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The paper deals with common generalizations of classical results of Ramsey and TurSn. 
The following is one of the main results. Assume k2, 6=+-O, G,, is 3 sequence oi‘ graphs of ?I- 

vertices and at least i(g+ ) +E PP edges, and the size of the largest independent set in G, is 

@I). Let H be any graph of arbericity at most k. Then there exists an 11~ such that all G, with 
1r3-1r0 contain a copy of H. This result is best possible in case H= K,,c. 

1, Introduction. Notation. Statement of the main results 

In her paper [9] the third author raised a general scheme of new problems. 
These problems can be considered as common generalizations of the problems 
treated in the classical results of Ramsey and Turan Since 1969 she and the first 
author have published a sequence of papers on the subjcc’i [5], [(;I. [4]. This work is a 
continuation of the above sequence. 

We are going to define the Ramsey-Turin function KT (,. .) below. Our 
main aim is to give ieasonable estimates for this function in some special cases. 
However before doing this we have to say a few words about notation. We hope 
?hat in general these will be standard and self-explanatory, but we cln rtof stick to 
the special notation used in the earlier papers mentioned above. 

In what follows the letters k, l, m, n, Y, s, t de:rote non-negative integers. 
We set n={O, 1, . . . . n-l}. For;;C$ry sets A, B let [A]“=(XcA: !X]=ti}, 
[A]‘“= {XcA: IXjrf2}, etc. , let [A, B]“*m={XcdUB: pm+ 
=nAIXflBI=m}. 

For an arbitrary sequence &, . . ., k,-, the Ramsey function R&, , .., k,-,) 
equals to the minimal n such that for ail s-partitions [n+l]“= IJ EI of length 

icr 

r of n+l there are icr and Acn+l such that IAIzki and A is homogeneous 
for the partition in the class & i.e. [A]“cE,. 

Definition 1.1, (The Ramsey-Turbn funcfion RT (11; k,, ~. ., k,-,; Z)). 

AMS subject classification (1980): 05 C 55,OS C 35. 
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Assume n, k,, . . ., k,-l, I are such that n%C&, . . ., k,-, , 1). Then there 
exists a largest integer c satisfying the following condrtron: 
(1.2) There exists a graph G:==(kC:, &.)==(I/, .E) with JVJ=tl, IE/=c and there 

is a partition E = U Et of !< such that there is no independent set of size 
icr 

I for G and none of the graphs G,=(V, Ei), i-=r contains a complete 
ki graph. 
Let RT(n; k,,, . . . . k,-,; I)==e for the above e. 

Note that this is not the most general problem one can raise here. First 
of all the function just defined is really RT, (n; k,, . . . . k,,l; I) for s=2, but 
we do not give here any results for hypergraphs corresponding to the cases sb2. 

Tt should be also clear that it is just a convenience for us to give an a priori 
different role to the number 1, and not to speak about Z-partitions of length r+ 1 
of a set of size n. In our results the r’th class plays a special role. 

There is one more remark in place here. Let R”T(II; k,, . . . . k,-,; I) be the 
set of all those numbers e for which there is a graph G=(V, E) satisfying (1.2) 
with IE I= e. 

The investigation of this set RF (n; Ic,, . . . . k,-, ; I) in general could be 
quite interesting and relevant to several problems considered in the literature (e.g. 
size Ramsey numbers). 

It is a quite intrigueing question if this set is always an interval. We have no 
counterexample to this statemant. However in the cases we are going to investigate 
RT (n ; ko, _. ., /c,-~ ; I j sufficiently characterizes <T (n; IQ, . I ., k,-,; I) and we 
do not discuss this problem any further. 

Finally we would like to state two obvious formulas showing explicitly the 
connection of the RT function and the Ramsey and Turdn functions: 

{(ll, ko, . ‘> /c,-~, I): RT(rt; kU, . . . . k,-i; I) is defined) = 

and RT (12; k -I- I ; II + 1) 1s the Turan number of the complete k-graph. Our main 
results in this paper concern the case r= I, and we start to discuss them now. 

