On products of integers. II

P. ERDOS and A. SARKOZY

1. Throughout this paper, ¢, ¢,, ... denote absolute constants; ky(x, §, ...),
ky(o, By ...)y oos Xolas i, ..0). ... denote constants depending only on the parameters
o, B, ... v(n) denotes the number of the prime factors of the positive integer n,
counted according to their multiplicity. The number of the elements of a finite
set S is denoted by |S|.

Let k,n be any positive integers. A={a,, as, ..., a,} any finite, strictly in-
creasing sequence of positive integers satisfying

(I) (11:].51;_':2.“-.{?;(:;\:

(consequently, |4|=n=k). Let us denote the number of integers which can be
written in form

2) ﬁ ai (g=0 or 1)
i=1
or
a;a; (1 =i, j=n),

respectively by f(A,n, k) and g(A, n, k). Let us write
F(n, k) = m{inf(A. n, k) and G(n k) = n}in z(A, n, k)

where the minimums are extended over all sequences A4 satisfying (1) and |A|=n.
Starting out from a conjecture of G. Haldsz, the second author showed in
the first part of this paper (see [4]) that

G(n. k)= n-exp [c, FE:%%] .

Note that to get many distinct products of form g;¢;. we need a condition
of type (1); otherwise e.g. the sequence 4={1,2,2?% ...,2" '} is a counterexample,
namely for this sequence the number of the distinct products is 2n—1=0(n).
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Furthermore, G(n, k)/n is not much greater for fixed & and large n than for n=k,
i.e. for A=B, where
Bf‘ = {], 2.‘ ) lt\}.

This can be shown by the following construction: let A*={a;,a;, ..., a}} be the
sequence of the integers of form pij where p is a fixed prime number greater than
koi=1,2,....m, j=1,2,...,k, and m is any positive integer. Clearly,

g(A*, n. k) g(B,. k, k) Gk, k)
=D =9
n k k
thus
G =2 G4 for k/n,
] k
hence

(’(:' k) =4 G{i\:' i (= o(k)) for every n.

The authors conjectured that

G(n, k) _ . Gk, k)

3) n k

for every n=k, and furthermore, that for any w=0, k=k,(®w) and n=k, we have

F(n, k) = n*k®
or perhaps
) 3ex[‘ k]F;") x[ k)
n=exp | ¢y ogk (n, k n=exp | ¢y Togk

for large k and n=k. (See [4], also Problem 9 in [3].)
The aim of this paper is to disprove (3) (Theorem 1) and to prove a slightly
weaker form of (4) (Theorem 2).

2. In this section, we will disprove (3).
P. ErDGs showed in [1] (see Theorem 1) that for any &=0 and k=k,(e).

2 Eo_gﬁ e log log k2
2) legz ko k) = - 3 log 2
*{lmg PHET (elog?2) 2(By, k., k) m‘ézk'! I (Tog K9 (¢elog2)
Sk ek

This inequality can be written in the equivalent form

k* " k2
gy~ 9= (g
where
_ 1 1 +loglog2

log 2
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An easy computation shows that

0,086 = ¢; = 0,087.
Hence, for large k,
5) k " G(k, k) . k
¥ “0g k)o__e}n'.r k (Iog k}n,uan *

Thus to disprove (3). it is sufficient to show that for large k, there exist a positive
integer # (=k) and a sequence A such that |4|=n, (1) holds and

A, n, k A
{6} g( . } = - Ch
n (log k)
where
(7) cg = 0.087.

In fact. by (5) and the definition of the function G (n, k), this would imply

) G(n, k) k i 1 Gk, k)
n  (log k) (log k) k
where
¢ = ¢;—0,087 = 0
by (7).

Let us write @(x)=Il+xlogx—x and let z denote the single real root of
the equation

®) p(x) = p(1l+x).
A simple computation shows that

(10) 0,34 = =z = 0,55.

Theorem |. For any =0 and k=Fk (e), there exist a positive integer n(=k)
and a sequence A such that |A|=n, (1) holds and

(A, n, k) k
11
th n (log k)es—*
where
(12) cy = @(z).

(The function ¢@(x) is decreasing for O=x-=1. Thus with respect to (10),
we obtain by a simple computation that

¢y = @(2) = ¢(0,55) = 0,121.

