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Introduction

Let (G,+) be an Abelian group of order n. Let us choose k elements
g1, 92 , . . . , gk from g and denote by R(g) the number of representations of the
element g-c G in the form g = s 1 g1 + E2g2 + • • • + skgk : here and throughout the
paper each e, takes one of the values 0, 1 . Set d(r) = card {g E G : R(g) = r} .

Let us suppose that the elements g1, g2, . . . . gk are chosen randomly and
independently from G : each element has a probability 1/n of being chosen . We
are interested in the distribution of the values of R(g) when 2k is approximately
n. We write A=2 k/n, the mean value of R(g) .

Problems concerning R(g) have been studied in [1]-[8] . We do not assume
familiarity with these papers but we shall need to quote results from them .

In our main result we impose the following condition on G :
Condition A

For each fixed positive integer 1, the number of elements of G of order 1 is o(n) .
Our main theorem is as follows :

THEOREM 1 . Let G satisfy A, and k = (log n/log 2) + O(1) . Then for each
fixed integer r , 0, we have

d (r) -- ne` Alrrr
with probability -4 1 as n -> -.

COROLLARY. Let G satisfy A, and let n - -, k - - together in such a way
that with probability - 1, every g E G is represented in the required form, i .e .
d (0) = 0 . Then k ---> - .

We can say rather more if G is cyclic, or more generally if we are given any
specific bound for the number of elements of each order . Thus we have

THEOREM 2 . There is an absolute positive constant b such that if G is cyclic
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and n -+ -, k - - together in such a way that A < b log log n,' then with probability
-> 1~ d(0)>0 .

In the opposite direction, Erdös and Rényi [2] proved, independently of any
condition on G, that if A/log n - arbitrarily slowly as n -, then d(0) = 0 with
probability - 1 . It would be very interesting to know to what extent this is sharp .

Regarding the relevance of Condition A, we think that it is necessary for
Theorem 1 . We will show by an example that with no condition on the orders of
the elements, both our theorems become false . The reason for this is as follows .
The distribution of the values of R(g) is closely connected with the moments

E JR- (g) : g E G} and with the expectations µ,„ of these moments . Now it is not
difficult to show that for m < 3, µ„, does not depend on the structure of G, in fact
K . Bognár [1] gave the formulae

k
tL2 = + 2

k%1 -
n

	

n),

µ3=n2+3 •
nk

(1-n)+2k' 1 n 111 n l .

However, for m -- 4, µm depends on the orders of the group elements . In
particular, let G be the direct sum of t cyclic groups of order 2, so that n = 2` .
Bognár evaluated µ4 precisely, all we need here is that in this case

µ 4 --n{X4 +7X3 +7X2 + X1,

whereas according to Theorem 1, the coefficient of A 3 on the right should be 6 .
This shows that some condition on the structure of G is needed . The same
example shows that Theorem 2 also depends in some way on the group structure .
For as R. J. Miech [7] noticed, G can be regarded as a vector space over Z 2 in
this case, moreover R (g) takes just two values . In fact E t g, + E2g2 + * * * + Ekgk
generates a subgroup of order 2v say, and on this subgroup, R (g) = 2`- v . But then

(R(g)-A)2= 22k-t(2` - v -1) .
s

If d(0) > 0, we must have v < t so that the right hand side is at least 22k = nA 2

whereas from the formula above for µ2 , the expected value of the left hand side is
2k(1-1/n) < nA . It follows from Markoff's inequality that the probability that
d(0) > 0 is less than 1/A . Hence we have immediately

THEOREM 3 . If G is a direct sum of cyclic groups of order 2 and n
A --> - together, then d(0) = 0 with probability -> 1 .
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It is interesting and rather surprizing that in Theorem 1, the distribution of
d(r) i5 (asymptotically) binomial, just as if all 2' elements El 91+E2g2+ +Ekgk
had been chosen independently .

We would like to mention the following purely combinatorial problem : let G
be a direct sum of t cyclic groups of order 3 . What is the least value of k such that
there exist 91, 92, • • • , gk giving d(0) = 0?

Most of our notation is introduced as it is needed . We define here :

w(G, I)=card {gE G : lg=0G 1
w*(G, I) = max {ce(G, P) : 1'-- 11 .

G denotes the group of characters X acting on G and Xo denotes the principal
character .

LEMMA 1 . Let K be an h-dimensional subspace of Rm and C`" an m-
dimensional hypercube. Suppose, that K contains 2' vertices of C`" . Then we can
choose an origin at a suitable corner of the hypercube such that these vertices are the
vectors E 1V 1 + E2V2+ • • ' + EhVh, where the v; are orthogonal and are themselves
vertices . Moreover, for a fixed origin, each set of v,, v 2 , . . . , v,, gives a different set of
2h vertices .