The classical result of F. TurBn yields that for kr2 

(1.3) RT(lr: k+l; n+1) = $11~;] F?(I+o(I)) 

As lo the function RT(n; k; I) most of the known results are asymptotic 
estimates in case I is replaced by a function or’ n which is o(n). We will continue 
in this tradition and WC will freely use the symbol RT(n; Ic; o(n)). 

The earliest result on the subject stated in [4] says that for kz2 

RT(n; 2/c---i; o(n)) = ;(l-A] n2(l+o(l)) 
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The case of even second entries turned out to be much harder. It was proved 
only much later in [I] and [lo] that 

(1.6) 

RT(n, 4, o(n)) = $+0(l)) 

[lo] gives the upper estimate and [l] the counterexample. 
One of the main aims of this paper is to generalize this and prove that for k z 2 

RT(u,2k, o(n)) = ~(g=&lfO(l)) 

The lower estimates arc all obtained using the only important genuine example 
given in [l]. This will be done in Section 4. 

First we give a technical definition to restate (1.4) and (1.6) in one formuIa 

Definition 1.7. For I Z3 let 

1 1-3 1 31-9 --- al- 21-l =ym in case I is odd, 

in case 1 is even, 

The sequence n,, a,, a6, ae, . . . = 0, $, +, +, .,. is strictly increasing. 
Now the common generalization of (1.4) and (l&) is that for I z3 

0.8) RT(n, 1, o(lr>j = a,rP(l+o(l)) 

The upper estimate wiI1 be a corollary to our main Theorem 1 which is an 
Et-d&-Stone type generalization of (1.8). 

First we introduce a convenient symbolism for stating this result. 

Definition 1.9. Assume ii,1 and the graph H are such that there is a graph G = (n, E) 
not containing H as a subgraph and having no independent set of size 1. We 
denote by RT(n; H; I) the largest integer e for which a graph G described above 
exists with (E( =e. 

Note that RT(n; k; 1)= RT (n; Kk; I) for the complete k-graph Kk. 

(1.10) Let Chrom (k) denote the class of graphs G with chromatic number at 
most k. 
Taking into consideration that RT(n, G, nf 1) is the Turin number of G, 

a classical result of [7] generalizes (1.3) to 

(1.11) For kz2, and jbr each GEChrom(k+l), RT(n,G,n+l)s 
S +(l --$P(l+o(l)). 

We now remind the reader that a graph G= (V, E) is said to have arboricity number 
at most k iff Y can be written as the union of sets Y = U J$ in such a way that 

G(V,), the subgraph of G spanned by Vi, is a forest foriT:k. 
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Now in our generalization of (1.8) the arboricity plays a role similar to that 
of the chromatic number in (I I 11). However, the analogy is not complete and we 
need some more definitions to state the result. 
IMMion 1.12. Let 1~3 and set /~=[+l, Let Arb (I)= {G==(Y, E): There is 
;t scqrrcwc (Vi: i :/i) sucli lhl I/’ .; ( I Vi, (;(I$) arc Ibrcsl lb1 i L/i, G(V,l 

isli 
has no edge and Vk=O for even f). 

Note that for even 2, Arb (I) is the class of graphs of arboricity si, while 
for odd f, Arb (I) consists of graphs whose vertex set is the union of an independent 
set and of a subset spanning a subgraph of arboricity at most [+I. 

Note that K,EArb (2) for ZZ~. Now we are in a position to state our main 

Theorem 1. For lz3 and GEArb (I) RTcn; G, o(n))%qn*(l+o(l)). 

Note that because of K&Arb (1) this yields the upper estimate needed for 
(1.8). The proof of Theorem 1 will be given in Section 4. 

We would like to point out an interesting phenomenon. 

