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ADDITIVE FUNCTIONS

by
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Abstract

Let P(n) denote the largest prime factor of an integer n=2, and let

By = Sp, By = Sap, By = 3 p~

pln plin pein

Asymptotic formulas for sums of quotients of these functions are derived. The estimates are made to
depend on w(x, »), the number of integers not exceeding x, all of whose prime factors do not exceed y.

1. Introduction

Let P(n) denote the largest prime factor of an integer n=2, and let us define
additive [unctions ff(n), B(n) and By(n) as

B(m)=2>'p, Bm)= > ap, B(n)= > p°,

pln pa|jn po|n

where pf|n means that p* divides n, but p***! does not. The importance of the above
functions comes from the fact that they represent partitions of » into sums of primes
or prime powers which divide n, and recently several results concerning these
functions have appeared (see [1], [2], [4], [3] and [6]). Thus it was proved in [2], eq.
(5.33). that one has

® > p(n)/P(n) = x+0O(xloglog x/log x),
2=n=x

1.1)
( 2 B(n)/P(n) = x+0(xloglog x/log x),

and [4] contains a proof of

(1.2) > B(n)/B(n) = x+0(xexp(—C(logx-loglog x)'/)), C = 0,

2=n=x

and the same asymptotic formula holds for sums of f(n)/B(n). Sharp formulas for
sums of reciprocals of P(n), f(n) and B(n) are obtained in [6], where it was shown
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184 P. ERDOS AND A. 1IVIC

that

(1.3) 1/P(n) = x exp{( —2log x+loglog x)"*4 O((log x - log log log .‘(}”2)},
2=n=x
and the same formula holds for sums of 1/f(n) and 1/B(n).

Sums of quotients like those appearing in (1.1) or (1.2) provide us with informa-
tion about the degree of compositeness of 1, and it turns out (see [1]) that it is P(#)
which dominates the values of f(n) and B(n). Our Lemma 4 shows that the same is
also true for By(n). The main goal of our paper is to give estimates for the twelve
distinct sums of the type 2 f(n)/g(n) when f+g and

/. g{P(n), B(n), B(n), B,(n)}.

Estimates for some of these sums are already provided by (1.1) and (1.2) and
some follow easily hencefrom, but a number of these estimates are non-trivial and
will be given in theorems of this paper.

The notation used throughout the text is standard: p and ¢ are always primes;
m, n,r,s are natural numbers; Y(x,y)= 2> 1. f=0(g) and f=g both

n=x P(m=y .
mean |f(x)|=Cg(x) for some C=0 and x=x,;C,C;, ... denote positive ab-
solute constants, not necessarily the same ones; ¢ denotes a positive number which
may be chosen arbitrarily small. The notation ﬁ(n_}=;'p and B(n)= 2 ap stresses

P polln
the analogy between the relation of * ]arge additive functions f(n) and B(n) and
the relation between the well-known “‘small” additive functions w(n}-;'] and

Q(n)= 2> a. Moreover, fi(n) may be regarded as the additive analogue of the mul-

palin

tiplicative function o(n)= [[p. which represents the greatest square-free divisor
pln

of n.
2. Statement of results .

THEOREM 1.

(2.1) 2 P(ﬂ)fB (n) = x+ 0 (x log log x/log x),

(2.2) \ 2', B(n)/By(n) = x+0(x log log x/log x),

(2.3) > B(n)/B;(n) = x+0(xloglog x/log x).

2=n=x

Let now y denote Euler's constant, so that ¢'=1.78107..., and let D=1
denote an absolute constant whose genesis will be precisely given in § 4. We have
then

THEOREM 2.
(2.4) > By(n)/P(n) = e’ xloglog x+0(x).
2=n=x
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ESTIMATES FOR SUMS 185

THEOREM 3.

(2.5) L2 Bu(n)/B(n) = Dx+0(xlog™""%).
THEOREM 4.

(2.6) .Z: B,(n)/f(n) = e’ xloglog x+0(x).

