P. Erdgs and A. Hajnal , Budapest

ON SPANNED SUBGRAPHS OF GRAPHS

The aim of this note is to prove some theorems of the
following type:

We assume that ¢ 1is a class of finite graphs satisfying
certain assymptotic conditions saying that both ¢ and its
complement are large. Then we consider a class D of graphs
and show that for all &=C and 5D, H 1is isomorphic to a
spanned subgraph of ¢ provided the size of 6 1is large enough
compared to the size of H.

He have already considered problems of the above kind for
infinite graphs in [2] and [3]. In those cases the conditions
imposed on the elements of C were of "Ramsey type". To explain
this expression we state a very easy result which is implicitly

contained in [.3].

PROPOSITION 1. Let ¢ > O be a real number. Let C be the class
of graphs & such that neither ¢ nor its complement contains
complete bipartite graphs [A,B] of the size lA[=|Bl=c log n,
where n 1is the number of vertices of . Then for each graph
H and for each &=C ¢ contains # as a spanned subgraph
provided »n > n_(c,IHl).
(In fact, we can prove this for n° in place of ¢ logn
provided e=e(H#) is sufficiently small.)

We did not know for a while if the condition of Proposition 1
can be weakened to the following: C 1is the class of graphs
G such that neither 6 nor its complement contains complete

graphs of size ¢ log n. We are going to answer this problem



affirmatively in §.4 of this paper. However our main aim is to
investigate the new phenomenae which arise if the conditions
imposed on C say that both G and its complement have many
edges.

First we agree upon some notation. A graph ¢ = (v ,E}=
={(v,E) contains no loops or multiple edges i.e. & v
= (xCv: |x|=2}. We put n(G)=|Vv].

For x=v, ACV we put D(x,A,G)={yEA: {x,y}€E} and
d(x,A,G)=\D(x,4,G)|. d(x,A,G) 1is the degree of the vertex
x for A& in G. We briefly put d(x,v,e)=d(x,6), D(x,V,G)=
=D(x,G}. We remind the reader that for any sets a,B
[a,8={{x,y} : xfy A xA A v8). Hence [a,al{a]® for any
a,

Whenever Aa,BCv for a given graph &<(v,E} we will
denote by e(A,B) the number of edges of G 1lying in
[2,8] i.e. e(a,B; =1En (4,8 |
Especially, e(a)=e(A,a) is the number of edges of G(a)=
=(a, [2]°n E), which we call the subgraph of G spanned by
a,

It will be convenient to identify graphs to two partitions
of [v12. In what follows if there is no danger of confusion,
for any graph 6= (v,E) we also denote F by £,

(?\ B, by B, ¢, =(v,E,) for i< 2. Hence G, fs

1’

G, 6, 1is the complement of G. We briefly write

1

d'l.fx,n,ci) = di{x,alJ. Dfx.A.G‘.J = Di(x,ﬂ.’.

a(x,G;) = di"“" Bl’x,&‘i} = di(xj for i<2,

XV, ACV,



When [1,8 C E, for some i < 2, [A,B 1is said to be
hamogenecus for . The classes "D wil} usually consist

of some homogeneous pieces.

b.1. Assumptions on the number of edges

DEFINITION 1. a) Let ¢ > o, C,le) is the class of graphs ¢

which satisfy ]Ejl 5 m® for i <2 and n=niG).

b) Let D, be the class of graphs H=(v,E)

satisfying the following conditions.

v=AuB UB,, where 4,8 ,B, are pairwise disjoint,
1al=1B_1=18,I= é—n{h‘). 4 and B, i <2 are homogeneous for
H. Moreover, (a,5,)C E, for i< 2.
THEOREM 1. There are functions n,(c), c,(c) > 0 such that
for all ¢ > o0, for all @=C (c) with n(G)=n > n (c) and
for all 1D, with n(#) < c,(c) logn, H s isomorphic to
a spanned subgraph of G.

The following examples show that the theorem is in some
sense best possible.
EXAMPLES 1. Let o ~ be a graph withividvy fn. & €V
jal=x and E;m=iﬁ‘l.2-

Clearly, &l nECI .«;'—2_; if  k=fenl and n is large

k,
enough. Gi does not contain spanned subgraphs H'=V', E )
Fy sl
of the following kind v'=A"uB’ A'NE'=¢ [a',B]c E; and
1212, (81% gy . for some i<z, where a’,8' are both

large.
We will often use the following



LEMMA 1. There are functions ©E(c',c",a) > 0 and afc’,c",a)
such that for all c¢',¢" >0, 0<a< ! and graphs
G<V,E} with n=n(G) > n(c*,c",a) and for all acv
with 12| 2 [e'logn] and le(a,v-a)] = c"logn n there are
sets Aa'Ca, B'CAA with [a’,B']C E, |af| 2 S(c’,c", a)logn,
18°] 2 2%, For the Temma see e.g. [1].
PROOF OF THEOREM 1. Assume o=C (c), n(G)=n. Let A
= {x€V: d,(x) >dn for i<2} for 4>0. Weclaim
(1) la;t 2a if 4> o0 is small enough, and n is
large enough.

