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Let G(n) be a graph of n vertices . G(n; i) a graph of n vertices and R edges .

f(n ; G(m)) is the smallest integer so that every G(n ; f(n ; G(m)) contains a sub-

graph isomorphic to G(m) . More generally let G 1 , . . . be a finite or infinite family

of finite graphs . f(n; G1 , . . . ) is the smallest integer so that every

6(n ; f(n; G1, .,, )) contains one of the Gk as a subgraph . Many papers have been

published in the last few years on the determination or estimation of these functions .

In one of my recent papers I give a far from complete list of papers dealing with

extremal problems in graph theory . Bollobás is about to publish a comprehensive book

on this subject which will also contain a very extensive list of references .

In this paper I first of all state a few of my favorite unsolved extremal problems .

Then I prove the following theorems :

THEOREM 1. Assume that G(n) does not contain a C2k+1 for 3 5 k 5 r . Then the independence

number of G(n) is greater than cln
l-1/r ,

Ck is a circuit of k edges and the independence number of G(n) is the cardinal

number of the largest set of vertices no two of which are joined by an edge .

K(m) is the complete graph of m vertices . Denote by K t (m) an arbitrary subdivision

of K(m) (i .e . a topological complete K(m) . Ktop(3) is simply a circuit) .

THEOREM 2 . There is a function f(c) > 0 so that every G(n ; Cc n2 ]) contains a K top(9.)

with

	

1 2 f(c)n;f .

Before proving the theorems we will state several related conjectures .

P. Erdös, Some recent progress on extremal problems in graph theory, Proc . sixth

Southeastern conference on combinatorics graph theory and computing 1975,Utilitas Math .

press, 3-24, Congress Num XIV. We will refer to this paper as I .

For further problems see my paper : Problems and results in graph theory and

combinatorial analysis, Proc. fifth British comb conference 1975, 169-192, Utilitas

Math. Cong . Nwn XV . I refer to this paper as II . For some historical remarks see

P. Erdös, Problems in number theory and combinatorics, Proc . sixth Manitoba conference

on numerical math, Congress Nwn . XVIII, 35-58 . For some further extremal and other

problems see my paper, Some recent problems and results in graph theory combinatorics

and number theory . Proc . seventh Southeastern conference . Ut. Math. press,3-14,
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(Congress Mum. XVIII) .

A weaker version of Theorem 2 was proved in: P . Erdös and A. Hajnal, On complete

topological subgraphs of certain graphs, Amt . Univ . Sci. Budapest, 7(1969), 193-199 .

Theorem 2 is stated as a conjecture in this paper .

1. Simonovits and I conjectured that If G is bipartite unless stated otherwise G is

always bipartite) then there is a rational number a, 1 5 a < 2 so that

(1 .1)

	

lim f(n; G)/na a c
a
, 0 < ca < W .

n=W

We are very far from being able to prove (1) . As a first step one should prove

that to every bipartite G there is an a so that for every e > 0 and n > n 0(e)

(1.2)

	

na e < f(n; G) < na+e .

(1.2) perhaps will not be very hard to prove .

We further conjecture that to every rational a, 1 5 a < 2,there is a G for which

(1.1) is satisfied .

P. Erdös and M. Simonovits, Some extremal problems in graph theory, Coll . Math .

Soc . Boljai 4, Combinatorial theory and it$ applications (19691 377 - 390, North Holland,

see also II .

Nothing like (1) holds for hypergraphs . This follows from a result of Szemerédi

and Rursa see II p . 179 .

For non-bipartite graphs the results of Simonovits, Stone and myself cleared up

the situation to some extent, though many problems remain .

C1]

	

P. Erdös and A . Stone, "On the structure of linear graphs", Bull . Amer . Math .

Soc . 52(1946), 108T-1091-

[21

	

P. Erdös and M . Simonovits, "A limit theorem is graph theory, Studia Sci . Math .

Hungar . 1 (1966), 51-57 .

2 . Define V(G) as the minimum valency (or degree) of all the vertices of G .

Put V1(G) = max V(G') where the maximum is taken over all the subgraphs of G . Simonovits

and I asked : Is it true that

(2 .1)

	

f(n: G) < c n3/2 if V1(G) = 2 3

We now expect that (2 .1) is false, but can prove nothing .

