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On some extremal properties of sequences of integers, II

By P. ERDŐS, A. SÁRKÖZY and E . SZEMERÉDI (Budapest)

1. Let A = {a1<a2< . . . } be a sequence of positive integers. Put A (n) = Z 1 .
a,sn

Denote by fk (n) the smallest integer so that every sequence A satisfying A(n)z
~fk (n) contains a subsequence of k terms which are pairwise relatively prime . It
is easy to see that

f2 (n) = L21 + 1,

f3(n) = 1 + ~ (n) (= 3 n+ 1 for 6/n)

and it seems likely that

fk(n) = l+~k-1(n)

where ~k _ 1 (n) denotes the number of integers not exceeding n which are multiples
of at least one of the first k-1 primes 2, 3, . . .,pk _ 1 ,

In Part I of this paper (see [3]) we proved in a sharper and more general form
several related conjectures stated in [2] . In this paper, we continue this discussion .
First we introduce some notations . A ( _, . ) denotes the integers aiE A, ai -- u (mod m)
(and A(n , , .) ( n) denotes the number of those terms of the sequence A (,., . ) which do
not exceed n) . (p(n) denotes Euler's function . We put

(PA (u) = Z 1
a,sn

(a,, u) = 1

`VA (U, v) = 2' 1,
a,sn

(a,, u) _ (a t , u) = 1

For k=2, 3, . . ., Ok(A) denotes the number of the k-tuples ail , a, 2 , . . ., aik such
thata;,--<a;,-<...<a;k~n and (a;., a,)=1 for 1 :-5 x<y :-!:~ k . We put

F2 (n) = min max (pA(a~)
1

F3 (n) = mm max /A(a .,,, ay)
A 15x<ysA(n)

where the minimum is to be taken over all sequences A satisfying A(n)' [2 + 1

and A(n)'
[2fl

+2, respectively.
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cl , c2, . . ., no , n 1 , . . . will denote suitable positive absolute constants .
In Part I of this paper, we proved the following theorems :

Theorem 1 . For n ::-n,,

F2(n) > c l n/loglog n .

Theorem 2 . There exists constants c2, c3, cq, n, such that

A(2,,) (n) = s, 1 5 s < c 2n

and

A (n) > 2

max (PA (a ) > c,n/loglogn
a i EA

	

s

0,(A) ::- c,sn/loglogn .s

Theorem 3 . To every 0<e(<1/2), there exist constants
=n2 (e) such that if n ::-n,,

A(2,1) (n) = s z en

A( n) > 2 ,
then

02 (A) > c5 n2 .

(Note that Theorem 1 is a consequence of Theorems 2 and 3.)

2. Throughout this section, we will assume for simplicity that n is even ; all
our results could be extended easily for odd n .

P . ERDŐS conjectured in [2] that if

A(n) z 2 +2
then there exists a 4-tuple ax , a,,, aa , a„ such that

(ax , a„) _ (a., a„) _ (a y , a„) _ (ay , a„) = 1 .

In this section, we are going to prove the following sharper form of this conjecture :

Theorem 4. For n>n3 ,

F3(n) > ce n/(log log n)2 .

We first prove two other theorems which will easily imply Theorem 4 .

C5 =e5 (e) and n 2=
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Theorem 5 . There exist constants c,, c g , c 9 and n4 such that if n -.>-n,,

A (2 ,1) (n) = s, 2 - s < c, n

and

(2)

	

A(n) > 2

then there exist at least c8s2 pairs ax , a,, (axEA, a,,EA) satisfying 1-ax <a,,-n and

2(3)

	

~A(ax, ay) > c,nl(loglog n
s

) .

PROOF . We need the following known lemma (see [1]) .

Lemma 1. The number of integers 1-k-n satisfying tp(k)/k< 1/t is less
than n exp (-exp c,, t) (where exp z=ez), uniformly in t>2 .

