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Best upper and lower bounds, a5 funetions of n, dre obtained for the quantities B2(G) + B.(G)
and a6 )+ ad (7)., where B.((7) denotes the total matching number and (7} the total
covering number of any graph G with n vertices and with complementary graph 6.

The best upper bound is obtained also for e G) + B067), when & s 4 connected graph.

Let G be a graph with edge set E and vertex set V. A vertex u is said to cover
itself, all edges incident with u and all vertices joined to u. An edge (u, v) covers
itself, the vertices u and v and all edges incident with & or v, Two elements of
E UV are independent if neither covers the other.

A Subset € of elements of E UV is called a total cover if the elements of %
cover (¢ and % is minimal; a subset F of elements of E UV is called a total
matching if the elements of J are pairwise independent and T is maximal. We
shall be interested in the quantities

aA{G)=min|% |, B{G)=max|T|

where the min is taken over all total covers of & and the max over all total
matchings in G. These concepts were introduced in [2] (see also [3]), where various
bounds for a:(G) and B.(G) were obtained and exact values for particular graphs
were determined.

In [1] Chartrand and Schuster have obtained lower and upper bounds for
B(G)+ B(G) and Bi(G)+ B.(G). where B(G) denotes the vertex independence
number and B8,(() denotes the edge independence number of a graph & having
complement G. Here we shall obtain bounds for the quantities BAGY+ B:AGY,
w:(G) + (G and ax(G)+ B G).

2.
We shall use the notation B = B G), B: = B:AG). a:= (), &: = a{G). For

complementary graphs we have the following resulis,
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Theorem 2.1. If &G is a graph on n vertices, then

2[;]Eﬁ1+§,é[%u}.

The upper bownd is best possible for all n, the lower bound is best possible for all
n# 2 (modd),

Proof. Let p (resp. @) denote the size of a smallest maximal sel of independent
edges in G (resp. G). Then the following relations are immediate:

B=n -, i =[n/2], L+ a=(n—1)2,

These imply the bounds of Theorem 1.

In order to show that the upper bound is best possible, we let G = K,. Then
B.= n and, as proved in [2], B: = {n/2}. For the lower bound, we set G = Kz, 2, if
n=4m and G = K, if n =21+ 1, In these cases B.+ .= 2(n/2}.

Remark 2.2. If n is odd then for every  such that n+1=1=(3n+1)/2, there
exists a graph G on n vertices satisfying 8. + B, = . It n = 0 (mod 4) then for every
t such that n =t =1n and t# n + | there exists a graph G on n vertices satisfying
B:+ Ba=t. If n =2 (mod 4) then for every 1 such that n + 1 =1 =1n there exists a
graph G on n vertices so that 8.+ B.=1t

Praof. If n is odd we let G=K,,.; with 0=x<n/2. If n is even, we let
G =K, ... with even values of x,0=x=n/2; further we let G be the graphs
obtained from K, .., with odd values of x, 3= x= n/2, when joining two vertices
among the x vertices by an edge. Easy calculation shows that these examples
yield the result.

Remark 2.3. We can show that if n = 2 (mod 4), the lower bound in Theorem 1 is
in fact m+1. Also, a result of Galvin implies that if n={(mod4), then
BAG)+ BAGY# n + 1.

Theorem 2.4. If G is a graph on n vertices then

{E}-F—lf’:u:-‘-&;"—’é [%"}

The wpper bound is best passible for all n, the lower bound is best possible for odd n.

Proof. Let % be a total cover of & consisting of x edges and y vertices such that
;= x + y. We may assume that the x edges are pairwise disjoini and that none of
the y wvertices is joined to any of the x edges. If n = 2x + y + z, then there are z
vertices each of which must be joined in G to some of the y vertices in 6. It is casy
to see that no two of these z vertices can be joined in & and therefore G contains
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K, asa bubgraph It follows then by [2], that &: = {z/2}. Thus, we have .+ &=
x +y 4tz =i(n+ y). This proves our statement if y =2, If y = 1, let vertex o, € %.
In order to cover u,in €3, we must have @, ={z/2}+ 1, since v, is not joined in G to
any of the z vertices of K.. Thus in this case a: + &:=1n + 3 which is stronger than
needed, Finally, if y = 0 then 2 =0, so that a; = x = n/2. Since &: =1 in any case,
we get the desired lower bound in this case as well. The upper bound in Theorem 3
is a consequence of the inequalities a; < B., & = B and Theorem 1, The upper
bound is best possible if G = K. To show that the lower bound is best possible if
=21+ 1, we let G be the star graph on i vertices, We have s, =1, &, =1+ L

