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SOME APPLICATIONS OF GRAPH THEORY AND COMBINATORIAL
METHODS TO NUMBER THEORY AND GEOMETRY

P. ERDOS

I have written several papers and notes on these subjects. To avoid
repetitions and to keep this paper short, I will not try to give a systematic
account of this subject but will only discuss a few recent results obtained
by my collaborators and myself. First of all, I give a partial list of some
of my older papers on this subject.

I. P. Erd6s, On some problems in elementary and combinatorial
geometry, Annali di Mat. Pura et Applicata, 53 (1975), 99-108. This is
a survey paper with any references.

II. Some applications of graph theory to number theory, The many
facets of graph theory, edited by G. Chartrand and S.F. Kapoor, Lecture
notes in math 110, Springer-Verlag, 77-82.

III. On some applications of graph theory to number theory, Publ.
Ramanujan Institute I.

IV. On the applications of combinatorial analysis to number theory
geometry and analysis, Actes Congrés Int. des Math., Nice, 3 (1970),

201-210.
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1.

In August 1977 the following question occurred to me. Let %y 5
.,X, be n points in the plane, no three on a line. Determine the
smallest n = n, such that there should always exist & of the x’s which
determine a convex k-gon which has no x’s in its interior. It is easy to see

that n, = 5, but it is not at all obvious that such an n exists for k> 4,

Ehrenfeucht in fact gave a simple and intuitive proof that #, exists,
Harborth and independently Morris proved that n, = 10. At present it is
not known if n, exists.

[ arrived at the problem about »n, by adding a new condition to the
well-known problem of E. Klein (Mrs. Szekeres). Determine or estimate the
smallest integer flk) for which if x,,... » Xp(k) areany flk) points, no
three on a line, then one can always select k& of them which form the
vertices of a convex k-gon.

Szekeres conjectured flk) = 2¥~2 + 1. Szekeres and I proved

2%k —4

(1) 2"—2+1<f(k)s;[k_2

(Some inaccuracies in our proof were corrected by Kalbfleisch). Makai and
Turédn proved f(5)=9, fl6)= 17 has not yet been decided. For the
literature on this problem see I.

In IV I stated without proof that to every e€> 0 there is an f,(k)
so that if x,... ’xfetk) are fe(k) points in the plane, no three on a line,

then one can always find k& of them which form a convex polygon all
but two angles of which are greater than 7 — e. I outline the proof which
uses Ramsey’s theorem. Let 7 be the smallest integer so that among any
t, points there is always a triangle with an angle > 7 — €. It is well known
and easy to see that f_ always exists and we will discuss the exact
determination of ¢_ later.

Denote by r,(u,v)=m the smallest integer so that if we divide the
k-tuples of a set S, [S|= m, into two classes, then either there is a set
Sl , IS, 1=wu, all whose k-tuples are in class I, or aset S,, |S,[=v,all
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whose k-tuples are in class II. Ramsey’s theorem implies that r{u,v)
always exists.

From Ramsey’s theorem we easily deduce
(2) F ()< ry(t,,r (5, k) = m(e, k).

To prove (2), we split the triangles into two classes. A triangle is in
the first class if its greatest angle is not greater than 7 — € and in the
second class otherwise. By the definition of 7_ every set of 7_ points
contains a triangle of the second class. Thus by (2) there is a set of 7,(5, k)
points each triangle of which is in the second class. By E. Klein’s old theo-
rem every S-tuple of these r,(5, k) points contains a convex quadrilateral.
Hence there is a set of k& points each quadrilateral of which is convex and
hence it is a convex k-gon each triangle of which has an angle > 7 — €.
But then all but two angles of this convex k-gon are greater than 7 — e,
which completes the proof of (2).

There seems to be no doubt that f (k) is much smaller than the value
given by (2). It might be worthwhile to try to decide if f, (k) < Cf holds.

Let me tell now a few words about the more exact determination of

t,. Szekeres and I proved that every set of 2" points in the plane deter-

mine an angle >« [] = ;l] This is one of the few best possible results in

this field, since an earlier theorem of Szekeres asserts that for every € > 0
there is a set of 2" points in the plane all whose the angles are

< 1r(1 = %] + €. Thus our result seems definitive, but this is not quite the

case. Our results certainly imply

ty 2" and t; >2" forevery n>0

7 _n_+'l'?

but ¢, could be less than 2", we only obtain
n

(3) ILQZ"‘I-P-I

n

and indeed there could be equality in (3) for n > ny (but this is certainly
highly doubtful). All we proved is that 2” — 1 points in the plane always
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determine an angle > w [1 - %]

The following question is perhaps of some interest. Let {x;,...,x,}
be n points in the plane, no three on a line. Determine or estimate
min C(x,, ..., x,) where C(x,,...,x,) denotes the number of convex
subsets of x;,...,x,. The exact determination of min C(Jcl A ,xn)
is probably hopeless, and even an asymptotic formula seems difficult.
We now show

(1+o(1))logn

¢ logn .
n1 o8 < minC(x,,...,x,)<n log?2

(4)
The upper bound in (4) follows immediately from (1).