Let us apply Lemma 1 with

=i l l nt

	

og og? .c lo

	

s

(t>2 holds for small enough c, .) We obtain that the number of integers 1-k-n
which satisfy 9(k)1k-<11t (where t is defined by (3)) is less than s/2(--1) . Denote
now by r >s/2 (~ 1) the integers in A,2 ,, ) satisfying P(b i)/b i > I /t .
We are going to show that for l --x--y--r,

(4)

	

OA (b, b y) > c,n/loglog n
s

provided that c, and c, are sufficiently small (and n is large) .
Clearly, the number of integers 2u--n satisfying (2u, bx)=(2u, b,,)=1 is

2 +

	

(- 1)k

	

n

	

/p; 1 P ;2 "' PtkIIbx> byl

	

2pi1P it . . . A, J

Here for n large, the number of terms is
2v([b x ,b y]) < 24logn/loglogn

(where v(m) denotes the number of the distinct prime factors of m) since it is well-
known (and follows from the prime number theorem or a more elementary theorem)
that for m < N,

(5)

	

v(m) < 2 log N/loglog N,

hence
v([b x , b y]) < 2 log n 2/loglog n 2 -- 4log n/loglog n .
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Z

	

1 n f

	

1
1 --

	

241og n/loglogn >
usn/2

	

2 P/Ib_byl

	

p
(2u, bx)=(2u, b y) =1

n 11 1 - 1-

	

1 -- 24logn/loglogn _1 ~

	

1

2 P/bx

	

P
J
Plby

	

p )-

n 9(bx) 9 (by) -241og n/loglogn >
2 bx

	

by

> n _ 241ogn/loglogn > n
2t 2

	

3t2

for sufficiently large n (with respect to (3)) . Hence, we obtain by a simple
putation (with respect to (1) and (2)) that for sufficiently small c, and c 9 ,

~A(bx, by)
us"/2 usn/2

(2u, b,)=(2u, b y)=1

	

2u ffA

> 3t2 - l2 -A(2'°)(n)) > 3t2 -2 +(A(n)-A(2,1)(n)) >
z

>3t 2 - A(2 , 1) (n) = 3tz -s > czn'(loglog s J ,

com-

provided that n is large enough which proves (4) .
To complete the proof of Theorem 5, observe that bxEA and byEA in (4),

furthermore, (4) holds for any pair x, y such that l -; x-<y-=5r, and here r>s/2(-1) .

Theorem 6. To every 0<E(< 1/2), there exist constants c,,=c11(E) and
nb =nb (E) such that if n ::-n,,

A (2 , 1) (n) = s ::- En
and

A (n) > n/2

then there exist at least c10n2 pairs ax , a y (axEA, ayEA) satisfying 1 ~-ax <ay-n
and

OA(ax , ay) > c 11 n .

(Note that for En<s<c,n, Theorem 6 would follow from Theorem 5, but for
the large values of s, we need a separate proof .)

PROOF . We are going to show that Theorem 3 implies Theorem 6 .



By Theorem 3 and Cauchy's inequality,

(6)

	

f

	

1 ,(a,,, ay) _

	

I =.7

	

z
Isx<ysA(n)

	

Isx<ysA(n)

	

at sn
(at, ax )=(at, ay )= 1

Z ( lsxzA

	

1 ) Z ( (PA (a,)l

	

I a ((PA(ai)) 2 -
2

Z (PA(ai)a
i-

		

y_ (n )

	

at-

	

i 5n-

	

a,--n
(a t , az ) = (at, ay )= 1

1 (aZ (PA (ai))2

	

I

	

1

	

2 1
2
	n	_ 2at~n - 2n

(
a
Z
(a~ I)) _2n 2 ~
(ap a,)=1

1 (202 (A ))2 - 1 n2 > 1 (2c 5 (e) n2)2 1 n2 > c12 (e) n 3 •2n

	

2

	

2n

	

2

On the other hand, we have

(7)
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G

	

`Y, (a.,, a .,)
1 s x<y=A(n)

Z

	

`YA(ax, ay)+

	

G

	

WA (a,,, ay)1=x<ysA(n)

	

15x<ysA(n)
dtA(az ,ay)>clln

	

Vi,1(a, , ay)<clln

c 1,n+

	

n c11 n 3 + n 1 .
1-:- x<y-n

	

1-x<ysA(n)

	

2

	

]sx<ysA(n)
Vt A(ax, ay)> c31 n

	

yiA (a,x , a y)> cll n

If c11 is sufficiently small (depending on s) then (6) and (7) yield the statement of
Theorem 6 .