Therefore it still remains to estimate two of the twelve sums 2> f(n)/g(n)
2sn=x

that are mentioned in the Introduction. These are

2.7 > P(n)/f(n) = x+0O(xloglog x/log x),
FETES S
and
(2.8) 2 P(n)/B(n) = x+ 0O (xloglog x/log x).
i=n=x

‘To obtain (2.7) note that the sum in question is trivially =x and from (l.1)
and the Cauchy—Schwarz inequality we infer

0= 3 1=( 3 PP S mPm): =

2=n=x

= 2-2- P(n)/B(n))'*(x+0(x loglog x/log x))"/2,
whence i
2(2:_ P(n)/B(n) = x+0O(xloglog x/log x).

This gives (2.7), and (2.8) is proved analogously. The error term in (1.1) (and
consequently in (2.7) and (2.8)) can be improved to O(x/log x), which will be shown
at the end of §4.

3. The necessary lemmas

We begin the preparation for proofs of our theorems by proving several lemmas
of which some seem to be interesting in themselves. Our proofs will be made to
depend on estimates for i/ (x, y), the number of positive integers not exceeding x,
all of whose prime factors do not exceed y. From the wealth of results concerning
Yr(x, y) we shall need several estimates whose proofs are to be found in DE BRUNN
[3] (to see that (3.2) holds for logy=log®®*°x one has to use the strongest form
of the prime number theorem), and apart from Lemma 1 below our proofs are
self-contained.

LEMMA 1. Let y=x and u=log x/logy. If 3<u<=4y'?/logy, then there
exist constants ¢;, ¢c;=0 such that

(3.1) Y (x, y) = ¢;x log?y-exp(—u(log u+loglog u—c,)).

If o(u) is defined as o(u)=1 for 0=u=1, ug’ (W)= —ou—1) for u=1, then
Jfor logy=logt®+:x we have

(3.2) U (x, ») = x0(W)(1+0(log log x/log )).
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186 P. ERDOS AND A. IVIC

If s=0, x=)*, then
(33) Y (x,y) < x/s!,
and for 2=y=x and some C=0
(3.4) Y (x, y) = x exp(— C log x/log y).

LEmMA 2. Let S(x) denote the number of integers n=x such that P*(n)n.
Then for some C=0

3-5) S(x) < x exp(—C (log x - log log x)'*2).
Proor. We have
(36) S(x) — 2 1= Z’ .Ib(xp—‘z, p) - SL+S2-.
pim=x P(m)=p pi=x

where in S, we have p=exp ((log x-loglog x)®)=z, and in S, we have p=z.
We have

(3.7 Si=< 23 2 1=x 3 p?<xexp(—(logx-loglogx)').

pezm=xp-t p=z
For S, we use (3.1) to obtain with wu,=(log xp~%/logp, C,=0
Si = rZ: Y (xp~2, p) = xlog®x ,,5. p~2exp(—Cyu, log u,) <
(25) = x pz p~exp(—C(log x - log log x)?) < x exp(— C(log x - log log x)'/2),
since u,=(log xz*)/log z>(log x/loglog x)'? for p=z.

LemMa 3. Let T(x) denote the number of integers n=x such that there exists
q°ln, g=P(n), q prime, for which ¢°=P(n)log="x, where A=0 is arbitrary but
fixed. Then

(3.9 T(x) = (xloglog x)/log x.

Proor. With y=(log x-loglog x)'/? we have (x,expy)=<xexp(—Cy) by
(3.1), so we have only to consider those n=x for which P(n)=expy, P(n)|n
(this last by Lemma 2). Therefore

(3.10) T(x) < xexp(—Cy)+T;(x)+Te(x),
where

Ti(x) = 2 I,

mgp=x, plog~ '4_1:-:.(“.7_-7::_ P(m)y=p

and if »n is counted by T,(x), then there is a prime power ¢%n, a=2 such that
¢*=P(n) log=*x=exp (/2). Therefore

(3.11) Ty(x) =< x > nt<x X n=x/llogx.

n, 6=2 n=exp(y/2) n=exp (¥/4)
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To estimate Ty(x) we use (3.4) and
(3.12) 2> 1/p = log(log B/log A)+O(l/log A), A=B
A B