Definition 1.13. By the above result, for each G there is a smallest real number 
c! Osc-=+ such that RT(n; G; o(n)) ~cne(l+o(l)). Let us denote this smallest 
c by c&G)=c(G). We call it the critical number of G. 

There are some graphs for which we can not determine the critical number. 
Such is the two by two Turfin graph Kg,*,* =G1. By Theorem 1, we know that 
c (G,) % & but we have no other information. 

On the other hand for all graphs G for which we can determine c(G) the 
critical number turns out to be one of the u,; I-3,4, . . . . We do not venture to 
conjecture that this is true in general, but we point out that our results imply that 
c(G) can not be arbitrary. 

In Section 5 we shall prove 

(1.14) For all graphs G, c(G)~[q, q+J for some odd 1. 
Hence e.g. there is no graph G with *<c(G)-=+. 

The main tool of the proof of Theorem 1 is a judicious application of Szeme- 
rtdi’s regularity lemma invented in [l l] and improved in [12]. In Section 4 we will 
restate this lemma for the convenience of the reader. We will use this lemma in 
Section 6 to solve a problem stated in [6] as well. The other tools of the proof are 
the tree building lemma (to be given in Section 2) and a generalization of Trrrgn’s 
theorem for some discrete weight functions. This will be given in Section 3. 

Finally, in Section 6 we will give the usual mess of miscellaneous unsolved 
problems. 
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2. The tree building lemma 

First we restate an easy lemma of [8] which will serve as a basis of most 
of the computations. 

Lemma 2.1. Given c, 84 and r there is an s such tlzat for aN suficieprtly large 
11 andfov all set system SC \nlzcn with [FIzs there is a subsystem 9’c.F with 
pq~~ mid ~r-w~~+~--~)~. 

The graphs defined below wil1 be used for constructing subtrees of a graph. 

Definition 2.2. For r’, r”‘z1, a graph I$=(V, E) is said to be an (r’, r”)-graph 
with root x (xEV) if IV(~(r’y’+l and for each ycV which has distance at most 
Y’ from x the degree of y is at least r”. 
will be called the special edges of H. 

The edges adjacent to the root x of H 

The following is obvious. 
(2.3) For r z I an arbitrary tree of r + I vertices is a subgraph of each (I‘, r)-graph. 
The following lemma deals with situations when we are given a graph G=(V, E), 
lVl=n, an integer ~21, sets Vi, i-q IF/il=lf and mappings A: E-+Vi]~c~~ 
for irp. The aim of the lemma is to find a large subtree T of G such that, for all 
i-=p, n J(e) is still large. Here is a formal statement of the lemma. 

I?CT 

Lemma 2.4. (Tlze tree building lemma.) Given c-0, r’, r”, pr? tlrt rc exist c’r0 
and s such that for all graphs G=(V, E) with IV [ =n, (E ] zsn andfir all mqppirtgs 

fi: E-c[VJ~~‘~, jVil=n, f or 
subgraph HC E with 

i-=cy, for all suficiently large n one can fir2d an (r’, r”) 

In{fi(e): et-H}\ 2 c’tl fbr i -r p. 

(Note that in the statement of the lemma we have identified the (r’, r”)-subgraph 
in question to its set of edges H, the vertex set being UH.) 

Proof. We write down the proof for p= 1, the rest being a mere technicality. 
We prove a stronger statement by induction on r’. NameIy we plove that given 
cz0, for every r”, t there are c’=-0 and s such that for all G=(V, E) with 
JEJ SS)I and for all f : E-~V2]Scu, IV21 =n, there are at least tn edges of G which 
are special edges of some (r’, r’?-subgraph HcE satisfying 

IiT {f(e): eEH}I z c’p1. 

For Y’= 1 this follows from Lemma (2.1). Assume that the iemma is true for 
I’ for all Y’, f”, 5~0 with suitable E’s0 and Z. 