To prove the lower bound observe that (1) implies that every set of
¢t points contains a convex subset of size [c log ¢] =I. Thus any set of
n points contains at least

n
) [1‘) _nan—=1...(n—1+1)
(n—l]_ Ht—=1)...(t=1+1)

t—1

convex I-tuples. To see (5) observe that a convex [-tuple occurs in
[;’:;) t-tuples. Choose ¢ = [VYn]. Then from (5) we have by a simple

computation

i clogn
n 2
C(xl,...,x")>[t] >n

which completes the proof of (4).
Very probably
log min C(x,...,x,)~c¢ log2n
holds with some constant c.

On the other hand, I could be wrong. Here is an example where I
misjudged the situation. Let x,,...,x, be n pointsin the plane no
three on a line. Denote by f,(n) the minimum number of convex k-
tuples such a set must contain. I easily showed in 1934 that

- 140 —



. fk(n)

lim

n=eo n]
k

exists and that f,(n) equals the rectilinear crossing number of the com-
plete graph K(n). I did not realize the difference between crossing
number, and without further thoﬁght I assumed that they probably will
be the same. I also assumed that it will be hard or impossible to compute
the c¢;, thus I abandoned the whole question. I was both pleased and
dismayed (at having overlooked the possibilities of the problem) when
Guy told me (in Singapore in 1960) the conjecture that the crossing num-
ber of K(n) equals

33105 a-D][3 -] [4 - 3)].

The crossing numbers have now a large literature though Guy’s conjecture
is still open.

= Cp» 0<ck<l

Hadwiger and Nelson define the chromatic number o, of the &-
dimensional space as follows. Join two points in k-dimensional space if
their distance is 1. The chromatic number o, of this graph is the
chromatic number of k-dimensional space. It has been conjectured that
o, =4, but now it is generally believed that o, > 4. It is known that
4<a,<7. Larman and Rogers proved that o, < 3* and P. Frankl
proved o > k° for every ¢ if k> ky(c). It is almost certain that
o > (1 +e)* for some e>0 (independent of k).

Added in proof. P. Frankl proved this conjecture.

Let |S|=n. Denote by f(j,n) the largest integer for which there is
a family A4,CS, 1<i<fj,n) of subsets of S so that for every
1<i) <iy<fu,m) 14; N A, |#]. Trivially fn,0)=2""1.

P. Frankl proved that the value of fin, 1) is given by the family

F , consisting of the sets having at least 2

n ; : elements for n odd,

and of the sets having at least % elements in S\ {s} for n even, where

s is a particular element of S.
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For j> 1 the value of f{in,j) is not known. I conjecture that for
every > 0 there isan e€> 0 so that if

(6) nn<}'<[%—n]n then fin,j)< (2 —¢€)".

(6), if true, easily implies o > (1 + a)* for a certain fixed a> 0.
1
It would be, of course, of interest to determine lim gt

ko
A well-known theorem of de Bruijn and myself states that if G isan
infinite graph of finite chromatic number » then G has a finite subgraph
G' of chromatic number #n. Thus the determination of o, is a finite
problem and in particular if o, >4 there is a finite set S in the plane
so that if we join every two points of § whose distance is 1, then the
resulting graph G, (S) has a chromatic number > 4. It would be certainly
interesting to find such a set if it exists.

Let now S be a set in the plane which contains no equilateral triangle
of side 1. I thought it quite likely that then G,(S) has chromatic number
< 4. I hoped that if this is not true then the following weaker conjecture
holds: There is a k so that if G,(S) hasgirth > k (i.e., the least circuit
of GI(S) has k sides) then G,(S) has chromatic number < 4. Wormald
in a recent paper (which is not yet published) disproved my original
conjecture — he found an § for which G, (S) has girth 5 and chromatic
number 4. Wormald’s construction uses elaborate computations and is
fairly complicated.