<p=

so that
=3 3 ylpg.p) =

P=x plog”dx=g=p

1 - 1 [ log xqu]
=x — —exp| —C———|=
,,é P plog~«%<qép q P logp

1 loglog x
< X —exp(—Clogxf/logp)——=— =
< g‘p p( g x/logp) 055

(3.13)

P ’Cf loglog x

Ty tlogt exp (—Clog x/log n)dn(f) <

logx/log2

log log x f

<<x]0glogxf exp[—Cioﬁ(-] st togT tdt = x e~du =
3 log ¢ logx

log log x
log x

after substituting u#=log x/log . The lemma follows then from (3.10), (3.11), (3.13).
LEMMA 4. Let U(x) denote the number of integers n=x for which
B,(n) = P(n)(1+0(loglog n/log in))
does not hold. Then
(3.14) U{x) = (xlog log x)/log x.

Proor. Let for brevity g(x)=loglog x/log x. From Lemma 2 and Lemma 3 it
is seen that for x+0(xg(x)) integers n=x we have P(n)lln and ¢°=P(n)log 3x
if ¢%ln, g=P(n), so that for these n’s

By(n) = P(n)+ > gt = Pn)+omPn)log iy =

g2||n, g=P(n)
= P(m)(1+0(log—2x)) = P(m)(1+0(g(n))).

Since B;(m)=P(n) we have By(n)=P(m)(1+0(gn)) for x+0 (xg(x))
integers n=x, hence the lemma.

LemMA 5. The assertion of Lemma 4 remains true when B\ (n) is replaced by
p(n) or B(n).

Proor. Follows from the proof of Lemma 4 and

Pmy=pny= Zp= 3 ap=Bn) = > p"= B (n)

in Polin Pein

)

Studia Scientiorum Mathematicarum Hungarica 15 (1880)



188 P. ERDOS AND A. IVIC

LEMMA 6. [f f(n) is any additive function and y=x, then

(3.15) 2 Jm=__2 (@) =&,y

n=x Pm=y

PROOF.
_ fm= > X f(p)= 2 J(p") =
n=x, P(m=y n=x, P(n)=y pln pem=x, (p, m)=1, p=y, Pim)=y
= 2 (e Z 1= 3 (SIS0 xp. ).
Pe=x, p=y m=xp~ o P(my=y Pe=X, p=y

4. Proofs of theorems

Theorem 1 (and also (1.1)) follows easily from Lemma 4 and Lemma 5. To prove
(2.1) note that P(n)=B,(n), so that using Lemma 4 one obtains

= L e P(n) _
12, TOIB) = O(UD)* 2 F (1 +0og lognflogm)

O(xlogiog x/logx)+ 2> (1+0(loglogn/logn)) = x+0(xloglog x/log x),
and similarly one derives (2.2) and (2.3).

The proofs of the remaining theorems are more difficult and will be carried out
in three steps. The first step consists in proving

(4.1) > B(n)/P(n) = > PO,
2=n=x prm=x, Pimy=p
(4.2) 2> B,(n)/B(n) = 2> roip 14+ 0(xlog='%x),
2=n=x prm=x, P(m)=p
(4.3) 2 By(n)/f(n) = > P+ 0(x).
2=n=x prm=x, P(m)=p

The sums on the right-hand sides of the above formulas will be transformed into

sums involving the function g () of Lemma 1, and the second step of the proof will
be to show that

= logx logx] ]
4.4 r-1 — [ = +s|+0(x),
( ) p’mﬁx‘ZP:m)<p 4 p:—=_i X g 102 P lng ( )

log x log x
¢ [Iogp _[logle]

1
F O=s=logx/logp—1 [IOg xﬂOg p]‘-*S

(4.5) b ]

prm=x, P(m)-=p
+O0(xlog™3x).
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Finally it remains to simplify the expressions containing ¢(u), and our results
will then follow from

D=s=u—1 {H]_S

= log x logx] ]

1 e A = e? o
(4.6) pé;p _g';g[logp ogp +s e'loglog x+0(1),

o[z L]+
4.7 gy =1 > =D+0(1/1 ,
( } p%xp uﬁ_sﬁlng%logp—l [‘ngﬂog P]—S * {fogx)
where
(4.8) D = fu_l = Mdu = 1.
i !

