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Abstnwt-tit C” denote the graph with vertices @I,. . . ,e,,), ei = 0,i and vertices adjacent if they differ in 
exactly one coordinate. We call C” the n-cube. 

Let G = G., denote the random subgraph of C” deiined by letting 

Prob(IijlEG)=p 

for ah & jE CR and letting these probabilities be mutually independent. We wish to understand the 
“evolution” of G as a function of p. Section 1 consists of speculations, without proofs, involving this 
evolution. Set 

f&) = Prof (G,, is connected) 

We show in Section 2: 

Limf&)=Oifp<O.5 
n 

e-‘ifp=0.5 

1 ifp>os. 

The first and last parts were shown by Yu. Burtin[l]. For completeness, we show all three parts. 

1. SPECULATIONS 

We are guided by the fundamental results of A. Renyi and the senior author [2] on the evolution 
of random graphs. We think of p increasing (in time, perhaps) from p = 0 to p = 1 and Gng 
evolving from the empty to the complete graph. Of course, G is not a particular graph but a 
random variable. We say that p = p(n), G = Gn,p(n) has a property I if 

Lii Prob (G satisfies I’) = 1 
n 

and does not have property I’ if the above limit is zero. ErdGs and Renyi noted that for many 
interesting monotone graph theoretical properties (e.g.; connectedness, planarity) there is a 
threshold function f(n) so that if p(n) = w(n)), G does not have I and if f(n) = Of&)), G does 
have I’. We say, informally, that property I appears at p = f(n) if f(n) is a threshold function for I’. 

At first, G consists of nonadjacent edges. Threshold functions for the appearance of small 
subgraphs are relatively easy to compute. For e fixed, connected subgraphs with e edges appear 
at p - 2-“Ic+q’! For such p the largest component has (e + 1) points and consists of a path of 
length e. We are most intrigued by the sixes of the components of G when p reaches O(n-‘). 

Let p = Ah, A < 1. The degree of a point is approximately Poisson with mean A. The 
component containing a fixed point resembles a Galton-Watson process. In each generation, 
each active member (point) spawns (is adjacent to) X new members where X is Poisson with 
mean A. For A < 1 the Galton-Watson process “dies” with probability one and the size of the 
component containing a given point is, in expectation, (1 - A)-‘. The size of the largest 
component is more dithcult as one must consider 2” not quite independent almost Galton- 
Watson processes. 

With A > 1 the nature of G changes dramatically. (This is the “double jump”) of[12]). Now 
with probability q(A) > 0 the Galton-Watson process does not stop. Then (1 - q(A))2" points 
are in “small” components. What of the remainder? In particular, will there be a component 
with (q(A) + 0(1))2” points? What is the size of the second largest component? 
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As A increases the number of small components decrease. Perhaps there is a giant 
component at h# 1 + E or perhaps the large components merge later. Somewhere between 
p = (1 + ~)/n and p = o( 1) the medium size components disappear. 

When p becomes constant, independent of n, there is one giant component and many small 
components of bounded size. As p increases the small components merge into the giant 
component until only isolated points remain unmerged. Total connectedness is achieved at 
p = 0.5, as shown in the next section. There is a precise result: 

Set p = 0.5 + d2n 

Lim Prob ( Gn,p is connected) = eYL. 
n 

2. CONNECTEDNESS 

In this section we prove the Theorem stated in the introduction. Let g,,(p) be probability 
that G contains isolated points. For i E C” we define a random variable 

Xi = 1 if i is an isolated point of G 

0 if not 

and set X = & Xi, 

the number of isolated point of G. As each i E C” has degree n in C” 

E(Xi) = (1-p)“. 

We set 

p =2”(1-p) 

so that, by linearity of expected value, E(X) = p. We calculate the second moment applying the 
formula 

Var (X) = z Var (X;) + 2 Cov (X, XJ) 
i i#j 

with values 

Cov (Xi, Xi) = 0 if i, j not adjacent 

= p*p/(l -p) if i, j adjacent 

so that 

For p < 0.5 we apply Kolmogoroff’s Inequality: 

1 - g,,(p) = Prob [X = 01 I Prob [IX - ~12 ~11 

I var (X)/y2. 