Assume V1(G) = r . A result of Rényi and myself implies f(n : G) > c

Define a1(r) and a 2 (r) as follows : For V1(G) = r and every e > 0 if n > n0 (e),

n2(1-1/r)
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nal(r)-e < f(n; G) < na2(r)+e

our result with Rényi implies al (r) 2 2(1 - l/r) . Is this best possible? Is it true

that for every r, a2(r) < 2 ? Unfortunately we do not know this even for r - 2 .

[1]

	

P. Erdös and A. Rényi, non the evolution of random graphs", Publ. Math. Net .
Hung . Acad. Sci . 5 (1960), 17-6T .

3 . Denote by Dn the graph of then dimensional cube, it has 2 n vertices and n 2n-1

edges, D2 - C4) .

Simonovits and I proved f(n ; D3) < c n8/5 . Probably the exponent 8/5 is best

possible, but we have not even been able to prove f(n ; D3 )/n3/2 a W .

Brown, V .T . Sós, Rényi and I proved

(3 .1)

	

f(u; C4) - (15 + o(1))n3 / 2 .

Let 9 be a pacer of a prime . We also proved

(3.2)

	

f(02 + 6 + 1; C4) 2 '(p3 + p) + p2 + 1,

perhaps there is equality in (3.2) . I proved in I that

(3 .3)

	

f(n; C4) s ' n3/2 + V
_ (~ + o(1))n/ .

I conjectured

(3 .4)

	

f(n; C4) = / n3/2 + V + o(n) .

It is not impossible that in (3 .4) the error term is 0(n;% ) .

K(u, v) is the complete bipartite graph of u white and v black vertices . Kövári,

V .T . Sós, P . Turin and I proved

(3.5)

	

f(n ; K(r, r)) < e n 2-1/r
.

Very likely the exponent in (3 .5) is best possible . For r = 2 this is implied

by (3.3) and Brown proved it for r = 3, but for r > 3 nothing is known .

Denote by G - e the subgraph of G from which the edge e has been omitted .

Simonovits and I proved

(3.6)

	

f(n; D3 - e ) < c n3/2

and I proved

(3 .T)

	

f(n; K(r, r) - e) < c n

Simonovits and I tried to characterize the graphs G with the property that for

every proper subgraph G'
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(3.8)

	

f(n; (;')/f(n ; G) + 0 .

We were of course unsuccessful, but in view of (3 .6) and (3 .7) it seemed to us

that highly symmetric graphs are likely to satisfy (3 .8) .

Our paper with Simonovits is quoted in 1 .

[1]

	

W.G . Brown, "On graphs that do not contain a Thomsen graph", Canad. Math .

Bull . 9 (19óó), 281-285 .

C2]

	

P. Erdös, A. Rényi and V .T . Sós, "On a problem of graph theory", Studia. Sci .

Math. Hung . 1 (1966), 215-235 .

131

	

T. Kövári, V.T . Sós, and P . Turn, "On a problem of K.Zarankievcz,' Coil .

Math . 3 (19514), 50-57 .

C4]

	

P. Erdös, "On an extremal problem in graph theory", Coll. Math . 13 (1964),

251-254 .

4 . We have

(14 .1)

	

2 5 lim f(n; c3 , c14)/n3/2 5 / .

The lower bound is a result of Reiman and E . Klein (Mrs . Szekeres) . The upper

bound is (3 .1) . Determine the value of the limit in (14 .1) . I never managed to get

anywhere with this question and cannot decide whether it is really difficult or

whether I overlook a simple argument . I was never able to improve (14 .1) .

More generally, let G1 , . . . , Gk be a family of graphs some of which are bipartite .

I hope and expect that

(4 .2)

	

lira f(n ; G1, . . ., Gk
)/na

= c
n=-

Assume that the conjecture (1 .1) holds and let a i be the rational number for which

lim f(n; Gi)/nai = c l , 0 < ci < m .
n-

Perhaps a = min ai . I have of course no real evidence for this . I am sure that
l5i5k

the situation changes completely for infinite families of graphs {G k }, 1 5 k <

At the moment I do not know an example of an infinite family of graphs {Gk}, 1 5 k < m

so that there is an a with f(n ; Gk)/na + - for every k, but for some 6 < a

(4 .3)

	

f(n; Gl, . . . )/n 8 -* 0 .