Remark 2.5, If n is odd then for every ¢ such that {{n + 1)+ 1=¢t=3(3n + 1) and
t# (3n— 1) there exists a graph on n vertices satisfying a,+ a;= . If n is even
then for every ¢ such that in+2=¢=3in there exists a graph on n vertices
satisfving o, + & = L

Proof. If n is even, we let G be the graph consistingof K., l=x=n andofn —x
vertices joined to all vertices of K. If n is odd, we first let G be graphs as described
above, allowing odd values of x,1=x = n; further we let G be the same graphs
with one edge of K, omitted. Simple calculations show that Remark 2.5 is valid.

Remark 2.6, By a bit more complicated argument we can prove that if n is even,
then the lower bound in Theorem 3.1 is in fact n/2+42 and if n is odd, then
west a7 (3n — 1502

It was proved in [3] that if G is a connected graph on n vertices withouf riangles
then a;+ B:= 5n/4, but that for infinitely many connected graphs o:+ f.>5n/4
holds. In the following result the restriction concerning triangles is absent.

Theorem 3.1. If G is a connected graph on n vertices (n =1), then

Uz‘l‘ﬂzﬁﬂ‘f‘%[i‘l‘} ‘

Proof, Tt was proved in [2] that . = {n/2) fora connected G. Clearly we also have
;=2 in this case. Combining these with 8. = n — u, we obtain the result.

The examples given in [3] (subsequent to the proof of (1)) show that the bound
given in Theorem 3.1 is best possible if n =0 or 3 (mod 4). It is easy to construct
examples showing that it is also best possible if n =1 or 2 (mod 4),
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Theorem 3.2. Every connected graph on n vertices contains a total matching of size
at most n — 2V n+ 2. This bound is best possible.

Proof. Let # be a largest independent set of edges in G, We denote by
(vg wa ) (o, wady s (s, vay ) the edges in . and by vs.0000.00 00 the test of the
vertices of . Then:

(i} because of the maximality of &, no two of vu.y,..., 0. are joined;

(ii) because of the connectedness of G, each of vi..y, ..., t. i5 joined to at least
one of the vertices th, ..., U=}

(iii) since # is the largest independent set of edges, it is not possible that one of
Uity 000, Uy BE joined to one end vertex and another to another end vertex of the
same edge.

Therefore, we may assume that each of the vertices t2..1, ..., 0 i5 joined to at
least one of the vertices v, vs, . ... v Thus there exists a vertex, say v, with at
least k = {{n — 2x)/x} vertices, say vz.+1,..., Ui joined toit, Let now F consist of
the edges (us, U4} ..o, (Ve 2.) and of the vertices vawey...,t, and ¢z Then
|Fl=(x—1+{n—-2x—K)+1l=n—-x—k=n—x—nfx+2 and ¥ is clearly
maximal independent.

Now, t + n/x =2Vn for all x, so |F|=n- 2+ 2 as required, In order to
show that this estimate is best possible, we consider (see [3], proof of (3)) the graph
G of order n = m® consisting of K. with m — 1 end vertices joined to each vertex
of K,.. Asshown in [3], for every maximal independent set & | # [=1+(m — 1) =
m® = 2im + 2, This proves our claim.

The bounds given by Theorem 2.1 yield estimates for the product 8- .. For
example: If n=0(mod4) then n*/d4= g, B.=9n%16. Both bounds are best
possible,

For the product of the covering numbers Theorem 2.4 does not yield best
possible estimates, Indeed we have the following resolt: If G is a graph on n
vertices, then o, &.=n - {nf2}. This estimate is best possible.

Proof, For every graph G, cither G or G is connected. Hence, by [2], either
as={n/2} or a,={n/2}. The choice G = K, shows that the estimate is best
possible,
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