Let u;,...,u, beany r positive numbers. Join two points of the
plane if their distance is one of the numbers wu;, i=1,...,r. a,(r) is
the largest integer such that there is such a graph of chromatic number
a,(r). Can a,(r) increase exponentially in r? It seems possible that
a,(r) increases polynomially in r. I can not disprove a,(r) < plte,

Simonovits and I in a forthcoming paper which will appear in the Ars
Combinatorica introduce a modified chromatic number of k-dimensional
space ¢, as follows. Let X;,...,X%, beagain n distinct points in k-
dimensional space; join two points whose distance is 1. a;( is the largest
integer so that our graph has chromatic number a‘,; after the omission of
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o(n?) arbitrarily chosen edges. Probably o; > (1 + ¢)¥, but we cannot

o
prove even that —% — . We proved that o = 2, ag > 2. Infactif k=4
7
we show that one can always omit o(n%) edges so that the remaining

graph should have chromatic number 2.

Here I just state an old problem which is also discussed in detail in I.
Denote by fk(n) the largest integer such that among any »n distinct points
in k-dimensional space there are at most f, (n) pairs of points whose dis-
tance is 1. I conjectured f,(n) < n'*¢ and offer a hundred dollars for a
proof of disproof. All that is known is that

2 G
fH(n) = o(n 2)  and fy(n) > nl *loglogn )

The lower bound is probably close to the truth. G. Purdy and I are
planning to write a book about this and related questions. Not much
progress has been made here in the last few years. Let me state a problem
where significant progress has been made very recently. Denote by D(n)
the minimum number of distinct directions determined by n distinct
points in the plane. Scott proved

1
clnz < D(n)< 2[%]

and conjectured that the upper bound is exact (or is close to being so).
Burton and Purdy recently proved Scott’s conjecture. They also proved

that n non-collinear points determine at least c¢n triangles of distinct
3

areas. Previously Purdy and I only proved this with n*. The paper of
Burton and Purdy is not yet published.

To end this chapter, I state two more problems. Let x,,...,x, be
n distinct points in the plane. Denote by €ys---¢, the set of all
circles passing through at least three of the x,’s. Let A(n) be the largest
integer such that for suitable choice of the x, there are h(n) distinct

circles of radious 1 among the c,. I could only prove

% < h(r)< nln-1).
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I would expect that

m a0, A
Perhaps I overlook a simple idea but I could make no progress with
this simple and attractive conjecture. I think an exact formula, or even an

asymptotic formula for A(n) might be difficult to get. Harborth and I

tried to prove i(:—) -+ o as follows: Consider the set of lattice points
1

(x,y), 0<x, y<n?. Denote by h (n) the number of distinct circles

of radius r which pass through at least three of our lattice points. Is it

true that
h,(n)

= oo

8) lim max

nm—+oo r
(8), if true, clearly implies the second conjecture (7), but we could not
prove (8).

Finally let me state an old and completely forgotten question of
Corradi, Hajnal and myself: Is it true that if there are given »n points in
the plane, not all on a line, then they determine at least n — 2 different
angles? (0 and w are counted as different but angles greater than w are
not allowed.)

2.

On combinatorial methods in number theory I published even more
than on applications to geometry thus I mention only a few recent results,
one of which I learned during the meeting. Let 1<g, <... be an in-
finite sequence of integers and denote by f{(n) the number of solutions of
n=a; + a;. An old conjecture of Turdn and myself states: If f{n)> 0 for
all n>n, then limsup filn) = . This conjecture seems rather in-
structable and I offer 500 dollars for a proof of disproof.

I observed many years ago that the multiplicative analog to this
problem can be handled without too much difficulty: Let b, <&, <...
be an infinite sequence of integers. Denote by g(n) the number of
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solutions of n= b,.b}.. Assume gn)>0 for all n> n;. Then
lim sup g(n) = . The proof was not very difficult but used extremal
properties of hypergraphs and was not too simple either. During our
meeting Nesetfil and Rédl told me their proof which is completely com-
binatorial and with their kind permission I now give their very ingenious
proof. In fact we show the following stronger result: let Py <py<... be
an infinite sequence of primes and let u-<u, <... be the sequence of
squarefree integers which are composed of exactly m of the p’s. Let
a, <a, <... be asequence of integers such that every u can be written
in the form a.a., then there is an integer ¢ of 2m prime factors for which

i’

the number of solutions of 7= a.aq, is at least m+ 1 .
£y [m + ]]

