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Let G(n) be & grarh of n vertices, G(n; L) & greph of n vertices and £ edges.
f(n; G(m)) is the smallest integer so that every G{(n; f£(n; G(m)) contains a sub-
graph isomorphic to G(m). More generally let G,, ... be a finite or infinite family
of finite graphs. £(n; Gys oo ) is the smallest integer so that every
6(n; £(m; Gl, -ys )) contalns one of the G, s a subgraph. Many papers have been
published in the last few years on the determination or estimetion of these functions.
In one of my recent papers I give a fer from complete list of papers dealing with
extremal problems in graph theory. Bollcbds is sbout to publish a comprehensive book
on this subject which will alsc contaln a very extenmsive list of references.

In this paper I first of all state a few of my favorite unsolved extremal problems.
Then I prove the following theorems:

THEOREM 1. Assume that G(n) does not contain a C
1-1/r
1B .

ok41 for 3 £ k £ r. Then the independence

number of G(n) is greater than ¢
C, is & circuit of k edges and the independence number of G(n) is the cardinal
number of the lergest set of vertices no two of which are Joined by an edge.

K(m) is the complete graph of m vertices. Denote by K, op(m} an erbitrary subdivision
of K(m) (i.e. a topological complete K(m). KtO‘p(B) is simply a circuit).

THEOREM 2. There is a function f(c) > O so that every G(n; [c n2]) conteins sKtop{!.}
with & 2 f(c)nli.

Before proving the theorems we will state several related conjectures.

P. Erdds, Some recent progress on extremal problems in graph theory, Proc. sixth
Southeastern conference on combinatorics graph theory and computing 1975, Utilitas Math.
press,3-1 , Congress Num XIV. We will refer to this paper as I.

For further problems see my paper: Problems and results in graph theory and
combinatorial analysis, Proc. fifth British comb conference 1975, 169-192, Utilitas
Math. Cong. Mum XV. I refer to this peper as II. For scme historical remarks see
P. Erd¥s, Problems in number theory and combinatories, Proc. sixth Manitoba conference
on numerical math, Congress Num. XVIIL, 35-58. For some further extremel and other
problems see my paper, Some recent problems and results in graph theory combinatorics
end number theory. Proc. seventh Southeastern conference. Ut. Math. press,3-1b,



(Congress Kim. XVIII).

A weaker version of Theorem 2 was proved in: P. Erdls and A. Hajnal, On complete
topological subgraphs of certain graphs, Am. Univ. Sei. Budapeet , T(1969), 193-199.
Theorem 2 is stated as a con)ecture in this paper.

1, Simonovits and I conjectured that if G is bipartite funless stated otherwise G is
always bipartite) then there is a rational number a, 1 < o < 2 so that
(1.1) lim £(n; G)/n" = c, 0 < c <=
n=e
We are very far from being able to prove (1). As e first step one should prove
that to every bipartite G there is &n a so that for every € > 0 and n > np(e)

(1.2) 2 < £(n; @) < n®*C,

(1.2) perhaps will not be very hard to prove.

We further conjecture that to every rationel a, 1 £ a < 2,there is & G for which
(1.1) is satisfied.

P. Erd8s and M. Simonovits, Some extremal problems in graph theory, Coll. Math.
Soe , B6ljai L, Combinatorial theory and itg applicetions (1969) 37T - 390, North Holland,
see also II.

Nothing like (1) holds for hypergraphs. This follows from a result of Szemer#di
and Rursa see II p. 179.

For non-bipartite graphs the results of Simonovits, Stone and myself cleared up
the situation to some extent, though meny problems remain.

[11 P. Erd¥s and A, Stone, "On the structure of linear graphs", Bull. Amer. Math.
Soe, 52(1946), 1087-1091.

L2l P, Erd¥s and M, Simonovits, "A limit theorem is graph theory', Studia Sei. Math.
Hungar. 1 (1966), 51-5T.

2. Define V(G) as the minimum valency (or degree) of all the vertices of G.
Put V,(G) = max v{G') where the maximm is taken over all the subgraphs of G. Simonovits
and I asked: Is it true that

3/2

(2.1) f(n: G) <en if vlm) =217

We now expect that (2,1) is false, but can prove nothing.