Hence, Theorem 1 yields that for large &, (6) holds with ¢g=0,121 which satisfies
(7). Thus in fact, (8) holds with ¢;=0.121—0,087=0.034 which disproves (3).)
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Proof. Let k be a positive integer which is sufficiently large (in terms of &)
and let m be any positive integer satisfying

(13) m= k2.
Let D, denote the set of those integers d for which
(14) l=d=k
and
(15) v(d) = loglog k
hold. Let p be a prime number satisfying
(16) p=k.
Let E, denote the set of those integers ¢ which can be written in form p*d where
(17) l =0 =m
and
(18) dcD,.
Finally, let
A=E\) B,

We are going to show that for large enough k, this sequence A4 satisfies (11).
Obviously,
(19) n=14 = |E|+|B,| = mk+k <= 2mk.

Furthermore, by a theorem of P. ErRpGs and M. Kac [2], we have

1
|D,| = = k.
il = 3 k
Thus (with respect to (16))
1
(20) n=|A|>|E,| =m-|Dg| = ?mk.
To estimate the number of the distinct products of form g;a;. we have to

distinguish four cases.

Case 1. Assume at first that a;€ By, a;< B,. Since B, consists of k elements,
the pair g;,a; can be chosen in at most
K*=m=n

ways (with respect to (13) and (20)).

Case 2. Assume now that a;=p”d< E, (where (14), (15) and (16) hold),
(21) a;c By
and
(22) v(a;) = zloglog k.
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Then
(23) a;a; = p*da;.

Let m;(x) denote the number of those integers u for which v=x and v(u)=i
hold. By a theorem of Hardy and Ramanujan, for any w=0 there exists a constant

cq=cq(m) such that for large x and l=i=wlogx, we have
X (loglog x)—!
4 T; =0y
@ () < e logx  (i—1)!
Choosing here w=1 and using Stirling’s formula, we obtain that for k=k,(w),
the number of the integers a; satisfying (21) and (22) is at most
(25) 2 mlk) =
N=i=zloglogk
k  (loglogk)'—!
R WL
1=i=iToglogk 108 K (i—1)!
l{\' ] ] k [z loglogh]—1
Sl (loglog k) =

logk 1=i=zloglogk ([:loglog k}_])!

_ ok (log log k)i= log legk]-1
= ]+ cg—l@{—;]og]ogk Tz loglog A—T)1

Lk (log log k)t= loe log]
T o log k ([zlog log k] — 1)[F 198 108K1=172 , ~[= Tog Togki -1

-
oy k (log log k)t= leglog il
= 4oy log k (zlog log k)i o8 k1 =172 ;== Tog Tog =

k I k
= Togk (log b7 (loglog k) "*(log k) = ~ (log k)"

(loglog k) —?
i—1!
By (14), (17) and (18), z and d can be chosen in at most m and k ways, respect-
ively. Thus the number of the products of form (23) is less than
k _ k
(log kyss—¢3 =& (log k)es—#/®

(where ¢4 is defined by (12)) since is increasing for | =i=log log k.

ek

(with respect to (20)).
Case 3. Assume that a;=p*d<E, (where (14), (15) and (16) hold),

(26) a;e B,
and
(27) via;) = zloglog k.
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Then
(28) a;a; = (p*dya; = p*(da;).
By (14), (15), (18). (26) and (27),
da; = k-k = k*
and
v(da;) = v(d)+v(a;) = loglog k +zloglog k = (1 +2z)log log k.

Thus applying (24) with @w =100, we obtain that for any 0=0=z/2 and k=k,(9),
and writing r=[(1+z—9) loglog k*], the number of the distinct products of
form da; is at most

(29) > m,(k2) = > 2, (k?) =
(1+z)loglogk=i (1+=z—3d)loglogk®=i
= 3 my+ 3 mky) <
r=i=100loglogk® 1001og log k2 =i
k®  (loglog k*)"~!
= 2 ; +R(k?) =
r=i=100loglogh? “ log k* (i—1)! (%)
2 a 2y +e 1 k2 i
o k ' (log log k?) 5 [log og ]+R(k‘3_) _
log k ! o .
. k* (loglog k*) *‘“-'[ 1 ],; L
Ui ot 2 Ciga—g) TRED <
-2 alao 2y
k*  (loglog k?) ROk

= 4=
¥ log k r!
where

Rx)= 23 mx).