After sketching this plan of our proofs, we begin with the proof of (4.1). By
additivity of B,(n) we have

(4.9) > B,(n)/P(n) = o3y P+ g B, (m)/p,
prm=x P(m)=p

I=n=x prm=x_P{my-p
and (4.1) follows from

(4.10) S = P B,(m)/p = x.

prm=x, P(my<=p

Noting that B;(p®}=p* and using Lemma 6 we obtain

@1)s= 3 p > B, (m) = pé‘x p! > y W (xp="q %, pg-.

pr=x m=x/pr, P(m)y=p gs=x/pr, 4=
For some integer k=1 we have

(4.12) x/pttr = ¢ = x/pttr-1,

which implies

(4.13) log x/p*+" = slog g = log x/p**"+-log p,
so that there are at most

(4.14) log p/log g+1 = 2 log p/log g

values of s for which (4.12) holds. Moreover, if (4.12) holds, then we can use (3.3)
of Lemma | to obtain

(4.15) Y(xp~rg=*, p) < x/(p g’ (k—1)!),
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190 P. ERDOS AND A. 1VIC

and therefore

X qs —r—1
S = _ X |
péx qs=x{pr o q=p k=1 p'qs(k*l}! P p’é’c P qsgxf‘;.'q:p
@16 = 3t Shoepllogq=x 3 p-tlogp [ 400
pr=x q=p logt

<x D plplogp-log7?p<x pzx I,flogprz1 P =x p%: 1/(plog p) < x,

pr=x

since the last sum converges. This proves (4.10), and therefore (4.1).
We turn now to the proof of (4.2). By additivity of B(n) and B,(n) we have

2 Bi(n)/B(n) =

Z=n=x

= > Plrp+Bm)+ 3 - Bi(m)/(rp+B(m)).

prm=x, P(my=p prm=x, P(m)=p

4.17)

First we show

(4.18) Sy= > By(m)/(rp+B(m)) < xlog—13x,

prm=x, P(m)<=p

Let now for brevity w=1log'3x throughout the proof of (4.2). In the above sum
we may suppose p=expw, for otherwise following the reasoning given in (4.16)
we obtain

B, (m)/(rp+B(m)) < > p1B,(m) <
prmn=x, P(m)<p, p=expw prm=x, P(m)<p, p=expw
(4.19)
<x 2 1/(plogp) =< x/w = xlog=3x,

P=cxpw

since by the prime number theorem and integration by parts we have, as y— oo,

(4.20) 2 (plogp) =< I ~tlog™tidn(t) = 1/log y.
Next we observe that 1/(rp+B(m))=min (1/rp, 1/B(m)) and
(4.21) B (n)/B(n) = (p%’" P)/( p%- ap) = p%'l a~1p*-1 = f(n),

so that f(n) is additive. Therefore by Lemma 6
B,(m)

prm=x, P(m<p=expw FP-+B(m)

< Z min q’ 3
Pr=x, p=expw Q‘*’—‘IF‘Z"’.Q'P [P?' Mf A4 P’rqs Fy
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This is the fundamental inequality in the proof of (4.2). Denoting by X the
expression on the right-hand side of (4.22) we may write

(@423 3= > + 2+ Z =21+t 2

r+s=logx/(2logp) r=logx/(tlogp) s=logx/(dlogp)

since if r+s=log x/(2log p), then either r=log x/(4 logp) or s=log x/(4 log p).
In £, we have