Assume Vl{G} = r. A result of Rényl and myself implies f(n: G) > c n2(1—1/r).

Define a,(r) ana uz(r} as follows: For V,(G) =r and every ¢ > 0 if n > no(c),
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na:_(r}-c ng(r)n.

< f(n; G) <n

Our result with Rényl implies aj(r) 2 2(1 - 1/r). TIs this best possible? Is it true
that for every r, ap(r) < 2 ¥ Unfortunately we do not know this even for r = 2,

[1] P, ErdBs and A. Rényi, "On the evolution of random graphs", Publ. Math. Inst.
Bung. Aead. Sei. 5 (1960), 17-67.

3. Denote by D the graph of the'n dimensional cube, it has 2® vertices and n 2271
edges, D, = Cy,).

Simonovits and I proved f(n; Dg) < e nefs. Probably the exponent 8/5 is best
possible, but we have not even been able to prove f(n; D3}fn3"2 -+

Brown, V.T. S6s, Rényl and I proved

(3.2) f(n; ©€) = (5 + o(1))n3/2,

Let & be a pover of a prime, We also proved
(3.2) r(82 ¢+ 6 +1; C) 2%(p* +p) +p?+1,
perhaps there is equality in (3.2). I proved in I that
(3.3) f{n; C) s % 32 & - (-1354- o(1))n® .
I conjectured
(3.4) tlo; &) =%0Y/2 + B+ oln).

It is not impossible that in (3.L) the error temm is u(n“l.

K(u, v) is the complete bipartite graph of u white and v black vertices. Kbdvari,
V.T. 868, P. Turén and I proved

(3.5) fln; x(r, r)) <en 2'1”.

Very likely the exponent in (3.5) is best possible. For r = 2 this is implied
by (3.3) and Brown proved it for r = 3, but for r > 3 nothing is known.

Dencte by G - e the subgraph of G from which the edge e has been omitted.
Simonovits and I proved

(3.6) f(n; D3 - e) < -::ny2
and I proved
(3.7) t(n; Kfr, r) -e) <c ni-2/f-1,

Simonovits and I tried to characterize the graphs G with the property that for
every proper subgraph G'



16

(3.8) £(n; G')/£(n; G) + 0.

We were of course unsuccessful, but in viewof (3.6) and (3.7) it seemed to us
that highly symmetric graphs are likely to satisfy (3.8).

Qur paper with Simonovits is guoted in 1.

[11 W.G. Brown, "On graphs that do not contain & Thomsen graph", Canad. Math.
Bull, 9 (1966), 281-285,

[2] P, Erdds, A. Rényl and V.T. S6s, "On a problem of graph theory", Studia. Set.
Math. Bung. 1 (1966), 215-235.

[3] T, Kbvéri, V.7, Sbs, and P. Turfn, "On & problem of K. Zarankievez), Coll.
Math, 3 (1954), 50-5T.

ChL] P. Erdds, "On an extremal problem in graph theory", Coll. Math. 13 (196L4),
251254,

4, We have

(4,1) 5?’-,5!-5 lim f(n; c3s ch},’nya <k .

The lower bound is a result of Reiman and E. Klein (Mrs, Szekeres). The upper
bound is (3.1), Determine the value of the limit in (4.1). I never managed to get
anywhere with this question and cannot decide whether 1t is really difficult or
whether I overlock & simple argument. I was never able to improve (L.1).

More generally, let G'.l' e Gk be a family of grephs some of which are bipartite.
I hope and expect that

(k,2) 1lim £(n; Gys vees Gk)/nu =c
n=ew
Assume that the conjecture (1.1) holds and let a { be the rational number for which
lim £(n; Gi)/n‘xi =e,0<c <=
n=s

Perhaps o = min Q. I have of course no real evidence for this. I am sure that
1<i<k
the situation changes completely for infinite families of graphs {Gk}, 1sk<w,

At the moment I do not know an example of an infinite family of graphs [Gk)’ 1<k <w
so thet there is an a with f(n; Gk) /n® » = for every k, but for some B < a

(4.3) flny G, ... )/n® +o0.

l’
Probably the family of grephs G with Vl(G} 2 3 satisfies (4.3) for every 8 > 1. This
is an 0ld conjecture of Sauer and myself. If true then, since for these graphs

£f{n; G) >c nh/ 3 by our result with Rényi stated in 2, this family would have the
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above property.
Our problem with Gauer is discussed in I. p. 10 and IT p. 178.

