+ (0, 1), %(x,(p,H) fl. Assume -n(H)=2k .

Let G3(H,n)=(v,s ) be a graph satisfying the following

conditions .

2k

v = V Aj , where the Ai are pairwise disjoint, and
i=1

IAjI- 2k for 1 <_ j <_ 2k . Let v'={xj : 1 <- j 5 2k}

be an ennumeration of the vertices of H. We put [Aj] 2 I184

for 1 <- j <_ 2kv

1Aj ,A£] 2C Si iff {x .,x t}ESf for 1 5 j< R 5 k, i< 2

provided R#k+j .

Choose a to be a "sufficiently random graph" on

[ A
J

.,A k+j] for 1 <_ j 5 k .

It is easy to see that G3 (H,n) is strongly c,2-universal .

We leave it to the reader to ponder about the restrictive

effect of these examples on possible embedding theorems . We

only prove one more theorem in which we can make real use

of strong c,2-universality .

THEOREM 4 . There are functions n4 (c"), Yc") > o such

that for all c > 0, 1 >_ 1

	

and for all strongly c,2-universal

graphs G-( v,s ) with n(G)=n > n 4 (c,a) there exists a

subset xcv, Ixl=t for which



Ix(x,,p)1 > c4 (c, £) holds for all (p : x - (0,1 ) .

P r o o f. Choose z so that c£ -£ > 0 . Put0

	

0

C4
' c4 (c,£)

	

£
o . Let now Ycv, I YI= £0+1,

2 0£ o

Y = (yc, . . .,yto) . We claim that there exists a subset

L { O, R o) , IL I-1 such that

(1)

	

1 (xEv YjEL((y j , x)ERA(yj+ ,,x)qd)} 1 >_ c'n .

Let z=[j = O 5 j < to A (xj ,xlrJF A {y j+1 ,x} B}

for xEv, and W[( j,x > : jEx A xENI . By the assumption,

Iwl z £ccm . Let v 1 =(xEV -- Ixl > £) . Since

IV[ 5 nR + Iv 1 1£c, it follows that

	

Iv 1 I 2

R o-2.
z

	

n . It follows that there is an L C (O,RI, ILI=£
0

which is contained in z for at least c'n elements x

of v. This proves (1) .

Let now v` : (0,t)-- (0,1) be any function, and

za(z l , . . .,z tI an ordering of a subset of v, xelzl t . The

mapping v induces a mapping W : x - (0,1) by the stipu-

lation ,p(zj)=w(k) provided zj is the k-th element of

x. We may denote x(x,lp) by x(x,Y) as well .

Let now z, be so large that

t i

	

(£ o + I)ZR holds .

For sufficiently large n choose an ordered set .
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z=[z,, . . .,Zl )CV. For v -[0,1) -[0,J) .
s

Let zg, _ {xq zl t : lx(x,Y) l < c'n) .

It is sufficient to see,,that there is an xq z1 R not

contained in z1, for all w : [o,¢) [0,r) . If this is not

true, then [z] 1= u[zIF : T : [o,ft) - {0,1)) is a partition

of z tuples of z into 2z classes . By the choice of

A 1 there are a Ycz, I YI= ,,+i and a Y : [0j)-(0,i) such

that

z
[ Y1 oc 1, .

This contradicts (1) .

Note that we only used the following consequence of

strong c,2-universality in the proof .

For {u,v)gvl 2 and for a : [u,v)-{ 0,1)

lx(x,ip)1 >_ cz2 provided q,(u)#m(v) .

§ .4 . Ramsey type conditions

THEOREM 5 . There is a function ns(c,k) such that for all

graphs c establishing the negative partition relation

n

	

(clogn)2 and for all graphs H with n(H)=k, H is

isomorphic to a spanned subgraph of c provided rFn(c) >

> n 5 (c,k) .

Proof.

By the result of [51 already used, there is a d > o

such that

(1) n - (2c logn, d logn) 2 holds for all sufficiently

large n .