To see this, put rl.'d-{;ev: di("’ < dn} for i< 2.
Consider the following inequalities: ro’dmj’dsv for
d< % - Because of this [T

o,d
By the assumption on the number of edges,

d T
bir, jisn ""O,a'* 1,8

A ta-iz; .1)?
i ———
msﬁmli’a,laL = for i< 2.

These inequalities imply that u-o dlﬂx a' < (1-d)n
r r
provided d is small and r 1is large enough.
We now fix some d > 0 depending on ¢ which

1
satisfies (1). Using the fact that the partition relation

- ¢lo 2
(2) n - GE2) ’

holds for sufficiently large n (see e.g. [4] or[5]),

it foliows that thete exists a number d,>0 such

that Ad! has a subset A, Iazl 2 d'zloyl which is homogeneous
for ¢ provided n is large enough. Note that r.r!{x,mm 3

= %ﬂrn holds for x€a, and i < 2. Applying Lemma 1 twice we
get a number d, (depending on d,.d, and a) such that there
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exist pairwise disjoint subsets aca,, B‘E'Clﬁﬁz for 1<2

satisfying the following conditions:

1al > djlogn, 1B}l 2 n® for i< 2 and

[LBJ’.]C E; for i <2 provided n is large enough. Applying

(2) with a" in place of n we get that there are BLC‘B;

ﬁn and B, is homogeneous for &
for i <2 provided n 1is large enough.

such that [B;] 2

Let c,(c)=3min(d,, ?5-%2—-9. The subgraph B=G(AuUB UB,)

establishes our claim.

§.2. Assumptions on the degree of vertices

DEFINITION 2. a) Let & >0 and let C,(6) be the class of
graphs satisfying di(x) 2 (:—+ 6)n for i <2 and x€V.

b) Let D, be the class of complete bipartite
graphs [k,k] and their complements i.e.

B V,E)€D, iff v=AUB, anp-g,

lai=18 and (a%(8% £, [(aBCE_, for some i<2

and A, ECV.
THEOREM 2. There are functions n,(8), c,(8) > O such
that for all & > o, for all GeC,(6) wWith n(G)=n > n, (&)
and for all H:'-nz with n(H) < c,(6)1ogn, H is isomorphic
to a spanned subgraph of &.

Before we prove the theorem we show that it is best

possible.



EXAMPLES 2. Let n be evenand 0<a < 1. Let &2

n,a

be a graph satisfying the following conditions:

n
Gﬁ,u =(V,E}, |Vl=n, v=2UB, |Al=|B|= 7,

Choose &1A,B to be"sufficiently random" on [2,E We
can certainly find an £ with d.(x,a); a,(g,8 23 ~/alog’n
for x€8, yEA, i < 2 for sufficiently large n.

It is well-known that for 0 < a < 1 there is a

kia) and a graph &' on 2 vertices for sufficiently

n,o 3-
large n, such that the degree of each vertex is not less
than o' and 6! ~ contains no [A‘,B'] with 1a‘i=15'|=
=kf(n).

See e.g9. [5] for a method to prove this.

Now choose a:'a to be a copy of G  on A and
to be a copy of the complement of Gr;,n on B

It is easy to see that ditx} E -i-m for i< 2

1<a<1 and x€v, and still there is some k’(a) such
that no Gi a contains a copy of an element & of 132 with

n(H) z k'(al.

PROOF OF THEOREM 2. In what follows in the proof if we choose
constants and claim that all GEC, (8) satisfy certain properties
we always mean that all o=C,(6) with large enough n(G] have
these properties.

Let =C,(8) and n(G)=n

Frist we claim that there is a &' > 0 such that

(1) For all disjoint pairs a_,a.cv, satisfying

o A, S 26'% for 1< 2, IN(AUAI > e oS



This comes from the inequality

11181 2 (5 + 6) (18 1+18,1)-2(e (& ) e, (A,))-1 V=(A R ) In.