[11] I. Reimann, "{lber ein Problem von K. Zaranhievicz, Acta Math. Acad. Sei.
HRungar, 9(1958), 269-278.

5. As far as I know G. Dirac was the first to investigate f(m; Ktop(m)). Trivially
£(n; K toptsl = n and G. Dirac proved f(nm; x“p(h)) =2n -2, He conjectured

£(n; xhopts)) = 3n - 5. Tt is surprising that this attractive conjecture is still
open. Mader proved that f(n; Ktop{m}} < 2m-2n. he conjectured

(5.1) £(n; Ktop(mn < ¢ m?n.

(5.1) is probably rather deep. It is easy to see (as was of course known to Mader)
that the conlecture if true is best possible - apart from the value of c.

Theorem 2 can be considered as proving (5.1) for large values of m, but it is
very doubtful if it will help in proving (5.1). Before we prove our theorems we
give a prelimipary discussion and state some conjectures, some of which are in my
opinion more interesting than the theorems. First of all it would be of interest to
determine the largest f(c) for which Theorem 2 holds. I am sure that it will be &
continuous strictly increasing function of e¢. It is not hard to prove that
f(c) 0 as ¢ + 0 and f(c) + = as ¢ + %. It would of course be interesting to determine
f{c) explicitly.

I am sure that the following strengthening of Theorem 2 holds.

Conjecture 1: Every G(n; [cln;’]] contains Ecgn;’] vertices Xyy eeny Xy T = {czn;! ]

s0 that Xy and xd, 1s4i<]J<rare Joined by vertex disjoint paths of length 2.

This conjecture is clearly connected with the following problem of perhaps
greater independent interest.

Let [8] = n, A <8, lak| >emn, 1<ksm Determine the largest f(n, m, ¢, ¢)
s0 that there always are sets Aki, 1<i < f(n, m, ¢, €) for which for every
lsil<125f(n,m, e, €)

A n A > .
! kil kigl £n

€ > 0 can be chosen as small as we wish but must be independent of n and m. Observe
that if ¢ > % then for sufficiently small € = e(c), f(n, m, ¢, €) = m. Thus the
problem is of interest only for ¢ = %.

The connection between this problem and the conjecture is easy to establish.
First of all it is well known and easy to see that every G(n; c n2?) contains a
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subgraph G(N), N > ¢, n each vertex of which has velency greater than (2¢ + o{1)N.
(To prove the lemma omit successively the vertices of smallest valency).

Let the vertices of G(N) be Xy e+ Xg.Thesets A, are the vertices joined to x.
It is immediste that Conjecture 1 is a consequence of

Conjecture 2. For n =m and € = e(c) sufficiently small

(5.2) f(n, m, ¢, €) > n n;’

for some n = ne, €) > 0.
I can not even disprove
(5.3) #(n, m, c, e) znm

for m < n and n = n{c, €). On the other hand I can not prove (5.3) for ¢ = 1 even
for ¢ = %,

Perhaps for every m < 2" and € = e(n)

(5.4) £(n, m, e, €) > m> "

(5.4), if true, is best possible. To see this, let the A's be &ll subsets of 8 having
at least cn elements, and let m = 2© - J (). It is easy to see that in this case
(5.4) can not be improved. Ogi<en

These conjectures have many connections with other interesting questioms in
graph theory. First of all an old conjecture of Kneser states as follows: Let
|s| = 2n + k. The vertices of G are the {Zx:k) subsets of size n of 5. Join two
vertices if the corresponding n-sets are disjoint. Prove that the chromstic mumber
%G) of G is k + 2. This conjecture has recently been proved by Lovész and Barry in
e surprisingly simple way. Thelr proofs will appear socon.

Define now a graph G(n, W, &) as follows. Its vertices are the m sets A‘k < 8.
Two A's are joined if |Ak1 n ak?l < en. Determine or estimate x(%’ n, e)}' (5.2) would
follow from x(G(n, m, €)) < ¢ ns, Perhaps very much more is true e.g. x(G(n’ i e}) <
¢, (log m)°2.