Probably the family of graphs 0 with V1(G) z 3 satisfies (14 .3) for every S > 1 . This

is an old conjecture of Sauer and myself . If true then, since for these graphs

f(n ; G) > c n4/3 by our result with Rényi stated in 2, this family would have the
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above property .

Our problem with Gauer is discussed in I . p . 10 and II p. 1T8 .

[1]

	

I . Reimann, "fiber ein Problem von K . Zaranhievicz, Acta Math. Acad. Sci .

Hungar, 9(1958), 269-278 .

5 . As far as I know G . Dirac was the first to investigate f(n ;

f(n; K top(3) = n and G. Dirac proved f(n ; Ktop(4)) = 2n - 2 .

f(n; Ktop(5)) = 3n - 5 . It is surprising that this attractive

open . Mader proved that f(n ; Ktop(m)) S 2m2n, he conjectured

(5 .1)

	

f(n; Ktop(m)) < c m2n .

(5 .1) is probably rather deep . It is easy to see (as was of course known to Mader)

that the conjecture if true is best possible - apart from the value of c .

Theorem 2 can be considered as proving (5 .1) for large values of m, but it is

very doubtful if it will help in proving (5 .1) . Before we prove our theorems we

give a preliminary discussion and state some conjectures, same of which are in my

opinion more interesting than the theorems . First of all it would be of interest to

determine the largest f(c) for which Theorem 2 holds . I am sure that it will be a

continuous strictly increasing function of c . It is not hard to prove that

f(c) + 0 as c -0-0 and f(c) -o-was c + / .

f(c) explicitly .

Ktop(m)) . Trivially

He conjectured

conjecture is still

It would of course be interesting to determine

I am sure that the following strengthening of Theorem 2 holds .

Conjecture 1 : Every G(n ; [cln/7) contains [c 2n/7 vertices x1 , . . ., xr , r = cc2n/ 7

so that xi and xj , 1 5 1 < j 5 r are joined by vertex disjoint paths of length 2 .

This conjecture is clearly connected with the following problem of perhaps

greater independent interest .

Let ISI = n, Ak c 8, JAk J > c n, 1 5 k 5 m . Determine the largest f(n, m, e, c)

so that there always are sets Aki , 1 5 i 5 f(n, m, c, e) for which for every

15 i1 <12 5f(n,m, c, e)

jAki1 n Aki2 I > FM .

e > 0 can be chosen as small as we wish but must be independent of n and m . Observe

that if c > 11 then for sufficiently small e = e(c), f(n, m, c, e) = m . Thus the

problem is of interest only for c 5 31 .

The connection between this problem and the conjecture is easy to establish .

First of all it is well known and easy to see that every G(n ; c n2 ) contains a



subgraph G(N), N > c1 n each vertex of which has valency greater than (2c + o(1)N .

(To prove the lemma omit successively the vertices of smallest valency) .

Let the vertices of G(N) be xl , . . . 3r, . The sets Ak are the vertices joined to xk .

It is immediate that Conjecture 1 is a consequence of

Conjecture 2. For n = m and e = e(,c) sufficiently small

(5 .2)

	

f(n, m, c, E) > n nh

for some n = n(c, E) > 0 .

I can not even disprove

(5 .3)

	

f(n, m, c, e) z n m

for m < n and n = n(c, e) . On the other hand I can not prove (5 .3) for c = 1 even

for c = / .

Perhaps for every m 5 2n and e = E(n)

f(n, m, c, e) > m1-n
(5 .4)

18

(5 .4), if true, is best possible . To see this, let the A's be all subsets of S having

at least cn elements, and let m = 2n -

	

I (n) . It is easy to see that in this case

(5 .4) can not be improved .

	

Osi<cn

These conjectures have many connections with other interesting questions in

graph theory . First of all an old conjecture of Kneser states as follows : Let

I SI = 2n + k The vertices of G are the ( 2a+k ) subsets of size n of S . Join two

vertices if the corresponding n-sets are disjoint . Prove that the chromatic number

)(G) of G is k + 2 . This conjecture has recently been proved by Lovász and Báráry in

a surprisingly simple way . Their proofs will appear soon .

Define now a graph G(n, m, e) as follows . Its vertices are the m sets Ak c S .

Two A's are joined if JAk
1 n Ako ' < En. Determine or estimate X(G~n, m, e)

) . (5 .2) would

follow from X(G(n, m, e)) < c n' . Perhaps very much more is true e .g . X(G
(n, m, E)) <

c1(log m) c2 .