We now fix a number 0 < a < 1 for the rest of the proo

The next claim to prove is

(2) There is a number 4, >0 such that either ¢ has a
spanned subgraph "Enz with n(H) = 2d,logn or for all

ACv, |A| > &'n there are BA and i < 2z such that

B[ = n and there is no ¢Cs, ¢l 2 logn with

(o’ s,.

Let acv, a1 > 6n. let A=(A.: a (x,4) > & 1A}
for i< 2. Clearly, there is an i < 2 such that |a;| >
> -:- 1a] > % &'n. Ve may assume that 1a_| > % 8'n > n°.

Now either A =B satisfies our second claim with i=1, or
else there is a cca, ICl = logn such that g% E,. By
Lemma 1,there is a number 0 < d, <1, depending on « and
6' only such that there are B'Cc, A'ca\B', [B'| = d,logn,
la'l 2 2% and [4',B"]C E_. Again, either a'=B satisfies
our second claim with i=1 or else there is an a"ca’,
14”1 2 d,logn with [A"] C E,. However, in this case
B=G(A"UB') shows that the first part of (2) is true.

We may assume in the rest of the proof that the second
part of (2) is true.

The following is our main lemma
(3) There is a number d,> 0 such that either ¢ has

a spanned subgraph HED2 with n(H) =2 2d,logn or else

for all a,Bcv, |a], |Bl 2 n® and for all i< 2 the

condition that no cca or o©CB, IC| = logn satisfies



2 .
[c]“c E; implies that the inequality

e“.(A,B} < §'lAl1B] holds as well.

We are going to use the following corollary of a

theorem of Erdds and Szekeres(see [ 5]).

(4) For all ¢'" >0 there isa c" >0 such that

n - (c'logn, c"logn)? holds for sufficiently

large n.
To prove (3) let now a,5v, [al,|8] 2 n* and i< 2

be given, and assume that Ic1°C E, cca or cca implies

i€l < logn.
Assume that the second claim of (3) is false i.e.

e;(A,B) = &'|al|8]

Clearly there is a number d; >0 such that there is a

subset A ca, lall 2 djlnl and satisfying d,(x,B) 2 d,lsl

1

for all R

By (4), we can choose a number a, >0 such that

a;n® = (logn, 44109;2 holds. Then there is a subset ACa,

2
ia,1={ d,logn] such that [4,% ¥, _.. Now we choose a number

0<g<a. Bylema 1, there is a number d, >0 such that

there are A, BICﬂﬁz satisfying Iajl = d.logn,
18,1 2 2 and [a,,8]c E,. By (4) again, there is a number
a, > 0 such that ns - (logn, d logn) 2 There is a subset
BCB, such that 18,1 > dlogn and [BJ°CE . Let
dz-nin{ds,dﬁl. G(A UB)) shows that 4, satisfies the first
claim of (3). In the rest of the proof we may assume that

the second claim of (3) holds. We now derive a contradiction.
This will yield that Theorem 2 is true with 02(613211'.11{&‘,42).
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Let {sz j <m be amaximal pairwise disjoint system

of subsets of v satisfying the following conditions:

13,1 20" for j<m;foreach 7 <m there is an

. 2
i(j} <2 such that Icl < 10gn for all r.taj, [c]“c sim .
Put

a,=u {Bj s iff)=i A j<m for i<a2.

Let now i < 2. By (3), eifBj,BEJ < 6‘1BJIIBRI holds

for all pairs with i(j)=i(e)=i, j,t <m. It follows that

e, (A) < ¥ {eirnj,aq:.- if{jl=i A j, ! <m <

<6 T UB118,1: i()=i(U)=i AJ, ¥ <mbs 2611417 < 2607

Then, by (1), [W (3 ua)1 > 6'n. (2) implies that there
isaset BOA(aua), |Bl 20" and an i< 2 with

|8l = 2 such that [ci < logn holds for all cca

[cl & E,. This contradicts the maximality of the system

{Bj i< m.

§.3. Strongly c,k-universal graphs

DEFINITION 3. a) Let &=(V,E) be a graph, n(G)=n,

For each xqﬂk and ¢ : x = {0,1} we write

KX, ) (=K(X,¢,C))=[vEVNX : vuEx({u, viEE, ‘w)}

Note that for k=1, [xl=1, x={u] we have



k(x,0} = D{u, sv(u)) , and KX(¢g,¢)=v in case k=0.

b) We say that G 1is strongly c, k-universal
for some c>0, k21 if for all x(¥V]* and for all

p i X~ {0,13 we have

IX(x,0)| 2 en.

c) ijc.kJ is the class of strongly c,k-universal

graphs. Clearly, ijc_- 1)# can hold only if e < ik

The concept defined above is a generalization of
k-superuniversal graphs introduced in [7] . We only mention

a few results and problems concerning this concept.