(4.24) logxp-rgq %/logp = log x/log p—r—s = log x/(2log p) = log x/(2w),
whence by (3.4)
(4.25) Y(xp~"q~", p) < xp~"q " exp(—Clog x/w),

and since trivially s<clog x we obtain then

(4.26) 3, = xexp(—Clogx/logi¥x) > p~"'logx > | < xexp(—C,log¥*x).
pr=x q=p
Now we come to the estimation of X, and Z, in (4.23). In Z, it is seen that r is
large, so that we shall take min (1/rp, 1/sq)=1/rp, and in ZX; we shall take
min (1/rp, 1/sq)=1/sq. In the estimation of X, and X, we repeat the reasoning given
by (4.12)—(4.16), taking also into account that p=expw. Since in X, we have
1/r<log p/log x, we obtain

x o
2= Zﬁ;I ETory p~"~tlog*p X 1/(log q) <
r=logx ogp A pr=x, p=expw qg=p
(4.27) e ’
e > Spr=xlogtx 3 1/p<=xloglogx-log™1x.
log x p=tpw s p=expw

Similarly for X; we obtain analogously as in (4.16)

2s= 2 s
s>=logx/(4logp)
x
= > 2 sTigs— Ny [———‘,p]«
pr=x, p=exp W q*=xp-", 4=p, s=logx/(tlogp) rq
< xlog™'x > 1/(k—1)! > p~logp > 1/q <
(4.28) k=1 pr=x, p=expw Gs=xp-r, q=p
< xlog™'x 2 p~"log*p 2 1/(glogg) <
pr=Ex, p=expw 4=p
exp w
<xlog™lx 3 legip D pr< xlog“.\‘f t~og?tdn(1) <
P=exp W r=l 4

< xwllog~1x = xlog—1/3x,
since by (4.14) there are O(log p/log ¢) choices for s.
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We have shown that (4.18) holds, and to finish the proof of (4.2) it remains to
prove

(4.29) > plrp+Bm)= 3 r7'p'40(xlog3x),

prm=x P(m)y=p prm=x, P(m)y=p
which after subtraction follows from

(4.30) S, = X Fe2p =i B(m) = xlog 18y

= prm=x_ P(m)-=p
The sum S, is easier to estimate than S, of (4.18), and by Lemma 6 we have
@31) Sp< Zrip=t  F qp(xp~" g7V p),
P

Pr=Ex F=xpTr g=

since B(p*)—B(p* ")=ap—(a—1)p. We estimate first the subsum X’ of the sum
on the right-hand side of (4.31) with p=expw, w=log®x. Trivially we have

2= X riptt 3 qxpTtgTt <

Pr=EX, pexp W gr=xp- ", q=p
(4.32) <x 2 reip=t ¥ Zgt=x = r—ipTtlog™ip «
Pr=Ex, pEexpw q=p i=0 pr=x, pexpw
<x 2'r7* 3 1f(plogp) < x/w = xlog=3x,
r=1 P=expw

where we have used again (4.20). In the remaining subsum X" we have p=exp w,
and we split it analogously as in the case of S, in (4.18), i.e.

433) 2>'= > + o+ 3 =31+ + 3%

r+s=logx{(Zlogpy r=logx((dlogp) s>logxi{dlogp)
As for X, of (4.23) we obtain similarly
(4.34) D7 = xexp(—Clog??x).

Since r=log x we further have

Ze= 2 o=logTx X pilog’p ¥ qupTTgTt <
r=log Xj(4log Py prEx p=expw qE=xpr, g=p
(4.35) = xlog™%x > ptlogtp > g =
PrEX, pEexp W a=p =0
xlog™2x 2 p~tlog p < xlog~?x-log x-log(expw) = x log=¥#x.
PrTEX p=expw

Finally we have

(4.36) 3% = > < > rtpr=? ) gxp=rg* =<
s=logxf{tlogp) PrEX, pEexpw gs=xp-T, g=p, s>logx/{ilogp)

< xe2- logx /(4w 2r p—‘] r2 Z log X <= xexp ( — 10g2.|’3 x},

pr=x, pSexpw qg=p

since in X we have ¢*=2"1x/w) 4= and s<logx. Therefore we have proved
(4.30), completing the proof of (4.2).
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Up to now we have proved (4.1) and (4.2), and now we move to the proof of
(4.3), viz.

