On some extremal properties of sequences of integers, II

By P. ERDOS, A. SARKOZY and E. SZEMEREDI (Budapest)

1. Let A={a;<a,<...} be a sequence of positive integers. Put A(n)= 3 1.
a,=n

Denote by fi(n) the smallest integer so that every sequence A satisfying A‘(n)é

=f,(n) contains a subsequence of k terms which are pairwise relatively prime. It

is easy to see that

fu = [3] 41,

fulm) = 14 &) (=2 n+1 for 6n)
and it seems likely that
fi(n) = 14&_1(n)

where £, _,(n) denotes the number of integers not exceeding n which are multiples
of at least one of the first k—1 primes 2,3, ..., py_;.

In Part I of this paper (see [3]) we proved in a sharper and more general form
several related conjectures stated in [2]. In this paper, we continue this discussion.
First we introduce some notations. A, ,, denotes the integers ;€ 4, a;=u (mod m)
(and A4, (n) denotes the number of those terms of the sequence A (m, sy Which do
not exceed n). ¢(n) denotes Euler’s function. We put

04(u) = 2 1
@n=1
and
Yalu,0) = 3 1.

a;=n
(g, u) = (g, 0) = 1

For k=2,3,..., ®,(A) denotes the number of the k-tuples g, a,,

.oy @, SUCh
that a; <a;,<...<a,=n and (g;,a;)=1 for 1=x<y=k. We put

F,(n) = min max QP :
2( ) o a}E/I A(a_;)
and
= 1
JF:;(?‘I) = I'I‘L]Il l_xlllj?g,{(n) {J’/A (ﬂx, Gy)

where the minimum is to be taken over all sequences A4 satisfying A(n)é[;] +1

and A(n)%[g]+2, respectively.
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€1, Cyy ..., Mg, Ny, ... Will denote suitable positive absolute constants.
In Part I of this paper, we proved the following theorems:

Theorem 1. For n>n,,
F,(n) = c;n/loglog n.
Theorem 2. There exists constants c,, ¢y, ¢4, 1y such that

A(zlll(.ﬂ) =5, 1 =5 < C2FI
and

n
A(n) = >
imply that for n=>n,,
max @ ,(a;) > e:,_m/loglc)gi
acAd M
and
D,(A) = c;sn,’loglog;—l.
Theorem 3. To every 0=e(<1/2), there exist constants c;=c;(g) and n,=
=ny(e) such that if n=n,,

A{z'l)(n) =§=E&n
and

A(n):—-%,

then
¢2 (A) = Cs ﬂ2.

(Note that Theorem 1 is a consequence of Theorems 2 and 3.)

2. Throughout this section, we will assume for simplicity that n is even; all
our results could be extended easily for odd n.
P. ErDOs conjectured in [2] that if

Aln) = 242
then there exists a 4-tuple a,, a,, a,, a, such that
(ay,a,) = (ay,a,) = (ay,a,) = (a,,a,) = 1.

In this section, we are going to prove the following sharper form of this conjecture:
Theorem 4. For n=>ny,
F,(n) = cgn/(loglog n)*.

We first prove two other theorems which will easily imply Theorem 4.
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Theorem 5. There exist constants c,, ¢g, ¢y and ny such that if n=n,,

(1) Apn(n)=s 2=s<cn
and
2 A(n) > _;_

then there exist at least cgs® pairs a., a, (a.€ A, a,€ A) satisfying 1=a,<a,=n and

3 a(ase a) = conf(1og10g ).

Proor. We need the following known lemma (see [1]).

Lemma 1. The number of integers 1=k=n satisfying @(k)/k<1/t is less
than nexp (—exp ¢;pt) (where exp z=e%), uniformly in t=2.

Let us apply Lemma 1 with

r——l—-lo lo 31—
T B glog—-

(t=2 holds for small enough ¢,.) We obtain that the number of integers 1=k=n
which satisfy @ (k)/k<1/t (wherc t is defined by (3)) is less than s/2(=1). Denote
now by b;<...<b,=n, r=s/2(=1) the integers in A, satisfying o(b;)/b;>1/t.
We are going to show that for 1=x<y=r,

(4) W 4(by, b,) = ¢ynflog log%

provided that ¢; and ¢, are sufficiently small (and #n is large).
Clearly, the number of integers 2u=n satisfying (2u, b,)=(2u, b,)=1 is

n n
i — 1) [—] ;
[2 ] Py P.zl-%'kr[b,ﬂbyl = 2p,, Py -+ Py,

Here for n large, the number of terms is
2“([5x-by]) = 2&Ingn}loglogn
(where v(m) denotes the number of the distinct prime factors of m) since it is well-

known (and follows from the prime number theorem or a more elementary theorem)
that for m=N,