Ramsey's theorem can be used to obtain weaker inequalities than (5.2)., Let
1/r > ¢ > 1/r+1l. A simple argument shows that for sufficiently small & the largest
independent set of E(n, o, _s_) is at most r. (& is the complementary graph of G, i.e.
two vertices are joined in G if and only if they are not joined in G. A set of vertices
is independent if no two of them are joined by an edge). Thus by a well known theorem
of Szekeres and myself it contains a complete graph of size > ¢ nur- (for r = 1 the

whole graph of course is complete). In other words (5.2) holds with 1/r instead of %.

Now we show that it is possible to obtain considerably stronger results. First
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of all assume 1/3 < c < ¥%. Clearly in our graph the largest independent set has size

2, but we can essily get some further information. Let Aj,...., Ay |“1| > en,

¢ > 1/3 be any five of our sets. Then 2 simple argument shows that there is a set

8, €8, Isll > en which is contained in three of the A's. In other words every five
points of our graph spans & triangle. Thus the complementary graph of our graph contains
no triangle a.;:}ano pentagon. But then by Theorem 1 it contains an independent ;)313:

of gize > ¢ n or our graph contains a complete graph of size greater than cn™ ~.

More generally assume ]Akl > n/r+1 (1 + n) for some n > 0 (A <5, |8] = n,
1<k sm). Join two sets Ay, and Ay, if IAkl n Agy| > en, € = e(n) is sufficiently
small. Then these graphs belonging to the set system the graphs depend on € has the
following property: For every fixed t = t, and £ < t every set of £(r + 1) vertices
contains & k(2 + 1). I hope that for sufficiently large t = t(r, §) this conditiom
implies that our graph contains & complete graph of size > 1'6. (For Conjecture 1 it

suffices to prove this for § = %).

(1] G. Dirac, "In abstrakten Graphen vorhandene vollstlndige L-Graphen und ihre
Unterteilunge", Math. Nachrichton 22 (1960), 61-85;

for a very simple proof see:

(2] P. Erd¥s and L. P6sa, "On the maximal pumber of disjoint circuits of = graph",
Publicationes Math. 9 (1962), 3-12,see p. 8.

£3] W. Mader, "Homomorphieeigenxhatten und mittlere Kantendichte von Grepher,
Math. Annalen 1Th (1967), 265-268.

[4] P. Erdbs and G. Szekeres, "On a combinatorial problem in gecmetry,
Compoaitio Math. 2 (1935), h63-l70.

6. Now we prove Theorem 1. Let the vertices of our graph G(n) be x, ..., X

Denocte by Si the set of those xJ's which can be Joined to X by & path of length i but
not by a shorter path (30 is defined to be xl). Observe that the set Bi is independent
of the ”tjgi*-asj (i.e. no vertex of S, 1s jJoined (by an edge) to a vertex of

1944050
Observe further that for 1 £ 1 £ r, s, is an independent set. For if two vertices

i

of 8 i are joined then our G(n) contains an odd circuit of size < 21 + 1, which contradicts
our assumptions. Observe next that for some i, 02 isr -1,
X
i 1/r
(6.1) T——r <n =
Si-l

(6.1) follows immediately from the fact that Sy, n Sy, = ¢ and that ]i§0 8, s m.

(In fact we can assume 1iﬁlsil < n for if not then max |Si| 2 p-1/r which implies
1<izr
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Theorem 1). Let now £ 2 0 be the smallest index satisfying (6.1). We construct our
large independent subset of G(n) as follows:. The vertices of Bi will be in our
large independent set. Gl is the subgraph of G spanned by those vertices of G which

are not in :Qg g3 Clearly by (1) and the minimum property of i

(6.2} 1482 8,0 < @MF 4 ) |,

or Gl has at least n - (n”® + 1) |Bi| vertices and no vertex of Si is Joined to any
vertax of G:I.' Repeat the same construction for Gl and continue until all vertices

ere exhausted. The union of the Bi belonging to the Gi will be our large independent
set of size > (1 - el VT gor every n > 0 if n > ny(n). This last statement easily

follows from (6.1) and (6.2).

Probably the exponent 1 - 1/r cannot be improved this is known only for r = 1.
I expect that cnl-lfr can be improved by & logarithmic factor but this also is known
only for r = 1.