Theorem 4 follows easily from Theorems 5 and 6 . Namely, if

2 : s = A(2 , 1) (n) < c, n

then Theorem 5 yields that

max ~A (a,,, a y) > c, n/(log log n) 2,15x<ysA(n)

while if
s = A(2 , 1) (n) ~--- c,n

then applying Theorem 6 with c, in place of e, we obtain the much sharper

1 maxA(n) `Wax, a y) > ell (c,)n

which completes the proof of Theorem 4 .
Finally, we remark that using the same method, also the following theorem

could be proved :

Theorem 7. If n ::-n,,

A(2 1) (n) = s(> 0), A(n) > 2
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and

(8)

	

r = min is, [ 10 log log n]'}

then there exist integers bl<b2< . ..<b, and dl<d2< .
lll

. .<d, such that bi , diEA for
i=1, 2, . . ., r and

(b i,d;)=1 for l-i,j-r.

(The statement of this theorem is, perhaps, true even with min {s, (1/4-E)n/log n}
on the right of (8) but this can not be proved by our method .

3. Starting out from an other conjecture of P . Erdős, we will prove the follow-
ing analogue of Theorem 3 for triplets a,, a,,, a, instead of pairs ax , a,, :

Theorem 8 . To every 0-<s(-_l/2), there exist constants CH= C12(e) and
n,=n,(E) such that if n ::-n, and

(9)

then
03(A)

	

e12n 3 .

PROOF . Denote by P, the product of the primes not exceeding r . We need

Lemma 2. To every P>0 and 8~- 0 there is an r o =r6(Q, 6) so that if r--r,,,
n

n>n 3(O, b, r) and a=1, 2, . . ., P, then for all but O
P

integers k satisfyingT
1 k n, k - u (mod P,),

we have

(10)

	

r

hold .
By (9),

Pr/6-1

	

6

	

Pr

(Z A(P,.,6k+i)(n)) _ Z A(Pr,J)(n) = A(n)

	

(
2
+ E) n .

k=0

	

i=1

	

j=1

	

3

This implies the existence of an integer k such that Ozk_-P,/6-1 and

A(n)>-(3+8)n

a(k)= jj(1-'1-8.
pfk

	

P)
::-

p_r

This lemma is identical with Lemma 2 in [3] .
Now we prove Theorem 8 . Let r denote a positive integer for which

E E

r0 4 ' 4
and r -- 3

Pr

	

6

6 OsmPJ/{6-1 f A(P r,6k+i)(n)
i=1

6
Z A(P r,6k+i)(n)
i=1 P, (3 + E) n = (4 + 6E)

Pr
.



Clearly, for every u,

n
A(pr, .)(n) <

Pr
+ 1 .

(11) and (12) imply that there exist integers i l , . . ., is such that

(13)

	

1 mil< . . .<is~6

and

(14)

	

A(p„sk+i,)(n) > 2e
n

	

for j = 1, . . ., 5,
r

since otherwise

2 Acp- sk+ö (n) ` 4 ( n + 1) + 2 (2e n) _ (4 + 4e)
n
+ 4 < (4+6 e)

n
i=1

	

Pr

	

Pr

	

Pr

	

Pr

would hold, in contradiction with (11) .
It follows from (13) that the sequence {i l , . . ., 0 contains a subsequence

jjl, js, j} of 3 terms which are pairwise relatively prime . Let us put 6k+ji =u,
for i=1, 2, 3 ; then we have

(15)

	

(ul, u2) - (ul, u3) = (u2, Q = 1 ) Jul, - u,,I - 5 for 1 - ft, v - 3,
and by (14),
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n(16

	

Aipr,,,,)(n) > 2eP .
r

Let b,--...<b, denote the sequence of those integers b for which

(17 )

	

bEA(p„n,) and
p/b

	

p

	

4
p-r

Lemma 2 yields with respect to (10) and (14) that

t > A(pr, .,)(n) - 4 Pr
> 2e

Pr 4 Pr
> e

Pr
.