Let G==(V, E) and S:E-~[V1]“C”z jVJ-/VI]=~2 be given and let n be 
sufficiently large. By the induction hypothesis, we can arrange that for 

E = {e: e is a special edge of some (i^‘, r”+l)-graph 

R(&)cG with f(e) = n {f(e’): e’ER(e)}A]J(e)l s z’n} 

we have IEIz?/P. For ~EJ?, let g(c) denote the endpoint of e, which is not the 
root of R(e). 
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Apply Lemma 2.1 for the graph G=(V, E) and for the mapping f‘ : E- 
+[V,]-. 

In case f and IZ are large enough and c’+O is small enough we will get 
that for 

E” = {eEE: There is an (1, t”) graph is(e) with root x and such 

that g(e’) = x for e’EW(e), and If(e)\ z c’n for 

T(e) = fl UWK Re)l} 

IE / ;rln holds. Let now eiE. Clearly, there is an (r’+ 1, r”)-graph H contained in 
U {H(d) : e’E R(e)} such that e is a special edge of H and 

1 n df(e’),: e’EH}j 2 In {f(e’): e’CR(e)}] ;r c’n. 

3. The generalization of TurWs theorem for wdght 
functions taking values 0, 3, 1 

In this W=(V, w) will denote a multigraph i.e. V is a set, and w: [Y12+ 
--‘* (0, 4, I ). 

In [2] these objects were called multigraphs, for ec[F’]?, w(c)=0 means that 
c is not an edge, w(e)=If means that e is a simple edge w(e) = 1 means that e is 
a double edge. Our notation suits our present purposes more, and our lemma is 
unfortunately not covered by the numerous interesting results proved there. 

Definition 3.1. Given W = (V, w), we define two graphs Gcz=(V, EiY;,) and 
Gy = (V, ET> by setting 

E& = (eC[Vjz: w(e) z ji, ET = (eC[V]?: w(e) = 1.). 

Put e(w) = .E$,, w(e) (ie. “the number of edges” of W), and &(x)=~$~ w({x, JJ}) 

(“the degree of XEV in w”). 
Now the following definition of a “compIete I-subgraph of w” is not entirely 

natural but seems to work well, and suites our final aim. 

Definition 3.2. Let ?V=(Y, W} be given. The pair (X, Y) Xc YcV is a complete 
/-subgraph of TV iff [X12cEy, [Yj2cE& and IX]+ ] Y (~1. 

Lemma 3.3. (The generaIitation of Tz.trdds theorem.) Assume 123, IV ) =I? and 
W =(V, w) does not contain a complete I-subgraph (X, Y). Then e(w)Salit2(1 +o( I)). 

Remark. Note that we will prove a much better result since we can determine an 
extreme cinfiguration for sufficiently large n. It is also obvious that generalizations 
for weight functions say taking values (0, J-, 3, I} are immediate but we consider 
this out of the scope of this paper. 

Proof. The idea of Zykov’s proof of T&n’s theorem, the so-called symmetrization, 
works. See [13]. We will only outline the proof. 
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Assume W={Y, w) does not contain a complete I subgraph (X, Y), 
and c(w) is maximal. Choose two vertices xfy, {x, JJ}$ E,wI,, Assume &(x)z~~,,(JJ). 
Define w’ so that w(e) = w’(e) for ye e and w’( {z, ~1) = w({z, x}) for ZE V. Then 
e(w’) is still maximal and w’ does not contain a complete I-subgraph. Indeed, 
if (A’, Y) were a complete 1 subgraph of w’, only one of x, y could occur in Y, 
and if it was y, we could change it to s. I3y repeated applications of this operation 
we can assume th;lt there is a JY with maximal c(w) and such that {x, y}a E$ 
is an equivalence relation. Denoting the equivalence classes by A,,, . . . . &,, 
we bow that for jrr.j<I?l either IV(S, y)=+$ for all xEAi, J'EAj Or W(X, JJ)=l 
for all XC,&, J'EA,. Moreover lll-=i- 1, since any one element subset of a [ Y]“c 
Es, can be chosen as X. We now know that GF does not contain a complete 
1-m subgraph. Choose now x&4!, y&4, ifj-em, w(x, y)=+. Assume &(x)2 
d,“(y). Define w’ as follows: w(e)=w’(e) if efiAj=O, and for e= {z, ~1, J~EA, 
let IV’(~) =I*‘( {s, 4’)). Then e(w’)se(w). Now to see that W’ does not contain 
a complete I-graph (X, Y) it is sufficient to see that G,“’ does not contaiu a complete 
(I-rtt)-graph. If it did, then this complete (I-m)-graph could contain at most one 
element from each A;: iem and it could only meet one of the equivalence classes 
Ai, Aj. If it met Aj, we could change the common element with Aj to an element 
of Ai obtaining a complete (I-In)-graph in Gr as well. 