2 Bm=_ 3 g0,

prm=x, P(my=p

By additivity of B;(n) and f(n) we have
43 3 Bwipm=_ % pletpem)r 3 Bmf(p+pm)

2=pn=x

By (4.10) the last sum above is O(x), and so it remains to show

(4.38) S (T -pleBe) < 3 ppm) <.

prm=x, P(my=p prm=x, P(m=p

The first inequality in (4.38) is obvious, and for the second we note that
B(pH—B(p*YH=p—1 for a=1 and zero for a=1, so that Lemma 6 gives

(4.39) F ropm < 3 p=t Z qxpTm g p)

prm=x, P(my=p = =xp*T q=p
Using (3.4) we have
W(xp~"q", p) < xp~"q " exp(—Clog x/(log p) +Cr),
which gives then

(4.40) S ppm)=<x 3 p? Zcxp[—Clng+Cr] =
q=p log p

prm=x, P{my=p pr=x

<x 2 (plogp)~'exp(—Clogx/logp) > exp(Cr)<x X 1/(plogp) <x,
p=x p=x

r=logxflogp

as asserted.
Now we shall pass to the proof of (4.4) and (4.5), but first we need to clear a
technical point. Since the function ¥ (x, y) is defined as

vEN= > 1,

n=x, Pny=y
we remark that
(4.41) pPt= > P +0oW),

prm=x, P(my=p prm=x, P(m=p

(4.42) > rip=lt= P r-tp '+ 0(xloglog x/log x),

prm=x, P(my=p prm=x, P(m=p

which will facilitate later transformations of our sums. To obtain (4.41) note that

- ~1 -1 _
b3 1 pr -

P ;
prm=x, P(m=p prm=x, P(my=p priln=x, Pim=p

-, 277
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since il P(m)=p, then m=np with P(m)=p. With (3.4) we obtain

o

2 PGap p =<

pr+i=x prtl

p 2exp (—Clog x/log p)exp (Cr) =

A

=X

«<x X pfexp(—Clogxflogp) 2 exp(Cr)<x > p?<ux,

p=x r=logx/logp pP=X

and the proof of (4.42) is analogous, when we consider separately the cases
r=logx/(2logp) and r = logx/(2logp).

To prove (4.4) note first that we may take r=2 in (4.1), since the sum with
r=1 s trivially O(x). Suppose now a=[log x/logp], or equivalently
(4.43) po= x = ptHl,

Writing r=a—s we have s=0, 1, ..., a—2, so that s can take at most O (log x)
values. Therefore we can write

(4.44) Z = 2 pi=_2 p N (xp"t, p)

= prm=x, P(m=p, r=2 pa~s=x
If s=log'*p then
(4.45) u=log xp*~*/log p=log x/log p—[log x/log p]+s=s5+1=2 log'? p,

so that for s<log'?p we may use the asymptotic formula (3.2) to estimate
Y(xp=“ p) in (4.4). Writing

(4.46) o= & * Z =Fat T

s<logl/?p  s=logli?p

we obtaimn then

logx [logx
o — + 5|+
0=s<min(logx/logp, log!2p) log p log p

+O0(x 2 p~* 2 PlOE"P'IOglOg{xP”“')'Q(SJ)-

p=x 0=5 cjogl’2

1=x 2 p!
(4.47) p=x

But in view of (4.43) loglog (xp*~*)=<loglog (s-++1)p, and from the defining
properties of g(u) it is seen that ¢(u) is nonincreasing and that p(s)<<1/s!, which
gives for the error term in (4.47)

(4.48) O(x 3 p~tlog™'p-loglogp) = O(x [ 1~*log™'t-loglog tdz (1)) =0 (x),
p=x z

after integrating by parts and using the prime number theorem. Next we have

B , logx [log x] )
1 beit - i A = =
(4.49) ;;x . x'::ogzx'nugp 0 [k)gp log p —|—s] =27 Ziogr 0O =

pP=x s=logx/logp
< >pt 2 1fsl<log™'x 3 pilogp =1,
pP=x s=logx/logp pP=x
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and similarly