1loglogx =i

Applying Stirling’s formula, we obtain that for k=k,(d),

k* (loglog k?)

o) logk
J2 (108 log kﬂ}[(1+:—diloginnk=1
= (g logk ([(I+z—0)loglog KT Toe s ke 1 1/2 5~ [(1 1= - d loaloghks] —
kz (log log k‘g)[fl+:—6lloglogk2|
= C17 log k ({] = ‘j) l(}g ]Og ,'\v‘.'){ll =z—d) log log k2] + I.-':e—ti-*—z —d) log log k <
k? 1

e E=— FE— r I -, e
18 ]ng t’“+' ) logll+= 6)[nL.Iogk“Oglogk)l..’(]ogk] (l+=z-4)

k*
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The function ¢(x) is continucus at x=14z. Thus if J is sufficiently small in terms
of ¢ then for k=k,(d)=k;(0(c))=k,(c). we obtain from (30) that

k*  (loglog k?) k* k*

3 =
Gh log k r! = (log k)ett+=1-e3 (log k)yes—#/

(since @(l+z)=@(z)=c, by the definition of z).

Furthermore, P. ERDOs proved in [1] (see formulae (5) and (6)) that for large x,
(32) R(x) =2 — _
i i (log x)*
(29), (31) and (32) yield that the number of the distinct products of form da; is
at most

— ; k‘z ,r‘,‘_x k._‘
33 T- k" == Oy i = gy ——————
( ) H-!—:llr%ogk«.i rl{ ) O1s {lOg k)fx—-‘:ffi + (lOg k'z)ﬁ Cio {!Og k]cg—s.r:i

Finally, by (17), o in (28) can be chosen in m ways. Thus with respect to (20), we
obtain that the number of the distinct products of form (28) is less than

k2 k

M=y Tog k=7 =n Tog k=7

Case 4. Assume that a,=p*d,<E,, a;=p"d,c E, where

(34) l=a, f=m

and

{35) dl‘ dg'; Dk’

Then the product g;a; can be written in form

(36) a;a; = (p*dy)(p'dy) = p**Pd\dy = p'd

where by (34) and (35),

(37) 2=y =2m

and

(38) d=dd, =k-k=Kk. v(d)=v(d)+v(d,) > 2loglog k.

By (37), y can be chosen in at most 2m—1=2m ways, while in view of (33), at
most
2 k) = = (k%) = ¢y _'_E_'“
zloglogh =i (1+z)loglogk=i (log k)cs—##
integers ¢ satisfy (38). Thus the number of the distinct products a;a; of form (36)
is less than
k® k

Sy, (log b= = " (log kym—o2
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Summarizing the results obtained above, we get that for k=k,(¢),

k k
(log k)::g—;:f! h (iog k)cs—r.

g{A, n, k) - ll+3-”.

which completes the proof of Theorem 1.
3. In this section. we will estimate F(n, k).

Theorem 2. There exist absolute constants csy, ¢y such that for k=kg and
n=k,

s . K g k
(39) n°exp [cm m] = F(n, k) = n®exp (cgl m)

Proof. First we prove the upper estimate. We will show at first that

_ k ]
4 o = - G e (15
(40) F(k, k) =f(By, k. k) exp((_z Tog k

In case A=8,={1,2,....k} (and n=k), all the products of form (2) are divisors
of k!. Thus applying Legendre’s formula and the prime number theorem (or a more
elementary theorem), we obtain that

F(k, k) = d(k!) = [7 1o 7 ]]

t= 2k 4k
b E (52 -
pj‘-_{][ 2 "k am1 P° l{ P— pg P
[iu@k logk .
log 2 In 2 pr
/- A T
=1 Kk ___ kP ;=1 k k
Fyg Sy eu 5 PEGT
N #e |
ﬂ (4-29) = cxp{fga 2 —k—-log4-2-"]} =
IOgF

_].103“] Iogk]
. exp{c‘ [ 2'log2 i | e+ %’2 i;]} B
24 - 2 log FI = —1‘|°gk:|+l 2 =

2 log2

= o0 fea g+ R} = o0 e )
= P | | Tog k P Tog k

which proves (40).
Assume now that n=£k. Let p denote a prime number satisfying p=k and let

A= 1 B s B By Pais %

Y,
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For this sequence A, |4|=n, and the products (2) can be written in form

k -k
(41) [l ] pPi=a-p’

i=1 i=1

=

where &=0 or | and 6,=0 or |. Here ¢ may assume F(k, k) different values,
and obviously, § may assume any integer value (independently of «) from the
interval

Ek = (n—k}(:—k-l—]}

i= &~

O=a=

m—k)yn—k+1)
P

p. thus for different pairs a. f, we obtain different products of form (41). Thus
with respect to (40),

of length . Furthermore, the prime factors of & are less than

n—k)y(n—k+1)
= =

F(n, k) =f(A, n, k) = F(k, k)-

) [ k ] R [ k ]
= €Xp {22@ '7"—-” exp f'g-zlog—k

which completes the proof of the second inequality in (39).