Ramsey's theorem can be used to obtain weaker inequalities than (5 .2) . Let

1/r > c > 1/r+l. A simple argument shows that for sufficiently small e the largest

independent set of G(n~ m, E) is at most r . (G is the complementary graph of G, i .e .

two vertices are joined in G if and only if they are not joined in G . A set of vertices

is independent if no two of them are joined by an edge) . Thus by a well known theorem

of Szekeres and myself it contains a complete graph of size > c n l/r . (for r = 1 the

whole graph of course is complete) . In other words (5 .2) holds with 1/r instead of '/ .

Now we show that it is possible to obtain considerably stronger results . First



of all assume 1/3 < c < h . Clearly in our graph the largest independent set has size

2, but we can easily get some further information . Let Al,	A5,IAiI > en,
c > 1/3 be any five of our sets . Then a simple argument shows that there is a set

S1 C S ,IS1 I > en which is contained in three of the A's . In other words every five

points of our graph spans a triangle . Thus the complementary graph of our graph contains

no triangle and no pentagon . But then by Theorem 1 it contains an independent set

of size > c n4/3 or our graph contains a complete graph of size greater than cn 2/3 .

More generally assume IAkJ > n/r+l (1 + n) for some n > 0 (Ak c S, ISI = n,

1 5 k 5 m). Join two sets Ak1 and Ak2 if IAkl A
Ak2 I > en, e - e(n) is sufficiently

small . Then these graphs belonging to the set system the graphs depend on e has the

following property : For every fixed t = t E and 15 t every set of k(r + 1) vertices

contains a k(L + 1) . I hope that for sufficiently large t = t(r, 6) this condition

implies that our graph contains a complete graph of size > m l-a . (For Conjecture 1 it

suffices to prove this for d = ;%) .

C17

	

G. Dirac, "In abstrakten Graphen vorhandene vollstandige 4-Graphen und ihre

Unterteilunge", Math . Nachrichton 22 (1960), 61-85 ;

for a very simple proof see :

121

	

P. Erdös and L. Pósa, "On the maximal number of disjoint circuits of a graph",

Publications Math . 9 (1962), 3-12,see p . 8 .

131

	

W. Mader, "Homomorphieeigenxhatten and mittlere Kantendichte von Graphen",

Math. Annalen 174 (1967), 265-268 .

141

	

P. Erdös and G. Szekeres, "On a combinatorial problem in geometry,

Compositio Math . 2 (1935), 463-470 .

6 . Now we. prove Theorem 1 . Let the vertices of our graph G(u) be x1 , . . ., m.
Denote by S i the set of those xj's which can be joined to xl by a path of length i but

not by a shorter path (SO is defined to be xi ) . Observe that the set Si is independent

of the set jgi+2 S j (i .e . no vertex of Si is joined (by an edge) to a vertex of jYi+2
Sj ) .

Observe further that for 1 5 i 5 r, si is an independent set. For if two vertices

of S i are joined then our G(n) contains an odd circuit of size 5 21 + 1, which contradicts

our assumptions . Observe next that for some i, 0 5 i 5 r - 1 1

ISZI

	

< nl/r
(6 .1)

sT1lr
(6 .1) follows immediately from the fact that Sit n Si2 = ¢ and that IiuO si ) 5 n .

(In fact we can assume I i.4

	

< n for if not then max Isi l z (n-7)/r which implies
15i5r

19
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Theorem 1) . Let now i a 0 be the smallest index satisfying (6 .1) . We construct our

large independent subset of G(n) as follows : . The vertices of S i will be in our

large independent set . G1 is the subgraph of G spanned by those vertices of G which

are not in ;ul S, . Clearly by (1) and the minimum property of i

(6.21

	

i1MO Si d < (nl/r + 1) IS i l

or G1 has at least n - (n"r + 1) ISiI vertices and no vertex of S i is joined to any

vertex of G1 . Repeat the same construction for G1 and continue until all vertices

are exhausted. The union of the S i belonging to the Gi will be our large independent

set of size > (1 - n)nl-1/r for every n > 0 if n > no (n) . This last statement easily

follows from (6 .1) and (6 .2) .

Probably the exponent 1 - 1/r cannot be improved this is known only for r = 1 .

I expect that
cnl-1/r

can be improved by a logarithmic factor but this also is known

only for r = 1 .