We are going to estimate from below the number of solutions

( 19)

	

(bi, a„) = 1, a.EA(p .,n2)

(for i fixed) .
Assume that p/(b i , d), d=-u, (mod Pr) . By (10), (15) and (17), these imply

p>-r . Denote by D i (P,, u 2 ) the number of those integers d for which d-n, d=-u,
(mod Pr) and (b i , d)=1 . We have by a simple argument

(18)

(20) Di(Pr, U2) -n il (1
1 )

;r p/bt

	

P
p-r

2°(b,) < 221og n/log log n
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Di(P,., u2) > n U (I-1 - 22logn/loglogn
Pr p/b,

	

p
par

> (1-
E n- 22logn/loglogn ] -

E n
4 Pr

	

21

	

Pr

(for n large) .
Denoting the number of solutions of (19) by vi, we have by (16) and (21)

v i -- A(Pr, n2)(n) -

	

z,

	

1 =
dsn

d ° u2 (modPr)
(b,, d) > i

(22)

(23)

Lemma 2 yields by (10) and (22) that

(24)

(26)

A(P, . u2) (n) - (

	

Z

	

1 - Di(Pr, U2)) Cdsn
d=u2 (mod P,)

> 2e P-(P +1)+(1-2)
P

=
2
n -1 > e

P
.

r

	

r

	

r

	

r

	

r

Let dii) < . . . <4.',) denote the sequence of those integers d for which

(b i , d) = 1, d E A ( p,,,,, ) and
pld

	

P
p>r

a n

	

n

	

a n

	

8 n

Wijvi 4 P >E P 4 P

	

2 PP-1

	

r

	

r >

	

r

Let us denote the number of solutions of

(25)

	

(bi, ay) _ (d;`) , ay) = 1, ay E A(Pr,~a)

(for i, j fixed) by zj(i) .
By (15), (17) and (23), if d--u, (mod Pr) and p/(bi , e) or p/(d;i), e) then p>r.

Denote by E(O(Pr , u3) the number of those integers e for which e5n,
e-u3 (mod Pr) and (b i , e)=(d,(i) , e)=1 . With respect to (5), we have

Ej(' ) (P,., ua)- n

	

',(i
- 1 )

Pr p/b, d()

	

P
p>r

-< 22 log n2/log log n2 c 24 log n/log log n

-- 2v(b i dj t l)



We obtain from (17), (23) and (26) for sufficiently large n that

(27)

>
Pr

	

4 ~_24logn/loglogn

(16) and (27) yield that

(28)
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Ej`) (Pr, u 3 ) > n 1 I 1 - 1 - 24logn/toglogn --
Pr PIb i d(j )

	

P
P-r

__ n

	

ll

	

1

	

~1

	

1

	

24logn/loglogn >
Pr P/l,,

	

P Pidjit

	

P
p>r

	

p-r

Zi
11) z A(Pr, ua) (ri) - Z

	

1- Ejl)(Pr, u3» >esn
e-ua (modPr)

> 2EP-(P+1)+(1-2) P =
2_Pr > sP.T

	

r

	

r

	

r

By (17), (23) and (25), the triplets bi , dji ) , ay satisfy

(bl, djl) ) _ (bl, ay) _ (d,(0 , ay ) = 1, bi, dj') , a,EA,

and by (18), (24) and (28), their number is greater than

n a n

	

n
EP •2P . &T

.
C2(E)n

3
r

	

r

which completes the proof of Theorem 8 .
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