Now we are going to prove that the first inequality in (39) holds with ¢,y=

. Es
in other words,

(42) F(n, k) = n*exp [% 'i’géc,z_",;]-

Let us assume at first that

- 1k
n = exp ?Tgk— .

Then for large k. the right hand side of (42):

n®ex [—L——A ]*—'-cx [—?1 g +—I - J"
TOPL92 Togrk) T P T logk " 92 Tog?k) T
(43)

_ [2 ko k]_ [68 k
P U3 Togk 100 Togk) ~ P 700 fog k)

On the other hand, let 4 denote any sequence satisfying (1). Let us form all
those products of form (2) for which

{0 or 1 if a; is a prime numbes and a; = k,
““Z10 otherwise.

By (1), A contains all the z(k) prime numbers p=k, thus the number of these
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products is 2*®. Hence, by the prime number theorem, we have
(44) (F(n. k) =)f(A4. n. k) = 27" = exp (log 2n(k)) =

k
logk)’

69 68
= EXp [ﬁa"”“’] > exp [m

(43) and (44) yield (42) in this case.
Let us assume now that
1 k
(43) n = exp [? @] :
Let

=7 o)
L7 log2kl”

Denote the /' prime number by p; (p;=2,p,=3,..) and let g,=p;,., for

i=1,2, ..., 0={¢1. q2s ...} R={q1, 291, G2, 29>, -.., 41, 2q,}. Obviously, (45)
implies that R {a;, a, ..., ap, ). Let us define the sequence E={ey, e, ..., €,} by

th

{a,.as, ..., gy} = EUR, ENR=0.

For s=1,2...., [{-] +1, we denote the interval [n—2[n/4]—1+2s, n] by 1,
and let F, denote the set of those products of form (2) for which
g=0 if a€cR, 3 &=2,
ia;cB
g n )
g=0 |if [5] =i =n—2[n/4]—2+2s,

and

g =1 if icl, (i.e. n—2[n/4]—1+2s =i = n).

In other words, F, denotes the set of those numbers which can be written in form
( [T a,)-ee;
pel,

where 1=/, j=m,i=j. Let F denote the set of those numbers which can be written
in form

ee; where 1 =i, j=m, 1#].
Then obviously,

(46) |F| = | F,
independently of s.
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Furthermore, for s=1,2, ..., [-g—] +1, let G, denote the set of those products

of form (2) for which
g=0o0r1 if afR, Zc—l

Iﬂl

g =0 if [;—1] =i=n—-2[n4]—-2+2s

and

g=1 if iel

5

(le. n—2[n/4]—1+4+2s =i = n).
In other words, G, denotes the set of those numbers which can be written in form
! £ s i
([T a))-e I a7 1T 2g)™
nel, i=1 t=1

(where €;=0 or I, @,=0 or 1). Then |G| is equal to the number of the products
of form

I I 1
(47) e I 45 I 2a)" = 2'e: II g
e =1 =1
where 4 ¢
and
(49) O=a=L

Let G denote the set of those numbers which can be written in form

where (48) holds. Obviously, for any product of this form. there exist exponents
&;. ¢, and o, satisfying (47), (49), £,=0 or | and ¢,=0 or 1. A product of form
(47) can be obtained from at most /+1 distinct elements of G: namely, by (49),
a may assume only at most /+1 distinct values. Thus

|G
(50) |Gy = o
(again, independently of s).

We are going to show that for s-1,

1) (FUGINIFUG) =0.
In fact, assume that s=t. Then for ye F,JG,,
y = ][ a, = [[ ay- I7 ay =
pnel, n—2mjd]l—1+2t=p=n—2{n/4]—1+2s uel,

(52) )
= an—‘.‘lu;‘ U—1+2Qn—olnal+o " 17; a, = {aIn,-'Z])‘ ]{ ay, (fOI' .v% Ff U Gr]
ucfy pel,
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On the other hand, for z¢ F,,

(53) z=ee; [| a, = (aym)* ] a, (for z€ F).
nel, pel,

Finally, if vc G, then we have

(s4) o= 10, 120 I a0 = awa?( 1] ) 1T o
1=1 wel,

By the prime number theorem,
X
Iog{]]pi] ~ xlog x.
i=1

Thus if k (and consequently /) are sufficiently large then with respect to (45) we have