By repeated application of the above operation we can obtain a )I-’ with 
maximal e(w), not containing a complete I-graph (X, I’) and such that (x, I’}$ E,” 
is an equivalence relation, and denoting the equivalence classes of this relation by 
B ,,, , ,., B,rr,-l, the A-partition is a refinement of the B-partition. 

From now on we assume that n is sufficiently large. Next we can assume 
that each Bi contains at most two Aj-S, since an easy computation shows that if 
Bi contains more than two Aj’S then splitting B; to two almost equal parts 
Bi.o,Bil, and defining for X, yEBi w'(x, y)=l ifF XFBi,O, yEBi,r :md W(X, ~3~0 
otherwise, e(w’) &e(w)+o( 1) but w’ still does not contain a complete l-graph (s, .I!), 

Next, if two B’s say Bj and Bj, i # j contain two Al,-& then an easy 
computation shows that one does not decrease w more than by O( 1) by first 
equalizing the size of B,, Bj and then the A,‘$ contained in their union. After 
that an easy computation shows that we are better off by splitting BIU B, into 
three equal parts choosing them as new B’s and making them A,-s well. It follos 
that there is a basically maximal configuration either of the form V= B. U . . . U B,,,,-, , 
Bo=AoUAlr Ai+l- -Bi for 2siem=m’+l, m+m’el or of the form 

V = 4, U . . . U B,~, ) in = 11)‘, Ai = Bj for i < ~11 = [~] 

In case I is odd, only the second possibility can occur and /jBi( - /B,i I{ s I for 
i,,j-=f?lf. In case I is even, the first possibility occurs and computation shows that 
one gets the “largest” e(w) in case w is regular, i.e. the sizes of the sets are deter- 
mined in such a. way that ~~Jx)--c?,,,(J~) for X, JJF K The reader can easily check 
that this gives the numbers a, for 1~3. 19 
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4. Restatement of the regularity lemma. Proof of Theorem 1 

Definition 4.1. Let G=(V, E) be a graph 
(i) For A, BcV set e&I, B)=e(A, B)=IEn[A, B]l*ll and &(A, B)= 

4% B)= 7;;;; provided A, B # 0. 

(ii) For ~9, A, B $0, A, BcV the pair (A, B) is said to be wegrrlur 
if for all XcA, YcB with IXIz~ldl, IY/sEJBI 

Id(X, Y)-d(A, B)I -= E holds. 

(iii) A disjoint partition of V, V =JgM C,, is said to be an equitable partition 

of length jtifl if IC’,l=lC,l for I‘siz~;m, C, is the exceptional class of the 
partition. 

(iv) An equitable partition V =,g C, is said to be e-regular if ICal%cn 

and (C,, C,) is c-regular for all but .zmB1-;airs (i,i> 1 ~iej~rn. 

Szemetbdi’s regularity lemma [ 121. For every so >O and m, there are no=nO(~o, mo) 
and ml=m,(e,,, m,) such that for every graph G=(KEE) with IVJ=n=-nO(eo, mJ 
there is an &,-regular partition V = U Ci of V with 

ism 

l&J r= nt -c m1(eo, mo). 