(5) v(m) = 2 log N/loglog N,

hence
v([b,, b,]) < 2 log n*/loglog n* < 4 log n/loglog n.
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Thus

i ——— dlogn/ Ioglagn =
= 2, {] [1 p] -2 B

u=nl2
(2, b)=(2u, b)=1

n 1
= — l _.___] [1 __] _24 logn/loglogn
2 {[ [ p g, P
- (R @(by) ‘P(by) __74logn/loglogn -
2 b, y
- i 4logn/loglogn i
T ~ 3

for sufficiently large n (with respect to (3)). Hence, we obtain by a simple com-
putation (with respect to (1) and (2)) that for sufficiently small ¢, and c,,

E{!A(bx! by) = Z l — 2 1 =
u=nf2 u=nf2
(2u,b)=(2u,b,)=1 2uf A

= 3_,:2 [2 — A, u)(“)] = +(A (n)—Ae,1, () =
=——Ap 0 = — 5= Cph /[Iog log%]z,

provided that n is large enough which proves (4).
To complete the proof of Theorem 5, observe that b.c4 and b4 in (4),
furthermore, (4) holds for any pair x, y such that 1 =x<y=r, and here r>s/2(=1).

Theorem 6. To every 0<e(<1/2), there exist constants c¢;;=c;(e) and
ny=ng(e) such that if n>n;,

A, n(n) =s=>en
and
A(n) = n/2

then there exist at least cion® pairs ay,a, (a,€A, a,€A) satisfying 1=a,<a,=n
and
’J’A(ax! ay) = Cppn.

(Note that for en<s<ec,n, Theorem 6 would follow from Theorem 5, but for
the large values of s, we need a separate proof.)

ProoOF. We are going to show that Theorem 3 implies Theorem 6.
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By Theorem 3 and Cauchy’s inequality,
(6) 2 Yalga)= ¥ o 1=

1=x=y=dA(n) 1=x=<y=A(n) a;=n
(a;,a,)=(a;,a,)=1

~3( 3 )=3("Y) =2 3 u@r-—g 3 es@=

a=n (a,r:aéj:gafgs}—-l a;=n a‘-sn a,_
1 (Z (PA(CI,_)) 1 1 3 1
e M B i DP—=nt=
R 72" = w202 W3
(a;, a)=1

Iy

1 o e 1 Lo
7y (2‘92(1‘1))'_‘2‘ Ll o (2‘35(3) ”2)2—3 n? = ¢y (e)n’.
On the other hand, we have

™ 2 Yulay,a) =

l=x=y=AM)

'!’A(ax" ay)+ 2 w:{(ax’ ay) =
1=x=y=A(n) 1=x<y=A(n)
Y lag,a)=cyn ¥ lag, ay)=cpn

= 2 ceynt > n=-—=tnd+n D 1.
1=x<y=n 1=x=y=A(n) 2 1=x=y=An)
Y ala,a)=cyn W alag,a)=cpyn

If ¢,, is sufficiently small (depending on &) then (6) and (7) yield the statement of
Theorem 6.
Theorem 4 follows easily from Theorems 5 and 6. Namely, if

2=s5=Ay(n) <cn
then Theorem 5 yields that
V(ay, a,) > cynf(log log n)?,

1'5x-cy“A{n}
while if
5= A(2‘1) (n) = Cqh
then applying Theorem 6 with ¢, in place of ¢, we obtain the much sharper

1{:133’5)4( )WA(G:H a,) = cyy(cy)n

which completes the proof of Theorem 4.
Finally, we remark that using the same method, also the following theorem
could be proved:

Theorem 7. If n=ng,

Apy(n) =s(=0), A(n)= %
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and
2 1
(8) r = min {s, [—1—0— log log n]}

then there exist integers by<by,<...<b, and dy<d,<...<d, such that b;, di€A for
i=1,2,...,r and
(bisdj)=1 for 1=i,j=r.

(The statement of this theorem is, perhaps, true even with min {s, (1/4—g)n/log n}
on the right of (8) but this can not be proved by our method.)

3. Starting out from an other conjecture of P. Erdds, we will prove the follow-
ing analogue of Theorem 3 for triplets a,, a,, a. instead of pairs a,, a,:

Theorem 8. To every O0<=g(<1/2), there exist constants cp,=c15(e) and
n,=n,(e) such that if n=n, and

(9) A(n) = [%+s]n

then
D3(A4) = c1on®.