1 2 1+1 2 35 2
2 11 f,u-] = 2( 77" p) < 2 (exo {2 a4 1020 0}) <
2 3
(7 ezt exe {37 (5 e + 1) o2 (g )
XP\T Togzk P8P UITT T Togzk ) OB\ T Tog2k '

enl ol )
P \Togz k) **P\ 16 Tog2k %) =

B [k+5k]] (5 k]l In]_T
= P logfk " 16 Togk) = 3P 5 Togk) = 3" T [2] T Y-
Putting this into (54), we obtain that
(55) v =(ap)? [] a, (for veGy);
welg

(52), (53) and (55) yield (51).
By (46), (50) and (51), we have

[nj4]+1 [nj4]1+1
(56) flA, n k) = U (FUGY|= 2 |FUG|=
=1 5=1
[n/4]+1 |0|
= 2 max{|F,, |G, |}_ 2 max{|f-| l}
=1
. |Gl } n .
= H | = — |
([n/4]+ l}max{lfk 1 3 T50 max {|F|, |G|}.

Thus to complete the proof of Theorem 2, we need a lower estimate for
max {|F|, |G|}. In the next section, we will prove the following lemma (using the
same method as in [4]):

Lemma 1. Let Q0= {qrj,q(z L, q} be any set c’mrs:'srmg of | (distinct) prime
numbers. Let E=l{ey, ey, ....€,} (H .‘rere ey =e,=...=e,) be any sequence of positive
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integers. Let F and G denote the sets consisting of those integers which can be re-
spectively written in form

i
ee; (l=ij=m,i=)) and e qu-‘ (6, =0.1 or 2).
j=1

Then for

(57) =1,

we have

(58) max {| F. |G|}:-n‘.'exp[25 I]

Let us suppose now that Lemma 1 has been proved. Then the proof of Theorem
2 can be completed in the following way:

For large k. (57) holds by the definition of /. Thus we may apply Lemma 1.
We obtain that (58) holds. Putting this into (56), we get that for large & and any
sequence A (satisfying (1) and |4|=n),

A noi 2]
(39) (A, fr_.fx}}z—!_{_l mexp(-i-s-f’ .

With respect to (45).

m = |E| = [n/2] =Rl = [n/2] =2] = {”J [7 lofﬂ;‘] .
n 2 k n 1k n

n
CLM W . _logn = 2.
T3 Tlogfk 3 3logk 3 CB"T 7Y

Thus we obtain from (59) that for large k,

] 2 n* 2 ]
fd, n, k) 4 T+1 4 e"p[za (]}ﬁex"[Ef =

B n-’ { [ ” - [ 1 k ]
16 P13 |7 |ou B = el e
which proves (42) and thus also Theorem 2.
4. To complete the proof of Theorem 2, we still have to give a

Proof of lemma 1. Let us write every e<FE in form

(60) e = (rs*)(gfrqst...qf") = bd
where r, s are positive integers, ;=0 or | (for i=1,2...../), p/r implies that
pi0Q, pls implies that pc@ (also r=1 and s=1 may occur) and b=rs?,

2}

d=g{ qi*...q/". Let us denote the occuring values of b by by, by, ..., b, (b;#b;
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for i=j), let B={b,,b,,....b.} and let us denote the set of those numbers ec E
for which b=h; in (60) (for fixed i, 1=i=z), by E(b;). Then obviously,

E={) E(b) and E(b)NE(b) =0 for i=j,
i=1 ’
thus

61) m= |E| = 3 |E(b)|-
i=1
For be B, let F(b) denote the set of those numbers which can be written in
form
e.e, where e cE(b), ecE(b), e +#e,.
Furthermore, for fixed b€ B and for each e,=bqfgs:...q7, let us form all the
products of form

(62) e(gi*q*... qf) = (bgi* q5* ... qi)(qi* q3*... qi")

where

jl) or 1 if g =1
71 or 2 0f =0

and let us denote the set of these products by G(b).