Now to prove our Theorem 1 we will prove its “finite” form, i.e. 

Theorem 2. Assume i 2 3, H =(Vu, EH) 6Arb (I) and E z-0. Theta there exist 
6~0 and no such that for a graph G=(KE) with ]Vl=n>no, IElg(al+e)n2 
and US&, H is isomorphic to a subgraph of G. (Here a(G) as usual de- 
notes the size of the largest independent set of G.) 

Proof. Let lV,,[=r. We now describe the order in which we are going to choose 
the parameters featuring in the lemmas. In the proof we are going to apply Lemma2.4 
repeatedly ZSI times with pal and r’, rn=r starting with c]=~j2 and then 
applying the lemma for sets of size c’n c ‘==c* and so on, This gives us numbers 
cl, . . ., ~~~-50, and numbers S, , . . ., sl (from Lemma 2.4). We than fix Ed of the 
regularity lemma so that E,, is smaller than c,. c/4. We then choose m. of the 
regularity lemma so large that Lemma (3.3) should apply for graphs having (a& c/4)1tl’ 
edges and m %m,, vertices, and so that I/m, -z&/4. The regularity lemma yields 
us numbers nI and m,. We will assume that nwn, and we will choose 6 so small, 
that even a subset A c V of size 2 (l/m&dz must contain sn edges where .r s 
max {si: i S/}. 

Let YH= U qR, k=[1/2] be a partition establishing that HEArb (I). First 

we apply the re$$arity lemma and obtain an co-regular partition of length m-l- 1 
(mo- m-= ml> V = I., Ci of the set K 

ilsm 
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We now define a weight function w: (1, . . . . m}-{0, l/2, 1) as follows: 
For lsi<j%n 

I 0 if d(Ci,Cj)<f or (Ci, Cj) IS ilOt .s,-regular 

w({i,j}) = + if + s d(C;, Cj) -=z A+? 

I 

2 2 and (Ci, Cj) is co-regular 
1 E 

Clearly, e(,u) Z 2 d(Ci, Cj)-+m2 
lzlr jzim 

-~m2%[al+$]m2 because l/n7, is small. 

Hence we can apply Lemma 3.3. We get subsets Xc Yc{l, +.., m} such that the 
pair (X, Y) is a complete I-graph for the weight function IV. 

Let (io , . . . . iUwl}=y\X, (i,, . . . . iU+U-l}=X u+2Y=l. 
To continue we need more notation. For xf V, BcV, &(x, B)={ycB: 

{x, y}cE} and dx, B)= IvG(x, BY. V&X, B) is the degree ofthe vertex x for B. 
For O#XcY let I&(X, B)=Jf;?&(x, 13). 

Assume now for a minute that ~$0. The pairs (C,, CtI) O-=j<u+u are 
all eO-regular, by the deiinition of w, and because of [Y]2~E$2. Hence u&, Ci,) z 

+- e, 1.1 ,I C, for all 1 sjz US-0, for a positive portion of xE Ci,. 
Applying Lemma 2.1 we can arrange that there is a subset &EC,,, i&/==r 

n(l-4 such that (IT&&, C,)~--~CI - for 1 z%jeu+u, where c1 is still larger than 

eoI Repeating this procedur? u times we get sets Aoc Cio, . . ., A,,-, c Ci,, 

lAoI=... 
n(l-E’j 

= lA,-l/ -r and such that the sets I7c ( U Ai, C,) = Cj have size z k, 0 
i-w 

for u~j-=u+u, and c, is still larger than co. 
Now we turn our attention to the set C,“. Now because of [XJ2c E;, for all 

=(i+EJeo) lCJiz($-+~) IC,!l, for xcCs where Ct:, j, U-=j-=UfU, u&, Cj)- - 

is still large enough to contain s edges as required by Lemma 2.4. Now for s, J’E C:, 
{x, y}EE, u-=j-=u-f-u let fi({x, y})=vG(x, Ci)fl %((v, Ci>=JI&{x, II}, CJ). Then 