Proor. Denote by P, the product of the primes not exceeding r. We need

Lemma 2. To every 9=0 and 6=0 there is an ry=ry(g, 8) so that if r=r,,

n=ng(o,d,r) and u=1,2, ..., P, then for all but o ;

r

integers k satisfying

l=k=n, k=u (modP,),
we have
(k) = H(I-—i];s f=3;
plk p
p=r

This lemma is identical with Lemma 2 in [3].
Now we prove Theorem 8. Let r denote a positive integer for which

£ &
(10) rP_:JD[I,I] and r=3
hold.
By (9),

P, : _
6 o=kopli-1 ié; A () =

P l6—1 6 P, 9
= 3 (3 Avsio®) = 3 Ao po) = 40 > (344
k=0 i=1 J=1

This implies the existence of an integer & such that 0=k=P,/6—1 and

a1 >4 A(n}>£[£+s]n~(4+6) #
) (Pr,Bk+i) Pr 3 & = E P,.l
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Clearly, for every u,

(12) A,(n) < %H.

(11) and (12) imply that there exist integers i, ..., 7; such that
(13) l=h<=..<;=6

and

(14) A(pnek_‘_‘i)(-ﬂ) = 28% for j = 1, - 5,

r

since otherwise

n

> i) = 4[ 1]+2(2si] = (4+4e) 5 +4 < (4+68)
=1 " P, P, P,

P,

would hold, in contradiction with (11).

It follows from (13) that the sequence {i, ...,i;} contains a subsequence
{1, Jas Js} of 3 terms which are pairwise relatively prime. Let us put 6k+j=u,
for i=1,2,3; then we have

(15)  (uy, up) = (ty, thg) = (U, t4g) = 1, u,—u|=5 for 1 =pv=3
and by (14),

n
(16) Ap,,up(M) = 28—};;

Let b;<...<b, denote the sequence of those integers b for which

1 e

(7 b Ap, .y and [1-—] 1—Z,

(17) €Ap, . an p{z ? 7
p=r

Lemma 2 yields with respect to (10) and (14) that

E n n E N n
(]8) = A(Pnul)(ﬂ)—EFr > ZSE—IE >£?r.

We are going to estimate from below the number of solutions

(19) (bi: ax) =1 s Oy € A(P,.. uz)

(for i fixed).
Assume that p/(b;, d), d=u, (mod P,). By (10), (15) and (17), these imply

p=>r. Denote by D;(P,, u,) the number of those integers d for which d=n, d=u,

(mod P,) and (b;,d)=1. We have by a simple argument

(20) DiPis i)~ n[l—l]

i\Lrs Pr o P

p=r

= 2““") e zzlogn![osloxn
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(with respect to (5)). Thus in view of (17),

(21 D;(P,, u,) > i H ]_i] —D2logn/loglogn
Pr plby P

p=r

_i i_ 2logn/loglogn __ [ _,i] i
. [1 4] il 1=3)
(for n large).

Denoting the number of solutions of (19) by v;, we have by (16) and (21)

(22) v = dp,uw@— 2 1=

d=n
d=uy (mod P,)
(b, d)=1

= Ap,,up(N) "—( dg 1—-DyP,; “2)) e
dEu,(;:(,)dP,J

n n el n 3e n n
p,‘[P,+‘]+[‘ ‘5]?, =% B =g

Let di’=...<d{) denote the sequence of those integers d for which

= Q¢

(23) (bi’ d) = l, deA(P,,ltg} and H[l —'—1—] =] ——
pld P 4
p=r

Lemma 2 yields by (10) and (22) that

& n I E N &
4 R | e Aol St e s N
2% MEU—Z P T¢F 2P "I F

Let us denote the number of solutions of
(25) (bh ay = (dj_i)’ a)‘) = l! ayeAf.Pr.ﬂs)

(for i, j fixed) by z'”
By (15), (17) and (23), if d=ug(mod P,) and p/(b;, €) or p/(d}", e) then p=r.
Denote by E{’(P,,u;) the number of those integers e for which e=n,
e=uy (mod P,) and (b;, e)=(d{”, e)=1. With respect to (5), we have

(26) E}U(P, \ tty) — n [l ____]| - 2V(bgd(t}

r pthyd§?
p=>=r

- 22]ngn3.|flogln—xn2 - 24Iogu;loslugn_
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We obtain from (17), (23) and (26) for sufficiently large n that

(27} E}U(P,, 1"3) = 2 [] _l] —Ddlogn/loglogn
Pr p‘,h‘dgu P
p=r
- : ]] (1 —l] ﬂ [l _l‘]_zilosnfloslugn o
P i, P/ pa$p p
p>r p=r

P -_E_' _,_B_ _E_ __"4logn/loglogn [ _i]i
P,[l 4][1 4]2 =\1=7)5

(16) and (27) yield that
(28) z}il o A(-Pnlls)(“) _( Z L= Ej”(P,., u3)) =

e=n
e=ng (mod P,)

O T
By (17), (23) and (25), the triplets b;, d{”, a, satisfy
(b;, d) = (b, a,) = P, a)) =1, b,,d, a,c4,
and by (18), (24) and (28), their number is greater than

= 2¢

n & n n
E——r——t— = Cpp(E)N®

which completes the proof of Theorem 8.
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