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Abstract—Let C* denote the graph with vertices (ey,. .. &), & =0, 1 and vertices adjacent if they differ in
exactly one coordinate. We call C" the n-cube.
Let G = G,, denote the random subgraph of C" defined by letting
Prob ({i, lEG)=p

for all i jEC" and letting these probabilities be mutually independent. We wish to understand the
“evolution” of G as a function of p. Section 1 consists of speculations, without proofs, involving this

evolution. Set
f+(p) =Prof (G, is connected)
We show in Section 2:
Theorem Lim f,(p) = 0if p <0.5
elif p=05
1if p>0.5.

The first and last parts were shown by Yu. Burtin[1]. For completeness, we show all three parts.

1. SPECULATIONS
We are guided by the fundamental results of A. Rényi and the senior author[2] on the evolution
of random graphs. We think of p increasing (in time, perhaps) from p=0to p=1 and G,,
evolving from the empty to the complete graph. Of course, G is not a particular graph but a
random variable. We say that p = p(n), G = G, ;) has a property I if

Lim Prob (G satisfies ) =1

and does not have property T if the above limit is zero. Erdds and Renyi noted that for many
interesting monotone graph theoretical properties (e.g.; connectedness, planarity) there is a
threshold function f(n) so that if p(n) = 0(f(n)), G does not have I' and if f(n) = 0(p(n)), G does
have I'. We say, informally, that property I appears at p = f(n) if f(n) is a threshold function for I".

At first, G consists of nonadjacent edges. Threshold functions for the appearance of small
subgraphs are relatively easy to compute. For e fixed, connected subgraphs with e edges appear
at p ~ 27" For such p the largest component has (e + 1) points and consists of a path of
length e. We are most intrigued by the sizes of the components of G when p reaches 0(n™").

Let p=A/n, A <1. The degree of a point is approximately Poisson with mean A. The
component containing a fixed point resembles a Galton-Watson process. In each generation,
each active member (point) spawns (is adjacent to) X new members where X is Poisson with
mean A. For A <1 the Galton-Watson process “‘dies” with probability one and the size of the
component containing a given point is, in expectation, (1-A)™". The size of the largest
component is more difficult as one must consider 2" not quite independent almost Galton-
Watson processes.

With A > 1 the nature of G changes dramatically. (This is the “double jump”) of[12]). Now
with probability g(A)>0 the Galton-Watson process does not stop. Then (1—g(A))2" points
are in “small” components. What of the remainder? In particular, will there be a component
with (g(A) +0(1))2" points? What is the size of the second largest component?
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As A increases the number of small components decrease. Perhaps there is a giant
component at A# 1+¢ or perhaps the large components merge later. Somewhere between
p =(1+¢)/n and p = o(1) the medium size components disappear.

When p becomes constant, independent of n, there is one giant component and many small
components of bounded size. As p increases the small components merge into the giant
component until only isolated points remain unmerged. Total connectedness is achieved at
p =0.5, as shown in the next section. There is a precise result:

Setp=0.5+¢/2n

Lim Prob (G,,, is connected) = ¢ ",

2. CONNECTEDNESS

In this section we prove the Theorem stated in the introduction. Let g,(p) be probability
that G contains isolated points. For i € C" we define a random variable

X, =1if i is an isolated point of G
0 if not

and set X = E X
iEC”

the number of isolated point of G. As each i € C" has degree n in C"
E(X;))=(1-p)".
We set
p=2"(1-p)

so that, by linearity of expected value, E(X) = u. We calculate the second moment applying the
formula

Var (X)= 3 Var (X)+ 2, Cov (X, X))
i

with values

Cov (X, X;)= 0 if i, j not adjacent
= u’pl(1-p) if i, adjacent

so that
Var (X) = p + (1= p)*[(np/(1—p)) - 1].
For p <0.5 we apply Kolmogoroff’s Inequality:

1—gn(p) =Prob [X =0] =Prob [|[X — u|= u]
< Var (X)/p’.

From our second moment calculation we use only

Lim Var (X)/p?=0.
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As fu(p)=1-2.(p)

Lim f,(p) = 0.

For p >0.5
g.(p) =Prob [X >0]<E(X)=p
80
Lim g,(p) = 0.

For p = 0.5 more care is required. Set
se(n)=2E(X, - -- X;)

summed over all sets {i, ..., it} C C". For fixed k the above sum has (2: ) ~2"%/k! terms. When

2n
k-1
where some i, i, are adjacent. There the summand lies beween 27 and 2 ™™*®® (actually less,
as K, is not a subgraph of C"). Thus

R

none of the i, ..., are the summand is precisely 2™, There are at most ( )n(k — 1) terms

Lim sx(n) = 1/k!

For any ¢, by Inclusion-Exclusion,
Prob [X = t] = s:(n) = sp44(n) +- - -

and, critically, the sum alternates about Prob [X = t]. Hence
LimProb[X =t]=¢"/t!

(that is, X approaches a Poisson distribution with mean 1—as is to be expected as the X are
nearly independent) so, in particular

Lim (1-g.(p))=Lim Prob [X =0]=¢".

Let %, denote the family of connected sets SC C", |S|=s and

an-=1
€= U %

s=1
For s € €6 set
P(S)="Prob[S is a connected component of G].