IXX, r}) r+ IC;L N ow, by Lemma 2.4 we can choose an (r, r)-graph H,,c E, 
UH,,d~fA,cC:cCiu insuchawaythatforeach u4jcrtl-kD 

i,g KAe, CiJI Z c,,+, nclln$). 
” 1 

Since A,= U H, this implies 

Clearly, we can continue this procedure, and define the sets Aic C, for j<u+c 
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in such a way that for jcrj’-=tl+u [Aj, Aj,]J;‘cE, and that for zl ~j<:u+v, G(Aj) 
contains an (r, r)-graph. Let B,=As,,UA,,,.l for v <[[tr/Z]=k 

B (e/2)+j = A,t+j for j 4 VP and 

BI, = 0 for 1 even and 

Now for v-=k, the graphs G(B,) contain a tree isomorphic to H(Y,*). 
For v-=[u/2] this is true because G( B,) contains a K,,, and for [t1/2] -= v-= k 
this is true by (2.3) because G(B,) contains an (r, r)-graph. 1 

5. The counterexamples 

5.1. There exists a sequence G1,,,=(n, E,,,) of graphs, such that iE1,,l=o(n2), 
z(G,,)=o{i~) and the girth of G1,, tends to Infinity. See [3]. 

5.2. There exists a sequence C&=(n, E2,,,) of graphs satisfying the following 
conditions : 

u+L K4~G2,,,, 
112 8’ 

a(G2 )=o(n) , If 

_I Note that Gz,,, can be chosen so that n=A2,HLiBl,t, and all but o(?) edges of 
GP,,, are in [As,,,, &,,,]I*‘. See [ 11. 

As it is pointed out in the paper of Bollobris and Erdiis, it is not known if 
G2,,, can be chosen so that I&.,,, = I -$/ls holds for all M. This leaves a corresponding 
open problem for all even i,Zr4. It is also not known if G.,,,j can be chosen so that 
G2,n(AP,n), Ga,@& have large girth as well. If this was the case, our argutnent 
on p. 20 would yield that cR2.(H)=c1 for some I for all graphs H. 

5.3. Let kg=_!. There exists a sequence Gi,,,=(n, Ed,,) of graphs such that, 
&.+I + Gi,,,, BEG,,,! 2; (1 -+) tz2=a31r+1n2, and a(G$,,)=o(n). See [4]. 

For the convenience of the reader we describe a proof. We assume that 11 is 
divisible by k. In the other cases we can argue similarly. Let n=fUk Ai, IAJ=n/k 

for i-=k. Let Gi=(At, Et), i-=k be isomorphic to Gl,nlk defined ic5.l. 
Clearly J%,~s= iazyekfAi9 Ajllt*U(;~k~~) satisfies the requirements of 5.3. 

5.4. Let kz2. There exists a sequence G:,,,=(n, Ej,,,) of graphs satisfying the 
following conditions 

and 

a(Gt,,) = o(n) for 11 -L 00. 
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Proof. We assume for the sake of simplicity that n is divisible by 3k-2. Choose 

the pairwise disjoint sets AI: irk-1 in such a way that n= IJ Al, I&i=&, 

and IAil =&2 for 04-=k-1. Let c,,={A,,$) be isor%&ic to the graph 

G S,!lll/3k-2 defined in 5.2 and for Oei-=k-1 let cf=(Al, I?i’i> be isomorphic to 
G 1,8n,3k--2 defined in 5.1. 

Put E&i= U1 &:u I kgj 1 Vi, A,1 lJ. A computation shows that, by 5.2. 
r: - 

By 5.1 and 5.2, ~(G$,,)=o(n). Finally if Xcn and [X12cEt, then 
lXfIAgl~3 and IXnA;‘la2 for O+=i<k-1, hence [XIs3+22(k-2)=2k-1. m 

5.3 and 5.4 conclude the proof of (1.8). We are now in a position to prove 
our claim (1.14). 