Assume now that G(n) has girth greater than 2r + r . (i .e . G(n) has no circuit

of length 5 2r + 2) . I cannot prove more than Theorem 1, i .e. I can only show

that G(n) has an independent set of size greater than
cnl-1/r . I wonder if the

exponent 1 - 1/r is best possible . The case r = 1 is perhaps most interesting,

i .e . G(n) has no triangle and rectangle. Is there an independent set of size > n 35+e ?

I do not know .

[1] P . Erdös, "Graph Theory and probability II", Canad J. Math . 13 (1961), 346-352 .

For a penetrating and deep study of extremel problems on cycles in graphs see ;

[2] J .A . Bondy and M. Simonovits, "Cycles of even length in graphs", J. Conbinatorial

Theory 16B (1974) 9T-105 .

[3] J .E . Graver and J . Yackel, "Some graph theoretic results associated with

Ramsey's theorem", J. Combinatorial Theory 4 (1968), 125-175 .

7 . To finish our paper we now prove Theorem 2 . First of all observe that Theorem 2 .

clearly holds for c > ' . To see this observe that, by the lemma stated in 5, our

G(n ; (h; + 6)n2 ) contains a subgraph G' of N > c
1n vertices each vertex of which has

valency greater than N(1+6Y2 . But then to every two vertices of G1 there exist

6N > Sc1n vertices which are joined to both of them . But then it is immediate that

every set yl , . . ., yt , t = [6cln] of vertices is a K(t) i .e . any two are joined

by vertex disjoint paths of length two . Thus Theorem 2 is proved for c >k.

Assume now that Theorem 2 is false . Let C be the upper bound of the numbers for

which Theorem 2 fails . In other words, for every e > 0 there is an infinite

sequence n1 < n2< . . . and graphs G(ni ; (C - e)ni) which do not contain a Ktop(9.) for
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k > n n/, for any fixed n if n i > n(n, s), but no such sequence of graphs G(n ; (C + s)n2)

exist. We now easily show that this assumption leads to a contradiction .

First of all our assumption means that there is an infinite sequence of integers

nl <
. . . so that there is a graph G(ni ; (C - o(l)n2 ) the largest Ktop(L) of which

satisfies R/ni -~ 0 and that C is the largest number with this property . Further by

the trivial lemma stated in 5, we can assume that every vertex of our G has valency

not less than (2C - o(l))ni . Our assumption implies that there is a sequence ni -1- 0

and Ri i = so that our G(ni ; (C - o(l)n2) has the property that we can emit Inini 7
of its vertices, so that in the remaining graph G'(n i - In ni1) = Gi there are two

vertices which can not be joined by a path of length less than ki . To see this,

observe that if our statement would be false then for sufficiently small n every

set of In ni7 = R sets of vertices of our G(ni ) would be a Ktop(t) .

To arrive at the contradiction let yl and y 2 be two vertices of our Gi which can

not be joined by a path of length less than k . Observe that every vertex of our G'

has valency not less than (2C - o(l) - rti)ni = (2C - u(l))ni . Denote by SO) ,

	

i

respectively S2~ } , the set of vertices which can be joined to y i , respectively y2 ,

with i but not with fewer edges . Clearly for every t 5 [- 2 1] the two sets ~h S1'}
and 0S

2 ''
are disjoint . (S10}= y1 , S20)= y2 ) (Otherwise there would be a path of

length less than ki joining yl and 72 ) . Without loss of generality we can thus assume

L'(7 .1)

	

IS(t)I, ,
Isle)I > ( 2c - o(l)ni .

From (7.1) we obtain that there is an 2 5 r < t for

n
(7 .2)

	

ISlr)I
< 2 til

Let now Gir)
be the subgraph of Gi spanned by the vertices of ~U S1'i} . The

valency of every one of its vertices is at least (2C - 0(1) - 2( - )ni = (2C - o(l))ni

(since the vertices not in G i which are joined to a vertex of GJr/ are all in S1
which implies our statement by (7 .2)) .

The sequences of graphs 0 (r) establish our contradiction . The i-th graph has by
n .

(7 .1) and (7 .2) more than (2C - o(1))n i and fewer than
2 vertices each of which has

valency not less than (2C - o(1))ni and the largest Ktop(R) of it is o(ni) . This

contradicts the maximality property of C and hence Theorem 2 is proved .

which
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