Set
b(S)=Hu,v}EC": u€S, vESY,




36 PauL Erpds and JOEL SPENCER

the cardinality of the edge boundary of S. Clearly
P(S)=(1-p)®=<2?®

for p =0.5. Our objective shall be to show
Li p 1
im ;ﬂ 0. (n
Disconnected G without isolated points must contain a component S € €. Thus
0=<1-£(p)-2:®)= 2, P(S)
§ee
and hence (1) shall imply our Theorem. Set
gls)= 5% 2, ¥3]
%,

We shall bound g(s).
Hart[3] has found the minimal b(S), S € %.. It is achieved by letting

T 5:1 &2 <5}

In particular, if s = 2% S is a k-cube. In general

b(S)=s[n—{lg(s)}] 3

(Ig = log base 2, {x} = min integer y = x). (In[3] the problem stated is to find S with the maximal
number of edges. By (5) the problems are equivalent.) We bound

|€,| =2"(n)2n) - - - (s — Hn) = 2"(ns)’
as we may count ordered (xy,. ..., X,;) each x; adjacent to’some previous x;. Hence
8(s) =<|%,|(max 27°®) <27(ns)2~lash

which is small for 2 < s <2°*". (We may assume n is sufficiently large as our theorem concerns
a limit in n.) For larger s set

§ =208
and bound

AR (i) <2"[s1<(e2®Y, @

bounding s! by (s/e)’. Equations (2), (3), (4) do not quite yield a small bound on g(s) (if p > 0.5
they do and the proof is considerably simpler) so we require more detailed refinements.

Call S€ %, s =2"""P, dense if b(S)=<Bsn + 10s

Let v(s) be the number of dense S. We shall bound v(s). We assume 8 <0.51 throughout. Fix.
S € €., dense. For x €S we define the degree of x,

d(x)=[H{y€S: {x,y}eC"}|
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We call n — d(x) the outdegree of x. Then b(S) is (for any S) the sum of the outdegrees. That is

}ejsd(wa(sw IS|n )

so that, as S is dense,

% d(x)= sn(1—B)~ 10s = 0.48sn.

As the average degree is =0.48n and the maximal degree is n, at least (0.48-0.1)/(1-0.1) of the
points have degree =0.1n. Set

T={x€S: dx)=0.1a} so [T|>04s
(i.e.: a positive proportion of points have high degree.) For U C § set
a(U)={xES: {u,x)€ €" for some u € U},

the neighborhood of U in S. We now use the probabilistic method to find a small set U with a
large number of neighbors. Let U be a random subset of S defined by

Prob[s € U]l=a =(nn)/n
and requiring the events s € U to be mutually independent. For eachx € T
Prob [x€ a(U)] = (1 — )@ < (1 - a)*™" = o(1).
Then

E(la(U)| =z E(la(U)nT)) = Zr Prob [x € a(U)] = |T|(1 - 0(1)) = 0.19s.

As a(U) < s always, |a(U)|=0.1s with probability at least 0.0. As |U| has binomial distribution
B(s, @), |U| =2sa with probability 1—0(1). Hence the above two events occur simultaneously
with positive probability. That is, there exists a specific U C S such that

@) |U|=2sa

i) |s(U)|=0.1s.

(Note the above statement is not a probability result. For all § such a U exists.) We set

u =2sa = 2s(In n)/n for convenience. o
Now we bound v(s). We count triples (U, a(U), S - U — a(U)) satisfying (i), (ii). There are

at most ((":')) choice for U. (Notation; ((T)) = Z (T)) There are (and this is the critical
=i
saving) at most 2™ choices of a(U) for, having chosen U, we select for each x € U the points of
; 2 ; .
a(U) adjacent to x in at most 2" ways. Finally, there are at most ((O;s)) choices of

S - U —a(U). Thus,

o= ()2 ((05:)) =2 ((65:)) ®

We split the sum (2) into dense and nondense S.

z(s)= ()2 eD 4 ((¢,] - p(s))2Bn10s, -
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By (4)
|(g’z I2—Bm—10s < (82- l(})s
is negligible. (This was why Bsn + 10s was chosen as the cut off point for denseness.) The first
summand of (7) is very small if s < ¢2"/n. (We omit the calculations.)

For ¢2"/n =5 <=2""" we must further refine our methods. (Here we are considering the
possibility that G consists of several large components.) Set s =2"", 1=y <klgn. (y =ng).
As before S € €, is dense if b(S)=(y +10)s. Fix a dense S. The average outdegree is <y + 10
so all but 0(s) points have outdegree = (In n)>. We set

R={x€S:n-d(x)=(nn)} so [S—R| = o(s)
and for x €S define a restricted degree
d'(x)=Ky ER; {x, y}€ C"}|.

Now

> d'(x)= 2, d(y)=|R|(n - (nn)}) = sn(1-0(1))
s YER

€
so the average d'(x) is n(1-0(1)), the maximum d'(x) is n. Set
T'={x€S: d'(x)=0.1n}.
Then
|S = T'| = o(s).
Let U be a random subset of R with independent probabilities
Prob[x € U] = a =(In n)/n.

On average, all but o(s) points of S are adjacent to U. Thus there exists a triple (U, a(U),
S - U —a(U)) where

(i) |[U]=2as = o(s).

(i) all x € a(U) are adjacent to some y € U.
(iii) |S — U — a(U)| = o(s)

and critically
(iv) UCR.

In counting triples there is now a critical savings with a(U). For each u € U there are at
most n®™ "’ choices (vs a factor of 2" before) of the x € S adjacent to u—as there will be all
but at most (In n)* of the neighbors of u in C". Thus (with u = 2sa as before)

o=(())r (o) ®

With this bound, g(s) is small, ¢2"/n <s =<2""". Finally, one requires not only that all g(s) are
small but also their sum. This follows immediately from examining the arguments which yield




Evolution of the n-cube 39

exponentially small bounds on g(s). Given that:

n-1
Lim D, 27*® =Lim 22 g(s)=0

n  SE¥€
completing our theorem.
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