DEFINITION 4. Let H<{V,E) be a graph, n(H)=k. Let
L2 1. #H'Xv', EN 1is said to be an 2 muliiple of H
if there are pairwise disjoint sets a,,....4,, and an

enumeration Xyruner¥y of the vertices of # such that,

k
V= u A, |la.l=1p, A, is homogeneous for #' for
=1 7 i i

1<j<k and

(A ac 8, iff (. x)eE; for 1sj<esk, i<o2.

Using a computation similar to the one needed for the proof

of Lemma 1, one can prove

THEOREM 3. Assume ¢ > 0, x,t > 1. Then for all graphs

H with n(H)=k+1 and for all G=C,(c,k), G contains a

spanned subgraph isomorphic to some t-multiple of & provided
89
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n=n(G) 1is large enough (n > n(c.k}).
We omit the proof.

We only mention a class of ¢,2-universal graphs.

EXAMPLES 3. Let HB<(v',B') be a 2-super universal graph.
i.e. a graph such that for all x(v']Z and for all
p: X~ (0,1}, K(x,0,H)#F. Assume n(H)=2k.

Let G3mm)-€ v,E} be a graph satisfying the following

conditions.

2k
V= u AJ., where the A, are pairwise disjoint, and
i=1

n . ks -
Iajl P for 1< j <2k Let v'-{xj. 1<37s 2k

be an ennumeration of the vertices of H. We put (] 2ne-g
for 1< 3 < 2k;

[aj,al]zc E

" F
1 iff (xj,x"}EBi for 1sj<i<k, i<2

provided 2#k+j.

Choose E to be a "sufficiently random graph" on
Iﬂj.ﬂlhj] for 1<j<k.

It is easy to see that ¢ (#,n) 1is strongly c,2-universal.

We leave it to the reader to ponder about the restrictive
effect of these examples on possible embedding theorems. We
only prove one more theorem in which we can make real use

of strong c,2-universality.

THEOREM 4. There are functions nglc,2), cyle,t) >0 such
that for all ¢>0, t 21 and for all strongly c,2-universal
graphs G=(v,2) with n(G)=n > n¢(c;lJ there exists a

subset xcv, |x|=¢ for which



1K{X, 90| 2 cyle,n) holds for all ¢ : x = [0,1}.

P roof. Choose L, so that ct ~L > 0. Put

ck -4
cg = Cylc,2) =——2— . Let now ¥Cv, IYi= 8 +1,

)
2%
o

Y= {yo,...,yx }. We claim that there exists a subset
[=]

1.-!0,1.0) . ILI=¢ such that

(1) |V = ¥ieL(ly,, AEBAly, X4E) 1 2 c'n.
let W={j:0sj<i A {xj,x}e: A {yj“,z]m

for x€v, and m={j,x) : JEW,_ A xEM. By the assumption,

vl 2 i en. Let v,=0€v : IW | 2 2}. Since

IWl < n& + |V 12, it follows that |v,I 2

L -
> 2 — . It follows that there is an L c[o0,1], ILl=t

o
which is contained in w_ for at least c'n elements x
of v. This proves (1).

Let now ¥ : [0,2)= {0,1} be any function, and
Z={z,,...,z,} an ordering of a subset of v, qu]“. The
mapping ¥ induces a mapping ¢ : X = 0,11 by the stipu-
lation o(zj}-?{k.l provided z is the k-th element of
X. We may denote KXix,o0} by X(x,¥) as well.

Let now 2 1 be so large that
Lo~ (L + 1)" holds
1 o 22 "

For sufficiently large n choose an ordered set.
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z-:{x‘,...,zll]c v. For ¥ :[0,0) - {0,1}.

Let I, = prlzl® : 1K(x, %) < c'n}.

It is sufficient to see,that there is an xz1* not
contained in I, for all ¥:[0,2) = {0,1}. If this is not
true, then [21%= u{z, : ¥ : [0,1) = (0,1}} is a partition

of ¢ tuples of Zz into 2% classes. By the choice of

L, there are a ¥z, 1¥|=¢ +1 and a ¥: [0,2)={0,1} such

that

L

(=]
(n% 1,

This contradicts (1).

Note that we only used the following consequence of
strong c,2-universality in the proof.

For {u,v3gviZ and for o : {u,v}={ 0,1

1X(x,9)| 2 cn provided glu)¥p(v).