Remark. It was shown in [5] Lemma 1 that K cannot contain more than 2'
vertices of C' . The present lemma characterizes the extremal configurations .

Proof. This is by induction on m. The result holds for m = 1 and we assume it
holds for m -1 . We may further assume that h > 0, otherwise we choose O =
K n Cm and the result is trivial .

Let us begin by choosing O in K n Cm and labelling the other vertices of C -
with coordinates (E,, 621 . . . , E,,,) . This choice of O is somewhat arbitrary and may
need revision .

Let H; and H, be the hyperplanes with x; = 0 and 1 respectively. Thus C`" is
the space between two (m -1)-dimensional hypercubes C in H; and C in H; .
Next H, n H2 fl . . . n H„, = 0 so we may assume j fixed so that KO H, . Plainly
KO H; . Let us write L = K n Hi so that dim L = h -1 . From the lemma men-
tioned in our remark above, L cannot contain more than 2 h-1 vertices of C.
Hence K n H, is non-empty and is of the form L +u. Again L +u cannot contain
more than 2h-1 vertices of C' and to account for all 2' vertices in K n c-, there
must be equality in both cases .

We apply the induction hypothesis to the intersection of L and C in the
(m -1)-dimensional space H; . We choose a (possibly) new origin so that L n c is
just the set of vectors E,V I +E2V2 + • • •+ Eh_lVh_1 • The vectors v; are orthogonal so
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they are a basis of L . Let e be the verte ;: in K n C' nearest to the new origin .
Thdn V I , v2, . . . . V h _ t and a are a basis for K, and we have to consider when
y=61VI+~J2+ •'-+ &-,v,-,+~e can be a vertex of C'r` .

With respect to the new origin, relabel the vertices, of C`" with coordinates
(S1, 82, . . . , Sm ), each S; = 0 or 1 . The vertex v i has coordinates Oil, 5i2	Sim )
where Si; = 1 for at most one i, by the orthogonality of the v i 's . As eLZ L, if e has
coordinates Ohl, She, - - - , shm) there must be at least one j for which Shy = 1, Si; _
0 for i < h. Thus if y is a vertex, we must have 6 = o or 1, and if ~ = 0 y lies in
L n c so that ~, = E i , for i < h . Next, let 6 = 1 and suppose one of the 6i , 6, say, is
negative, and that y is a vertex . Since v, is orthogonal to the other v i 's and y has
every coordinate 0 or l, we must have 6, = -1 and 8i ; < Sh; for every j. But then
e - v, is a vertex of C' and it is nearer than a to the origin . This is a contradiction,
and we conclude that ~i % 0 for every i < h . Now suppose y is a vertex, and ~, (say)
is positive. Then v, is orthogonal to e, (otherwise y would have some
coordinates = 2), and in fact ~, = 1 . Hence for each i < h, either v i is orthogonal to
e and t•i = E i , or ~i = 0. We have to find 2h-I vertices y with = 1 and so e is
orthogonal to all the v i . The result follows if we write e = vh, 6 = Eh-

To prove the last part of the lemma, we suppose there is an alternative set of
vertices vi v21, . . . , V ;, giving rise to the same set of 2' vertices. Then we have
Vi=E iIV1 +Ei2V 2 + --- + EihVh and so vi is just the vector sum of some of the v, s .
But the v; are orthogonal, hence these sums must be disjoint, and as there are the
same number of v, and v,, each sum has just one term . Hence the vi are just a
permutation of the v ;.

LEMMA 2. Suppose that d r >- 0 for r = 0, 1, 2	t > 0, and that for 0 , m
M we have

drrm -e-' ~ i r'
—0

	

r=0 r

Then we have

r!

for each r < M.

Proof. Choose T in the range r < T< M and set

m •

--2M(M+1) m
Rm+ ÁM(1+A)

m=o

	

r!(M-r)!

Q(x) -Q(x ; r,T)= ~ c,,,xm=T~(~(-1)T r11'(x 1),
m =0

	

1=()

the factor (x - r) being omitted from the product . Thus Q(r) = 1, Q(j) = 0 for



452

0 , j s T, j r, and sgn Q(j) _ (-1)T- r for j > T. Since T < M, we have
1

I diQ(j)-e-' i
A

Q(j)
j=0

	

j=0 j!

and by Cauchy's formula,
2°

Icml_
1
_

Jo
IQ(e") J d9_- (~(T+1)_2T(T+1) .

Next

e

	

iQ(j)-e- r!

	

a j>Tr!(T-r)!(j-r)(j-T-1)!

and putting these inequalities together, we get
r

j=0 r!

Now Y_ diQ(j) is either , d„ or --d„ according as T=- r(mod 2) or not, and we are
free to choose T = M or M-1 . Using both these values of T, we obtain the result
stated .