First we prove that there exists n6 (c,k) such that

(2) For all graphs c--(v,s ) establishing n

	

(c logn)2

with n=n(G) > n6(c,k) and for all H with n(H)=k

either H is isomorphic to a spanned subgraph of c

there are i < 2, A,BCV such that AnB=y

[A] 2C si, [A, B] C E .,

	

IA[ k 2 loge, IBI k (logn) 2k'

Let H -'(v',Bl) and v'={x1, . . .,xk} . We are going to

select r={y1, . .,,yk}~ v in such a way that Xr yj

is an isomorphism between ii and c (r) .

Assume that for some 1 <_
j

<_ k the elements Yj
{y , : 1 < 1 < j} have already been chosen in such a way

that for each W : i -- {0,1}

IK(r ., (P) I >_

	

n

	

and
(logn)2(~-IJ

{yR , ys}eaí iff {x j ,x leBi for 1 <_ R,s < j and i < 2 .

Let (o(yl )= i iff {x,,,xj}ESj for R < j .

If there is an element yjGK(J, ó) and such that

(3) dí(yj,K(~,(P)) >-	n 2j

	

for í < 2 and for all
(loge)2j

9 : ?

	

{0,1} we can continue the induction . Otherwise

all elements y of K(Y
j
, (P0

) fail to satisfy (3) for some

i < 2 and a :

J

+ {0,1} .

It follows that there are AICK(?, ó), i < 2 and a

91

	

j

	

{0,1} such that

(4) JA

II a 2j-logn2(7-1)'
and dí(x,B1) <

logn2j
holds

or
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for xeA and B I=x(rj , m1 )

Now, if n is large enough,

	

n 2fj-1)

	

n1/2 ,
2 )logn

By (I), n111

	

lc loge, 2 logn) 2 . Considering that Gi

does not contain a complete c loan, it follows that there

is an ACA,, 1AI = [2 loge) +1, [A) 2C ENow put

B-BI 1 (AL)(1 [Di (x, B) : xEA) )

81 k

(logn)2(j-1)

	

fQ2 lognj+l)((logn)2j+ 1) Z

k	 n	_~n
21ogn 2(j

-1)

	

lognlk

provided n is large enough . Clearly [A,B)C s1-i and

this proves (2) . In what follows we assume indirectly that the

second part of (2) is true for all large enough spanned

subgraphs c' of c .

We now "iterate" (2) . Let t be such that
8 d > c .

We define a sequence A I , . . .,A t of pairwise disjoint sub-

sets of v by induction on

and the sets A R 1 1 <_ t < j

j . Assume that 1 <_ j <_ t,

have already been defined and

a set Bj-1 , IBI. -1 1
>_	nk(j-1) is defined as well .

(Log n)

(Set Bp v) . Assume further that AI, . . .,Aj_,, Bj-1 are

pairwise disjoint .

Put m =

	

n k(j-1) ' We choose sets Aj,BI.CBj-1 and
(loge)

an i(j) < 2 in such a way that

JA 1 = [Z loam]+l, 1B1 >
m k ,Ans-g andj

	

j

	

(loam)
jj



[Ai1 2C Ei(i) , [Aj ,aj]C ai(j) . Then loge >_ loges >_

>_ logn - log(logn)k(j-1) >
loRr

provided n is large

enough. It follows that 1B .1 2:	n

	

and IA .I ?
(logn)kj

	

J

• 2 logm >_ 4 loge for 1 <_ j <_ t . This defines the sets

A 1 , . . .,At . Moreover we know that for each 1 <_ j <_ t there

is an i(j) < 2 such that [Aj ,A z] 2C Ei(j) , for j <_ B s t .

There is an i < 2 such that Lid 1 <_ j <_ t : i(j)=i] has

> Z elements .

Put A=u[Aj jEL,] . Then [AI >_ 8
td loge > c loge

and [A] 2C Ei , This is a contradiction .

A retirement of this proof gives the following

There is a function n
7
(k) such that for all graphs

•

	

establishing the negative partition relation

2

n f (22 2k+1 lognJl~2)2
l and for all graphs H with n(H)=k,

•

	

is isomorphic to a spanned subgraph of c provided

•

	

> n
7
(k) . We do not discuss this since we do not know how far this is

from being best possible . As far as we know the theorem could

1 1

	

1/2

be true with nEk in place of
2 2 2k+1 1o8n1
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