Assume that for some graph G=(V, E c,r(G)-rq for some odd 1=-3. 
I! Then, by 5.3, for all sufficiently large n, GcG$‘tl holds. But, because of, by 5.1, 

the girth of G,,,# tends to the infinity, GcG~‘,21 implies that the arboricity of 
G is at most [I/2]. This in turn implies that Gf Arb (I- 1) and then, by Theorem 1, 
c~,~(G)s;~,-~ holds as well. @ 

First we would like to mention that using the methods of this paper we can 
prove a more general statement, 

6. Miscellaneous remarks 

6.1. Assume kl, ..+, k,z3. There is u constant aklr.*.,k, SUCll~ that 

R(n; kl, . . . . k o(n)) = ak,....,k,IIZ(l+O(l)). 

Moreover the numbers akl,...,&+ can be obtained as Ramsey numbers of nmltiple graphs 
W=(v, w}. 

We preserve the formulation of a more precise statement, and the proof of 
it for later publication. This will be done in a joint work with M. Simonovits, to 
whom we would like to express our thanks for his helpful comments concerning the 
work published in this paper as well. 

To make the rather vague statement 6.1 a little more comprehensible we write 
down a special case of it we obtained earlier. 

Definition 6.2. Let rz2 and let E(3, . . ,, 3z) be the largest integer for which there 
is a 2-partition [nJ2= iyrEi of length 1’ of n such that the graphs G1= (II, Ei) 

6 
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do not contain K,, and is such that for a11 i-=n there is an i-cr such that G 
does not contain an edge adjacent to .i. Clearly 

Rd3, ...I 3’q s R:(3, . , ., 3;) 5 R,(3, . . . , 3 9. 

Now our methods give 

Theorem 3. RT(n, 3, . . . . 3-5, u(n))=+ 
( 
I-- 

1 

Rt(3, . . . ,35) I 
ny1 SO(l)). 

The proof is based on a simple application 
the lines described in the proof of Theorem 2. 
we get 

of the regularity lemma, along 
Since Ri(3, 3, 3)-R2(3, 3)=5 

Corollary. RT(n; 3, 3, 3, o(n))=~n2(l +0(l)). 

This was explicidy stated as a problem. 
The first author stated several times the following problem: Is it true that 

Ra*(3, . . . . 39=R,(3, . . . . 3’5) for all r~3? Finally Fan Chung proved (oral com- 
munication) that this is not the case. The constructions are quite involved. 

Finally we mention another type of problems. For a graph G=(V, E) let 
a,(G) be the size of the largest subset AcV for which G(A) does not conlain 
a complete K, graph. Clearly ct(G)=a,{G). 

Let RT(n;k;IIr)=max{e:3G=(~E) (IVI=nAlEI=eAK~QGAa,(G)<I)), 
provided tlie set after the max sign is nonempty. We are again interested in 
W(n, k 44lr). 4 ain, as in the original problem, one can with a special argument 
generalize (1.4) and show that for k 2 I 

(6.3) RT(n,3k+l,o(n)~3)=~(1-;)n*(l+o(l)). 

Now one would conjecture that an application of the regularity lemma and 
an appropriate generalization of TurMs theorem for weight functions taking 
values (0, l/3,2/3, 1) should yield the answer in cases 3k+2, 3k+3 as well. 
However, this is not the case and though we have partial results there remain simple 
unso!ved problems. Here is the simplest unsolved case: 

We can prove that R(n, 5, o(n)/3)~ l/12 n2(1 +0(l)). Is this best possible? 
To show this an analogue of the Bollobas-ErdGs graph (2) wodld be needed which 
we think will be extremely hard to find. At the moment we can not even disprove 
RT(n, 6, o(n)13)=o(n2). 
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