LEMMA 3. Let p(m, h) denote the number of partitions of m distinct objects
into h disjoint non-empty sets, the ordering of those sets and of the objects. within the
sets being immaterial . Then we have the identity

I P(m, h)x h = e-a

	

1
m
A j.ih=1

Proof. Put A = ey and denote the function on the left by O m (y) : In view of the
relation p(m, h) = hp(m -1, h)+ p(m - l, h -1) we
eyo,,,_,(y) . It follows by induction that

m
<~m(y) exp (e Y ) = dym exp (ey)
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T

m =O

T

	

AT+1
<2T(T+1) ~ P +

M=O

	

ri(1 +1-r)!

and we expand exp (ey) in powers of ey and differentiate term by term .

Proof of Theorem 1 . We use the notation E(X) or simply EX for the
expectation of the random variable X. The main step in the proof is to find
asymptotic formulae for

gm =E1 R-(g) and o' = E(J R - (g) - µm)2
s

	

s

subject to condition A .

have ¢„,(y)=O ;._,(y)+



µm = n m-1

/
Mm(G, N)~ I N-)

n° where

Let us define

1
Mm(G N)Nk

N

1

	

m
µm - m-1

	

M(G, 2h)2hk
nm-l
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We recall from [3] Lemma 2 the formula

1
µm =

	

-1 Y L . . . ~ Nk(X1, X2,
. . . . Xm)

n

	

x, x2

	

X-

where the sums are over all X E G except in the innermost sum : here the dash
indicates that X1X2 ' ' ' Xm = Xo so that really this sum has just one term .
N(X1, X2,

	

, Xm) is the number of solutions of Xi'X22 . . . Xm = Xo so that 2 ,-< N,
2'n. We rewrite this in the form

where M.(6, N) = card {X1, X2, • • • , Xm : X1X2

	

Xm = Xo and N(X1, X2) . . . , Xm) _
N}. We proved in [3] Lemmas 1, 2

log N
- log 2 ] .

r
l0

T=T(m)=max
logN

l 2+
logN

[ l0
	 2] :2_N~2`",N~2"~ .

g

	

g

All we need is that T < 0 for every m ; in fact we
(log 2) - ' log (1-2-m) . Then we have

m\
C n`

	

/ N
k-(1ogn)/(log2)N N

have T(m)=

and the right hand side does not exceed n '+'r22m ,k m

It remains to consider M.(G, 2h) . As G and G are isomorphic, this is equal to
Mm (G, 2 h ), the number of sets 91, 92, . . . , gm such that g, + g, + + gm = 0, and
such that exactly 2' equations

E,.1g1+E,.2g2+ . . .+E1,mgm=0c,

	

(1,t-2h)

are satisfied . Let S denote such a system of N=2h equations, W, (G, S) the
number of sets g 1 , g2 , . . • , gm satisfying precisely these equations, and no others,
and W*,(G, S) the number of sets g,, g2, . . . , gm satisfying these equations and
possibly others as well. We have Mm (G, N) _ Wm (G, S) where the sum is over
all systems S of N distinct equations, also

Wm (G S) = W(G S)-Y W*(G S')+I W*(G S")- •

where S S', S- S°, etc., and S', S", . . . run through systems of N+ 1, N+2, . . .
equations . We always have Wm (G, S) = Wt(G, S) - 01: W*„,(G, S') for some 0 =
O(S) E [0, 1] .
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With each equation in a given system S we associate the vector u, a Rm with

coordinates {E,.1, E t 2 i . . . ,E,,,,} . Thus u, is a vertex of the hypercube C" . Let K be

the subspace of R' spanned by the vectors u, . Since K intersects C' in 2'
vertices, we have dim K > h, and we distinguish the two cases dim K > h, dim K =

h .
Suppose then that dim K = l > h . We can find l of our vectors, say

u'1, U21' . . , u, which are a basis for K, and we have to solve the equations
E,,191+Et2g2+ • • • + E,,mg„,=OG(l--t_1) . The matrix {E ;,; 1--1--1,1<j-m} has

rank 1 and so we can find l independent columns, say the first 1. It follows from
Cramer's rule that given g,+1, g,+2 , . . . , gm, of which there are n`"-` choices, Og; is

determined for each i _ I where 0 is the determinant JJE ;JJ (1, i , l, 1, j 1) . It

follows that W.(G, S)-- Wt(G, S)-- nm-`w(G, A) and so

m
Mm (G, 2h) - I 'Wm(G, S) < (2h) nm-h-lw*(G, ml),

where the dash denotes that the K associated with S has dimension h. Let S' be a
system of N+ 1 equations, S'- S. Plainly the K' associated with S' has dimension
exceeding h, moreover when we sum over S each S' has to be considered N times,
and so < N times in the restricted sum above . Thus