log log
(4.50) -3 r_)[ oKX —[ °°x]+s] <l
=x s=tam/zp | logp log p
l'his implies
. “2 log x !ogx] ]
4.51 = T — | +O0(x).
( ) .r_Jl =X 2 _“ lOgP lOgP +5 + (x)
Using (3.3) we obtain
2= 2 P (xptY, p) ) o e 2 1sl<
4.52) s=log!/tp s=logl'2p
«<x 2 p ‘exp(~!09'f‘p)«*/vc 1/(plog p) < x,
p=x
which finishes the proof of (4.4) in view of (4.41)
. < [logx [logx .
i pPrl=x = [ [ +s]+0(x).
prm=x_P(m)~< p p;; P =0 Q Iﬂg P lOg P
To prove (4.5) we shall need (4.42), and writing again r=a—s, a=[log x/log p]
we obtain
2 _riptt= 2 @97 ert p =
rm=x, P(my= aSi=
(453 TR 0 i
pP= cxp(logz"‘x} exp(log? 3xy=p=x
We observe that for u=
(4.54)

1+ S
1 we have [u]=u/2, so that
> 1/((a—s)s!) < 1/a,
=a-1
and with a=[log x/log p] we obtain using (3.3)
(4.55) S; <= xlog'x

2

pllogp = xlog=13x
p=exp(log?dx)

For Sy in (4.53) we have s<log x/log p<=log!”p, and so as in the proof of (4.4)
we may use the asymptotic formula (3.2) to evaluate ¥ (xp*~° p). Therefore

. log x
Sy=4% E. 3 0 =
» usp(togsé}-:p:iia £ Uaésf:log‘;:flogp—l [ mgp
log x log x =
4.56 — ] [ - ]—‘
(4:36) log p +S][ logpl ™’ i
_; loglog xp*—¢
+0|x
p;; E!"'\._-Iug%lngp 1

1 log x|
g(ogx_ ong+S][ logx ]
plogp logp Lllogp logp
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As in the proof of (4.4) we have loglog (xp*~“)<<loglog (s+2)p, so that the
error term above is

(4.57) O(xlog~'x 3 p~tloglog p) = O(x(loglog x)*/log x).
P=x
Using (4.54) and o(s)=<1/s! we have

. [logx logx} ] [logx] ]_l _
Ly | 220 - 1/3
(4.58) x pécxp(zl;ggmx) plo [Iog > |ioap +5 T s| =xlog 3%,

which completes the proof of (4.5).

Now we finally come to the simplification of sums which appear in (4.4) and
(4.5) and involve g (u). If one wants only to show that the sums in (4.6) and (4.7)
are asymptotically equal to C loglog x and C, respectively, with ineffective C’s and
without error terms, this can be obtained by elementary methods using only the
continuity of g(u). To prove (4.6), however, we shall use the prime number theorem
and Stieltjes integral representation to obtain

i = llogx [logx] ]
1 — —
péxp s;:.g[logp log p S

(4.59) = > f,—lg[logx -[logx]+s] dn(t) =

S, Y log t logt

- x logx_ logx] dt - x . .
us=u-fg[logz log ¢ T8 I]ogr+0[s§,e J’ d(O(rlo;, f))],

since o(u)<ce™™, which follows from wug’(u)= —p(u—1). The second integral above
is O(1), and in the first integral we make the change of variable u=log x/log t and

obtain
i o Mogix [logx] ]
1 e —
_ F%xp sgi;@[logp log p iy
(4.60) o logxflog2
= > f uto(u—[ul+s)du+0(1).
5=0 i

We transform the series on the right-hand side above as follows:

o logxflog2
= f uto(u—[ul+s)du =
s=0 {
oo logx/log2
= loglogx+0(1)+ Zlg(s) f utdu+
= 1

(4.61)

= logxflog2

+ 3 [ weu—[ul+s)—e()du =
' n+1 u—[uy+s

= g’e(s)loglogx+0(l)—g' S [ out [ e(—1)didy,

i=1n=logxflog2 y 5
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X

where we have used o(u)=1— f o(t—1it~'dt, which follows from
1

up'(u) = —o(u—1). Changing the order of integration gives
n+1 u—[uj+s s+1 n+1
[ ut [ e-Ddidu= [ t79@-1) [ uldu=
n 8 5 t+n—s

s+1
s+1—t
= ~lo(t—1)1 I fi=
J i)

(4.62)

541

= [ 17—

5

s+1—¢

= —5 =2y —
f‘l‘ﬂ“‘sdl"{()(e " )

s+1

=nt [ =11 M (s+1—0)dt+O0(e~*n72).