§.4. Ramsey type conditions

THEOREM 5. There is a function nslc,k) such that for all
graphs G establishing the negative partition relation
n# (clogn),f, and for all graphs # with n(#)=k, H is
isomorphic to a spanned subgraph of ¢ provided r=n(G) >

> ng (c,k}.

Proof.
By the result of [5] already used, there isa d>0
such that

(1) n= (2c logn, a 1ogm? holds for all sufficiently
large n.



First we prove that there exists nglc.k) such that

(2) For all graphs G<(v,E) establishing n # (c logn)2
with n=n(6) > n_(c,k) and for all H with n(H)=k
either H 1is isomorphic to a spanned subgraph of & or
there are i < 2, A,BCv such that Ane=g

d n
lillzc B [a,BIC B, Al =3 logn, |Bl 2 Tiogn 2x*

Let #="(v',E" and V'={x,...,x}. We are going to
select Y-——{y‘,..-,yklc v in such a way that X~ Yy
is an isomorphism between H and &(Y).

Assume that for some 1 < j <k the elements Yj =
= {yg : 1<% <3} have already been chosen in such a way

that for each ¢ r_-,- - {o,1}

Ix(¥., 9l 2 —L——— and
i (1ogn)? =1

{yrys}esi iff {’z"‘s}esi for 1st,s<j and i< 2.

Let oofyl)-i iff {xl.‘x IESE for 2 < j.

exfr .9, ) and such that

If there is an element vy

(3) 4 (9 K(Y ,00) 2 for i< 2 and for all

(logn)zj
9 rj - {0,1} we can continue the induction. Otherwise

all elements y of x(rj,oo) fail to satisfy (3) for some

i<2 and w:Yj-[O.J}-

It follows that there are HICK('Y}' 9l 1< 2 and a

9 ¢ rj - {0,1} such that

holds

(4) 1a,1 2 —P——— and 4 (x,B) < .
) 13, 2 1ogn -1 A



for x€A and B =K(Y,, ¢}

Now, if n» 1is large enough, 142

e
zjlosnzrj-ﬂ

By (1), nx/z -~ (c logn, glogn)z. Considering that o,
does not contain a complete c logn, it follows that there
is an aa,, ] = [glagn] +1, [A]gc E, ;- Now put
B'Bl\ (M!{Difx;BJ : x€a})

(logn)y23-1)

n

Bl = - ”{;_i logn] +1) ( 2j+ 1) =
(logn)

n n

20-1 2 — -

2

2logn

provided n 1is large enough. Clearly {A,BC E and

1-4
this proves (2). In what follows we assume indirectly that the

second part of (2) is true for all large enough spanned
subgraphs ¢' of oc.

We now “iterate" (2). Let ¢ be such that it d> c.

We define a sequence Al of pairwise disjoint sub-

t
sets of v by induction on j. Assume that 1< 37 <z¢,

and the sets A, 1 <2< 3j have already been defined and

L)
aset B, ., |B, | 2 —2—— is defined as well.
Jj=1 j-1 (1oganrJ_l"
(Set B=v). Assume further that a,...,A, , B, , are

pairwise disjoint.
Put m = —E——— . We choose sets A,,BCB, _, and
(109)11(3' 1) - i e
an i(j) < 2 1in such a way that

d ]
=[Z£ Y > A nNs=¢g and
14,1 = [3 logal +1, 18,1 ogmp® ~ 3 3

9%
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[a] e i3 [nj,aj]c 3“:” Then logn = logm

> 1logn - log(logm =1 > _';Eg provided n is large
n

enough. It follows that Injl z (lngn)kj and [Ajl >

x4 3 logm 2 L 7 losn for 1< 3j<¢t. This defines the sets

a Moreover we know that for each 1 < j <t there

:l---l’ t.
. 2
is an i(j} < 2 such that [Aj,all (= ’irj)' for jsest.

There is an i < 2 such that Li-n < j<t: i(j)=i} has

2% elements.

Put a-u{a ¢ jery. Then [a] 2 1:& logn > ¢ logn
and [a]%c E,. This is a contradiction.
A refirement of this proof gives the following
There is a function n, (k) such that for all graphs

¢ establishing the negative partition relation

2
1 1 1/2
ket Losn

n# (2 and for all graphs H with na(H)=k,

‘21
H s isomorphic to a spanned subagraph of & provided

n > n,(k). We do not discuss this since we do not know how far this is

from being best possible. As far as we know the theorem could

I 1 iogn)jjz

E
be true with n k in place of 22 At
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