2

We split the m-tuples of integers into 2™ classes as follows. If

Py = (i, <...<i, ) is one of the u’s and u=a a ,

is determined by

pi -

aj‘ =pisl...pl. , then the class of {i,,...,i }

8
{83555 1 'I’fhis is a subset of {l,...,m}, so there are 2™ classes.
By Ramsey’s theorem there is an infinite sequence of integers I €ig<..,
all whose m-tuples lie in the same class, characterized by a set {8500 o Spds
1<s,<...<s5, <m. Put q; = p;.j_ and r; = q,, ;. The product of every
k ri’s will be an @, as we can always choose m qj’s so that the s,-th, ...
..., 5, -th of them should be our & r}.’s. Regarding the set {1,...,m}\
\{8y,-..,5} we get that the product of (m — k) rj’s must be also an
a. Assume m — k= k. If ¢ is the product of (2m — 2k) J}.’s, then =
(2m - Zk) [ m+ 1
" [

=a,q has at least —k m+ 1

2

]] solutions, which completes

the proof.

It is clear from the finite form of Ramsey’s theorem that we obtain
the same result if we assume only that every integer having m distinct
prime factors formed from a finite set of primes py <...<p, s=s(m)
is of the form a;a;, them there is an integer ¢ for which the equation
m+ 1
[m + l]

t=a, a; has at least [
2

] solutions.
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Let a;, <a,<...<a, be n integers. Let f(n) denote the largest
integer such that there are at least f(n) distinct numbers of the form
a;+a; and a.a. Several years ago I conjectured that f(n) >n?~¢ for
every €>0 and n> ny(e). Szemerédi and I proved that

1) alte<fim < nexp (Lo,

Perhaps the upper bound gives the right order of magnitude for fi(n).

Consider all the integers of the form 4 TP 4, and a4 -y
Denote by f,(n) the minimal number of distinct integers of this form.
We conjecture f, (n) > n*— €. Finally if we consider all the 2" sums and
2" products formed from the &’s and F(n) is the largest integer such that
there are at least F(n) distinct integers of this form, we conjecture that
F(n) > n* for every k and n> n,(k). It is surprising that we seem to be
unable to attach this very plausible conjecture — perhaps we overlook a

simple idea. We proved

c(log n)*?
(2) F(n) < exp oz Tog 1t

Perhaps (2) gives the right order of magnitude for F(n).

Graham and Rothschild conjectured that if we split the integers into
two classes, then always there is an infinite sequence a, <a,<... such
that all the sums

3 %’ekak, =0 or |1,

are in the same class. This conjecture was proved by Hindman.

I asked if it is true that there is an infinite sequence a;,<a,<...
such that all the sums and products

(4) %’ekak, ok =0 or 1,

are in the same class. I also asked: if (4) is false, does it remain true if we
only require the existence of a sequence 1< a; <...<a, such that all

the 27 sums and products
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n n
(5) k_Z(; €4y 5 g ak » €=0 or 1

are in the same class? Hindman disproved (4), his paper will soon appear
in the J. of Combinatorial Theory. (5) remains open for n=> 3.

Pomerance and I investigated the following problem. Let f(n) be the
smallest integer such that »n different integers a;,...,a, can be found,
n<a,<nfln), tla,.

We proved

1

log n
cl(@%] <An)< (2 —c,) log?n.

We cannot decide whether
1
fin) = o(log 2p).

F(n) is the smallest integer such that for every m there are n

distinct integers a,,...,qa, satisfying

a, =0 (mod 1), m<a, <m+ F(n)

forevery ¢, 1< t<n. We could prove only F(n)< n?

One of our principle tools in all these results is the well known
Konig — Hall theorem.

Define F*(n) as the smallest integer such that, for every m and
every p<n distinct integers a;m), m< a;’") <m+ F*(n) can be
found satisfying p | a,. We could not disprove F*(n)= O(n).

A curious result of Selfridge and myself seems to point in the other
direction (but certainly does not decide the issue). For every €> 0 and
k there is a set of k% primes p, <... <p,, and an interval (x,x+

+ @3 _E)sz) such that the number of distinct integers m in this

interval which are multiples of any of the p,’s is 2k; i.e. it is surprisingly
small. We do not know what happens if the upper bound (3 — E)pk2 is

replaced by (3 + e)pkz.
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An older and somewhat related problem of D. Newman is it true that

there is a one-to-one mapping ¢ of the integers 1< ¢<n onto the
integers m<t<n+mn such that (f,9(t)=1 forevery t? If m=
=n+ 1, this was proved by Baines and Daykin, but as far as I know the
general case is still open. One would expect that Hall’s theorem will apply
here but there seem to be unexpected difficulites.

Added in proof. Pomerance and Selfridge recently proved the gen-

eral case.
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