Therefore from (4.61) and (4.62) we obtain

n+1 u—[uy+s

wt [ te(—)didu =

Zlogx(log2 5 e

oa
2
s=1n

o s+1

= Zz(loglogx—l—O(l))f tTlo(—D(s+1—-0dt+0(1) =

=

s41 e S+1

(4.63) =loglogx(s§;(s+l)! r“g(r—l)dt—sgl'sf o(t—1)d)+0(1) =
= _UfmQ(;)d;_.loglogx+0(1)+1oglogxé G+D(e®—e@+1) =
= —jg(r)dz-loglogx+0(1)+loglogx(1+§; e(s)) =
= (S__Z: Q(s)——fg(f)df)loglogx—l—O(l).

Putting (4.63) into (4.61) we obtain (4.6), which completes then the proof of
Theorem 2 and Theorem4. It remains yet to prove (4.7), which will give then
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Theorem 3. We have similarly as in the proof of (4.6)

log x [logx] } ) e
e “ g™ ([log x/log p] —s)~* =

2 5

p=x 0=slogx/logp—1 [|0g P

1 1
[ [ 5] woeshog -1 -

f.‘“dn:(.f]

e
250 0=s=log~ logt—1 | log?

o log x logx] ]
= [ t 'og 't ) — 45| (Mlog x/log 1] —s) 'dit -+
! g u-;_-sgioé.u.og..:“[logr T ([log x/log 1]—5) ¢

X

log ¢ 5 B
(4.64) +O{2f”0gxd(0tf!og n)) =
logxflog2
= f w3 o(u—[u]+s)([u] —s5)'du+O(1/log x) =
3 D=s=u-1

ey

:flu_‘ o(u—[ul+s)([ul—s)dut+ O [ wu*du)+0(1/logx) =

H D=s=u—1 log x/log?
= D+0(1/log x),

where D is given by (4.8). This completes the proof of all of our theorems, when we
note (see [2], p. 314) that

Do

(4.65) f o(dt = e* = 1.78107 ... .

i
In concluding we shall show how the error term in (1.1), (2.7) and (2.8) can be
improved to O(x/log x). We shall only sketch the proof of
(4.66) > Bm)/P(n) = x+0(x/log x),
2=n=x
since the proof of the analogous formula with B(n) in place of f(n) 1s only technically
more complicated. Using Lemma 2 we have

2 fwpm=__ 2 BPm+0( > = om)=

2=n=x 2=n=x, Pmln 2=n=x, P2(n)[n

> Bm)/P(n)+0(xexp(—C(log x-log log x)12)),

2=n=x, P(mln

4.67)

since f(n)=P(n)w(n)=P(n)log v for n=x. Further using Lemma 2 and Lemma 6
we have

B(n)/P(n) = 2 (Bp+Bm)/p =

2=n=x, P{n)!ln pm=x, P{nmy<p

(4.68) =x+0[ al ]-l— o p 2 p(m) =

lng pP=x m=x/p, P(my<p

-

] +0( pg,; p“m“’Zm g (x/qp, p)),

X
log x

= x+0[
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since fi(q")=¢q. With (3.4) and the prime number theorem we finally have

,ér p“qg q (x/qp, p) = FZ xp? qzﬂ exp (— C(log x/gp)/log p) <

<x 2 (plogp)~'exp(—Clogx/logp) =

p=x
X

(4.69) =% f (tlog H~texp(—Clogx/log t) - dn () =

-0

<X f 1 tlog #t-exp(—Clog x/log t)dt =

log x/log2

=% f log~'x-exp(—Cu)du = x/log x,
1

when we substitute u=log x/log 1.
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