From our second moment calculation we use only 

Lim Var (X)/p2 = 0. 
n 
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Limf”(p)=o. 
” 
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For p > 0.5 

so 

Limg,(p)=O. 
R 

For p = OS more care is required. Set 

summed over all sets {i, . , . , ik}t c”. For fixed k the above sum has 
2n ( > k 

-Y&/k! terms. When 

none of the i r, . . . ,ik are the summand is precisely 2~“‘. There are at most 
( > 
k2! 1 n(k - 1) terms 

where some i,, it are adjacent. There the summand lies beween 2-“d and 2-“k+(k’2) (actually less, 
as & is not a subgraph of Cn). Thus 

2” - 0 k 2 “kCS&)s(;)2-“k+(k2~I)“(k-1)2-n’+’k’2’ 

so 

Lim Sk(n) = l/k! 
n 

For any f, by Inclusion-Exclusion, 

Prob [X = t] = s,(n) - s,+,(n) + = . . 

and, criticafly, the sum alternates about Prob [X = t]. Hence 

Lim Prob [X = t] = e-‘/t! 
R 

(that is, X approaches a Poisson distribution with mean l-as is to be expected as the X are 
nearly independent) so, in particular 

Lim (1 - g”(p)) = Lim Prob [X = 0] = e-l. 
n n 

Let 4 denote the family of connected sets S c C”, 1st = s and 

p-1 
(e= uy #=I 

For s E % set 

P(S) = Prob [S is a connected component of G]. 

Set 
b(s)=J{u,u}Ec”: UES, uhfS)I, 
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the cardinality of the edge boundary of S. Clearly 

P(S) d (1 - p)“‘S’ 12-b(S) 

for p 2 0.5. Our objective shall be to show 

Disconnected G without isolated points must contain a component S E 9% Thus 

and hence (1) shah imply our Theorem. Set 

b?(S) = 

We shall bound g(s). 
Hart131 has found the minimal b(S), S E Y. It is achieved by letting 

s = NC . . . ,(F.); $ Ei2i-l <s} 

In particular, if s = 2k, S is a k-cube. In general 

(1) 

(lg = log base 2, {x) = min integer y 2 x). (In[3] the problem stated is to find S with the maximal 
number of edges. By (5) the problems are equivalent.) We bound 

Isl 5 2”(n)(2n) * * * ((s - 1)n) 5 2”(ns) 

as we may count ordered (xl, . . . ., xs) each Xi adjacent to’some previous xi, Hence 

g(s) 5 I%J(max 2-b9 < 2R(ns)“2-s(n-~Jl) 

which is small for 2 5 s I 2°“9n. (We may assume n is sufficiently large as our theorem concerns 
a limit in n.) For huger s set 

s = pl-8) 

and bound 

(4) 

bounding s ! by (s/e)“. Equations (2), (3), (4) do not quite yield a small bound on g(s) (if p > 0.5 
they do and the proof is considerably simpler) so we require more detailed refinements. 

Call S E &, s = 2n(1-B), dense if b(S) 5 psn + 10s 

Let a(s) be the number of dense S. We shall bound V(S). We assume 8 10.51 throughout. Fix 
S E %*, dense. For x E S we define the degree of x, 

d(x) = [{y E S: {x, y} E C”N 
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We caIl n - d(x) the outdegree of x. Then b(S) is (for any S) the sum of the outdegrees, That is 

so that, as S is dense, 

xzs d(x) 2 sn(l - j3) - 10s 2: 0.48~1. 