Obviously,
(63) F> | F(b)
i=1
and
(64) Go U G(b).
i=1
We are going to show that
(65) F(hb)M F(b)) =0 for i=]
and
(66) G(b) N Gb) =0 for i#j.
In fact, let us assume that
(67) b, = risi = b; = r;s},
ee=biqi g% ... qi'c E(b), e, = b,q7 q8*... gf'c E(b;).
e, = biqigs...gic E(b;) and e, = b;qlrqf>... gf1€ E(b)).
Then
(68) ety = IIST@ T g gt (€ F (b))
and

(69) e,e, = FisSig I gE L P (€ F(b).
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It ri=r; then there exists a prime power p’ such that p¢ Q and p'fe.e, but p'ie e,
or conversely; this implies that exe,}..ze,e If r;=r; then by (67), s;s; must
hold. Thus there exists a prime power g/ such that q,EQ and g/'/s; but ¢/'fs; (or
conversely). Then the exponent of ¢, is at least 4u+¢;+¢@;=4u in the canonical
form of e e, and at most 4(y—1)+a +p;=4p¢—2 in the canonical form of e,e,
thus e.e,#e,e, holds also in this case, which proves (65).

In order to prove (66), note that we may write the product (62) in form

r(s*qiqs ... q) g gi...qit where o, =0or 1 for i=1,2,..,1L

Obviously, a number of this form uniquely determines each of the factors r, s,
g, ..., g, which proves (66).
(63), (64), (65) and (66) imply that

(70) max {|F|, |G|} = max{ i
i=1

|0 Gy

=

max{z |F (b)), 2’ |G(b)|} = E[Z [F(b))|+ _Z: IG{bH]

i=1

5 S (F®) +1Gb)) = 5 3 max ([F(bl. [0(b))

Thus in order to prove (58), it suffices to show that for < B, max {|F(b)|, |G(b)|}
is large.
Let us assume that H¢ B. We have to distinguish two cases.

Case I:
7
(71) 0=)[E(b)| = 28

=1

We are going to show that in this case |G(b)| is large (in terms of |E(b)|). Let us
fix an element ¢, of £(b) and for this ¢, form all the products of form (62). Obviously,
the factor ¢;*q;*...q;" can be chosen in 2' ways thus the number of these products
is 2. Hence, with respect to (71),

1

1 7
(72) G(b)| = 2' = 25" 5 1= 31 Eqp)l.
Case 2:

7

(73) |E(b)| = 2%

=1

In this case. we shall need the following lemma:

Lemma 2. Let o be any real number, satisfving

(74) Q=0 =
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and

(15) flo) & —eloge—u—@)logu—g)—[l —-g—]log2<0,
and let | be any integer, sufficiently large depending on o:

(76) I = I(0).

Put

el
o(l) = 273

Let S denote the set of the 2' l-tuples (i, o, ..., ), satisfying pu,=0 or 1 for
h=1,2,...,1. Let R be any subset of S for which

77 IR = (12"

Then the number of the distinct sums of form

(78) (Vi s 049 = (g oons ) +F(ps s W),
where (fy, ..., )ER and (vy, ..., vV)ER, is greater than (¢(1))~'|R|.

This lemma is identical with Lemma 2 in [4].
Using Lemma 2. we are going to show that (73) implies that |F(b)| is large.

1. . .
Let us choose g= in Lemma 2. Then (74) holds trivially, and a simple

computation shows that

| 3
f[?] = g(logS—log 9) =0,

thus g satisfies also (75). Furthermore, we choose R as the set of those /-tuples
(e15 €25 ..y &) (where &=0 or 1) for which bgjrg::...q/*¢ E(b) holds. Then by
(73), also (77) holds:

7 1
IR| = [E(b)| =28 '=27% 1.2l = p(hy2.
Thus we may apply Lemma 2. We obtain that the number of the distinct sums of

form (78) (where (py, ..., )€R and (v, ..., v,)ER) is greater than (¢(/))"*|R|.
But distinct sums of form (78) determine distinct products of form

1

ece, = (bgtt... g (bai ... gi') = b2gir+ s g+,

and with at most |E(b)| exception, also e +#e, holds. Thus

!
1
(79) [F(b) = (@(D) 'R~ |E(b)| = (27F" ") |E(b)|— |E(b) =
1 B
= (25" -1) |E®) = 25" |E®).
(72) and (79) yield that for any be B,
1
max {| F(b)|, |G(b)|} = 25" |E(b)|.
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Putting this into (70), we obtain (with respect to (61)) that

1 z .
LG} = 5 ‘-21 max {| F(b;)/, D} =

1 2 .
}—ZZH |F(b)|-— :': Z’iE(bi}!:mz—sl—lz

i=1

1 Iog"
2= mcxp{]ogz §!—l = mexp = IO{]{} = mexp 2 l

which completes the proof of Lemma 1.
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