If K is a subspace of Rm intersecting C' in the maximum number 2 h of vertices,
by Lemma 1 there exists vertices V 1 , V 2i . . . , Vh which are orthogonal and such
that the u, associated with S are just ElV1+E2V2+* * *+E hVh in some order. We
relabel so that w ; = u, for i , h thus v; has coordinates {E l, "i,2, . . . , E .J . Since S
contains the equation g, + 92 + • • • + gm = OG, one of the u,'s is the vertex of Cm
opposite the origin : this vertex must be v l + V2 + • • • +v,, . Therefore for every
j -- m, there is exactly one i -- h such that E,; = 1 . Hence the number of ways of
choosing v,, v2 , . . . , Vh is p(m, h), and each choice gives a different S . Moreover,
each of these special systems S has exactly nm-h solutions, for the equation
corresponding to v; determines one group element for each i < h, and the others
may be chosen freely. Hence

M_ (G, 2h)-~'W*_(G, S)

~'W-(G, S)=p(m, h)nm-h

and putting all our inequalities together, we get

m
gm - n

	

p(m, h)A'
h=1
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(2h + 1) (2h ) n'" -`w*( G, m!) .

-22-k-(n"'+(2m+1)w*(G, mi))



h=1

d(r) - ne-'-r .
A

!

m

m
R-(g)-n ~ p(m, h)~'

g

	

h=1
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It follows that if G satisfies Condition A, we have for each fixed m that
l

p(m, h)~ ' as n

	

~.

We need an upper bound for o-. and we begin from the formula
/

	

\ z

	

1
µm gym = EI Rm(g) I = nzm-z E Nk(X1, Xz, . . . Xm, Xi, Xi, . . . X„,)

/s
where the sum is over all sets of characters X1, Xz, • • • , Xm, X11 Xz, • • • , Xm satisfy-
ing both XiX2 Xm = Xo and X' X2 ' ' ' X:n = Xo • This is proved by the method
used in [3] Lemma 2 . the calculation that remains is very similar to the one for ttm
and we do not give the details : the conclusion is that provided G satisfies
Condition A, we have o-. = o(n) for each fixed m .

We apply Tchebycheff's inequality and deduce that for each fixed m there is a
function 0.(n) such that P. (n) - 0 as n - and such that with probability 1
as n -, we have

< no_ (n)

M

	

M

Mn --, ~ ym (n) 0,2M(M+1) ~ P.(n) O,
M=O

	

m =0

--n.2M(M+1) ~ 0.(n)+n . A M(1+~)
M=O

	

r!(M- r)!

(1)

Let us denote by -y-(n) the probability that this inequality is false, so that
y. (n) 0 as n - cc . By a familiar diagonal argument, we can find an M= Mn
such that simultaneously :

as n - . Therefore with probability - 1 as n

	

(1) holds for every m , M
and so by Lemma 2, we have

for each r < M. For any fixed r, ultimately M> r, moreover since A = O(1), the
right hand side is o(n) . This completes the proof .

Proof of Theorem 2 . When g is cyclic we have w *(G, m!) _- m! and therefore

tLm - n I p(m, h)A' ,2zm,k'n(n"'+(2m+1)m!)
h=1

Recall that T(m) _ (log 2) -1 log (1-2-m) < -2_m/log 2 . Hence there exists an
absolute constant C such that the left hand side does not exceed Cnkm exp (-
aJlog n) provided 2`n , Jlog n : here a = (log 2) -1 -log 2 . In a similar way, it can
be shown that provided 4'n < -,/log n we have o ,' _- C'n zazm exp (-aJlog n). Let
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us set (3,„(n)=2CnA- exp (-3a ./log n). Then we have

y„,(n)=prob
\

prob
\

m

R m (g) - n ~ p(m, h)A'
g

	

h=1

R ' (g) - gm

1

	

\
C'C-2 exp - 1 a,/log n l .

by Tchebycheff's inequality. Let / M=M, be the greatest integer such that
4" -- ./log n, and suppose that A" t -- exp (q a l

	

) . Then we have
M

	

M

M-°°, ~ ym(n)-->0,2" (M+1) ~ 0.(n)-0
m =0

	

m =0

as n - - . Therefore with probability - 1 as n

	

we have by Lemma 2 as
before that

M

	

AM
ld(0)-ne -"1-n2m(M+1) ~ 0.(n)+nMi (1+A) .

Let us suppose that d(0) = 0 . Then we have

Crt ' exp ( -1 a./log n l l

\ M

e-"--C"(logn) exp -3aJlogn'+ i (1+A)

l3m(n»

for a suitable absolute constant C", and if A < M/4, this is a contradiction if n is
large enough . Thus d (O) > 0, indeed d (O) - ne -" . This proves the theorem, and
gives 1/16 log 2 as a permissible value of b .
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