As the average degree is z 0.48n and the maximal degree is n, at least (0.48-0.1)/(1-O. 1) of the 
points have degree zz 0. In. Set 

T = {x E s: d(x) z O.ln} so ITI > 0.4s 

(i.e.: a positive proportion of points have high degree.) For U c S set 

a(U) = {x E S: {u, x) E %” for some u E U), 

the neighborhood of U in S. We now use the probabilistic method to find a small set U with a 
large number of neighbors. Let U be a random subset of S defined by 

Prob[sEU]=a!=(lnn)/n 

and requiring the events s E U to be mutually independent. For each x E T 

Prob[xEa(U)J=(l -c~)~‘“‘~(l-cu)~~‘” =0(l). 

Then 

E(Ja(U)( 2 E(la(U)nTI) = 2 Prob [x E a(U)] 2 ITI(l -O(l)) 2 0.19s. 
XET 

As O(U) 5 s always, [a( U)l 10.1s with probability at least 0.0. As 1~1 has binomial distribution 
B(s, a), 1~1 I 2sa with probability 1 -O(l), Hence the tibove two events occur simultaneously 
with positive probability. That is, there exists a specific U C S such that 

(i) I UI 5 2Sa! 

(ii) Is( 2 0.1s. 

(Note the above statement is not a probability result. For all S such a U exists.) We set 
u = 2sff = 2s(ln n)/n for convenience. 

Now we bound 11(s). We count triples (U, a(U), S - U - a(U)) satisfying (i), (ii). There are 

at most 
2” 

(( >I 
choice for U. (Notation; 

((1)) =z CN 
There are (and this is the critical 

u 
saving) at most 2”” choices of a(U) for, having chosen U, we select for each x E U the points of 

a(U) adjacent to. x in at most 2” ways. Finally, there are at most 
2n 

(( )> 0.9s 
choices o’f 

S - U - a(U). Thus, 

(6) 

We split the sum (2) into dense and nondense S. 
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BY (4) 
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)%s~2~8sn-i0s < (e2-‘0) 

is negligible. (This was why /3sn + 10s was chosen as the cut off point for denseness.) The first 
summand of (7) is very small if s I ~2%. (We omit the calculations.) 

For ~2% 5 s 5 2”-’ we must further refine our methods. (Here we are considering the 
possibility that G consists of several large components.) Set s = 2n-y, 1 I y cc k lg II. (y = n/3). 
As before S E Y is dense if b(S) 5 (y + 10)s. Fii a dense S. The average outdegree is %y + 10 
so all but O(s) points have outdegree 5 (ln a)*. We set 

R={xxE: n-d(x)l(lnn)3soIS-RI=o(s) 

and for x ES define a restricted degree 

d’(x) = ffy E R; {x, y} E C”}[. 

Now 

2 d’(x) = 2 d(y) 2 [RI@ -(Inn)‘) = sn(1 -O(l)) 
XES YER 

so the average d’(x) is n (1 - O(l)), the maximum d’(x) is n. Set 

T’ = {x E S: d’(x) =c O.ln}. 

Then 

IS - T’I = o(s). 

Let U be a random subset of R with independent probabilities 

Prob [x E VI = Q = (In n)/n. 

On average, all but o(s) points of S are adjacent to U.’ Thus there exists a triple (U, a(U), 
S-U-a(U)) where 

(i) (UI 5 2as = o(s). 
(ii) all x E a(U) are adjacent to some y E U. 

(iii) IS - u - a(U)J = o(s) 

and critically 

(iv) U CR. 

In counting triples there is now a critical savings with a(U). For each u E U there are at 
most nannP choices (vs a factor of 2” before) of the x E S adjacent to U-S there will be all 
but at most (ln n)* of the neighbors of u in C”. Thus (with u = 2so! as before) 

(8) 

With this bound, g(s) is small, ~2% IS 12~~‘. Finally, one requires not only that all g(s) are 
small but also their sum. This follows immediately from examining the arguments which yield 
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exponentially small bounds on g(s). Given that: 

p-1 

Lim c 2-*(s)= Lim 2 g(s) = 0 
n SE’8 n s=2 

completing our theorem. 
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