Assume now that G(n) has girth greater than 2r + r. (i.e. G(n) has no circuit
of length £ 2r + 2). I cannot prove more than Theorem 1, i.e. I can only show
that G(n) has an independent set of size greater than cnlﬂl/r. I wonder if the
exponent 1 - 1/r is best possible. The case r = 1 is perhaps most interesting,

i.e. G(n) has no triangle and rectangle. Is there an independent set of size > n;i#'?

I do not know.

[1] P. Erdos, "Graph Theory and probebility II", Canad J. Math. 13 (1961), 346-352,

For & penetrating and deep study of extremel problems on cycles in graphs see;

[2] J.A. Bondy and M. Simonovits, "Cycles of even length in graphs", J. Combinatorial

Theory 16B (19T4), 97-105.

[3] J.E. Graver and J. Yackel, "Some greph theoretic results associated with
Ramsey's theorem", J. Combinatorial Theory Y4 (1968), 125-1T5.

T. To finish our peper we now prove Theorem 2. First of all observe that Thecrem 2.
clearly holds for ¢ > %. To see this observe that, by the lemmas stated in 5, our
Gln; (% + 6):12) contains a subgraph G' of N > c,n vertices each vertex of which has
valency greater than N(1+8)/2. But then to every two vertices of G, there exist

SN > 6c1n vertices which are Joined to both of them. But then it is immediate that
every set y;, ..., ¥y, t =[c;n] of vertices is a Ktop(t) i.e. any two are joined

by vertex disjoint paths of length two. Thus Theorem 2 is proved for c > k.

Assume now that Theorem 2 is false. Let C be the upper bound of the numbers for
which Theorem 2 feils. In other words, for every € > O there is an infinite

sequence n, < n,<... and graphs G(ni; (c - s)ni) which do not contain a Ktop“') for
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g>n n;’, for any fixed n if ni>n(n, €), but no such sequence of graphe G(n; (C + €)n?)

exist. We now easily show that this assumption leads to & contradiction.

First of ell our assumption means that there is an infinite sequence of integers
B < ... 80 th.a.t. there is a graph G(n;; (C - 0(1)n2) the largest K c'p(z.) of which
satisfies !./n1 + 0 and that C is the largest number with this property. Further by
the trivial lemma stated in 5, we can assume that every vertex of our G has valency
not less than (2C ~ u(l)}nﬁ. Our assumption implies that there is & sequence n, * (o]
and £, + = go that our G(ni'. (c - o{l}nz) has the property that we can omit [n B, ]

i
of its vertices, so that in the remaining graph G' (n - [n B, 1= Gi. there are two
vertices which can not be Joined by a path of lensth less tha.n ki' To see this,
observe that if our statement would be false then for sufficiently small n every

set of [n n;’] = & gets of vertices of our G(u ) would be a K, (.9.)

To arrive at the contradiction let ¥y and Yo be two vertices of our G;_ which can
not be Joined by & path of length less than ki' Observe that every vertex of our G;_
has valency mot less than (2C - o(1) - "1}“ = (2¢ - o(:l.))n Denote by sm
respectively S{J), the set of vertices which can be Joined to Yyi» respecti\rely ¥po
with 1 but not with fewer edges. Clearly for every t < [ ] the two sets 1% ;_ 3
and Jgose‘” are disjoint. (si"}- ¥y s£°}= v,) (Othervise there would be @ path of

length less than ki Joining ¥ and are} Without loss of generality we can thus assume

(1.1 lsm| < -— » 18827 > (ac - o(1)n, -

From (T.1) we obtain that there is sn 2 £ r < t for which

(r) By
{7'2) |S 1 < m i
Let now G(r) be the subgraph of G spanned by the vertices oi’ S _.f_'” The

valency of every one of its vertices is at least (2¢ - o(1) - _.(_Y }n = (2C - o(1))n
(r) it (r) *

(since the vertices not in Gi which are Joined to & vertex of G\T) are all in Sl

which implies our statement by (7.2)).

The sequences of graphs G{rJI esteblish our contrediction. The i-th graph has by
(7.1) and (7.2) more then (2C - 0(1}):1 and fewer than -1 vertices each of which has
valency not less than (2C - o(1))nm, and the largest K, (r.) of it is o{n;’} This
contradicts the meximality propurty of C and hence T'heorem 2 is proved.
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