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The paper deals with common generalizations of classical results of Ramsey and Turan.
The following is one of the main results, Assume k=2, ¢=0, G, is a sequence oi graphs of u-

1 {3k-5
vertices and at least —2- %2 +¢| n® edges, and the size of the largest independent set in G, i

o(n). Let H be any grapﬁ of arboricity at most k. Then there exists an n, such that all G,, with
n=, contain a copy of H. This result is best possible in case H=Kj.

1. Introduction. Notation. Statement of the main results

In her paper [9] the third author raised a general scheme of new problems.
These problems can be considered as common generalizations of the problems
treated in the classical results of Ramsey and Turdn. Since 1969 she und the first
author have published a sequence of papers on the subjcct [5], [6]. [4]. This work is a
continuation of the above sequence.

We are going to define the Ramsey—Turéan function R7(...) below. Our
main aim is to give reasonable estimates for this function in soine special cases.
However before doing this we have to say a few words about notation. We hope
that in general these will be standard and self-explanatory, but we do nor stick to
the special notation used in the earlier papers mentioned above.

In what follows the letters k,/, m,n,r, s, ¢ denote non-negative integers.
We set n={0, |, ...,n—1}. For arbitrary sets 4, B let [A]"={XcA4: |X]|=n},
fA1P"={Xc4:|X|=n}, etc. Further, let [4, B]""={XCAUB: [XNA4|=
=nA|XNB|=m}.

For an arbitrary sequence kg, ..., kK, the Ramsey function R(%,, ..., k,_;)
equals to the minimal n such that for all s-partitions [e4-1]°=]J £; of length

f=r
r of n+4-1 there are i<r and Acn<41 suchthat |4[=k; and A is homogeneous
for the partition in the class E;, ie. [A]’CE,.

Definition 1.1. (The Ramsey—Turdn function RT (n;ky, ..., ke_y; 1)).

AMS subject classification (1980): 05 C 55, 05 C 35.
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Assume n, kg, ..., k,_y, ] are such that n=Ryk,, ..., k,..1, ). Then there
exists a largest integer ¢ satisfying the following condition:
(1.2) There exists a graph G =V, E)=(V, L) with [V|=n, |E|=¢ and there
is a partition E= ) E; of ¥ such that there is no independecnt set of size

i=r

[ for G and none of the graphs G;=(V, E;), i<r contains a complete

k; graph.

Let RT(n; ko, ..., k,—1; [)=e¢ for the above e.

Note that this is not the most general problem one can raise here. First
of all the function just defined is really RT,(n;ky, ..., %k,_y; 1) for s=2, but
we do not give here any results for hypergraphs corresponding to the cases s=2.

It should be also clear that it is just a convenience for us to give an a priori
different role to the number /, and not to speak about 2-partitions of length r+1
of a set of size n. In our results the r’th class plays a special role.

There is one more remark in place here. Let RT (i1; ko, ..., kp_1; 1) be the
set of all those numbers e for which there is a graph G=(V, E) satisfying (1.2)
with |E|=e. 3

The investigation of this set RT(n;k,, ..., k,_;;!) In general could be
quite interesting and relevant to several problems considered in the literature (e.g.
size Ramsey numbers).

It is a quite intrigueing question if this set is always an interyal. We have no
counterexample to this statemant. However in the cases we are going to investigate
RT (n:ky, ... k,_; 1) sufficiently characterizes RT (n; kg, ..., k,_y31) and we
do not discuss this problem any further.

Finally we would like to state two obvious formulas showing explicitly the
connection of the RT function and the Ramsey and Turdn functions:

{n, ko .os kpe1, D) RT(ns kyy ooy ky—g3 1) is defined) =
{(”u Koy oos Ky D 0= Ry(koy ooy kg, ‘I)}
and RT (n; k-+1;u+1) 1s the Turdn number of the comnplete -graph. Our main

results in this paper concern the case r=1, and we start to discuss them now.
The classical result of P. Turdn yields that for k=2

(1.3) RT(n; k+1; n+1) = é—[l-—-j'z-] n*(1+o0(1))

As to the function RT (n; &;1) most of the known results are asymptotic
estimates in case / is replaced by a function of # which is o(n). We will continue
in this tradition and we will freely use the symbol RT (n; k; o(n)).

The earliest result on the subject stated in [4] says that for k=2

(1.4) RT(n; 2k~1; o(n)) = %(1—'&) n(1+40(1))
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The case of even second entries turned out to be much harder. It was proved
only much later in [1] and [10] that

(1.5) RT(n, 4, 0(n)) = "5(1 +o(1))

[10] gives the upper estimate ard [1] the counterexample.
One of the main aims of this paper 1s to generalize this and prove that for k=2

1 (3k-—5

(16) RT(H, Zk, O(H)) = ‘E (m

The lower estimates arc all obtained using the only important genuine example
given in [1]. This will be done in Section 4.

First we give a technical definition to restate (1.4) and (1.6) in one formula

]n=(1+au))

Definition 1.7. For 1=3 let

a, =%i:i’ = % ;f:g in case / is odd,
1 31-10 : :
== =4 in case I is even.
The sequence @j, ag, @5, g, ... =0, 3, 55 =, ... Is strictly increasing.
Now the common generalization of (1.4) and (1.6) is that for /=23
(1.8) RT(n, 1, 0(m) = ayn*(1+0(1))

The upper estimate will be a corollary to our main Theorem | which is an

ErdGs—Stone type generalization of (1.8).
First we introduce a convenient symbolism for stating this resulf.

Definition 1.9. Assume n,/ and the graph H are such that there is a graph G={(n, £)
not containing H as a subgraph and having no independent set of sizc /. We
denote by RT (n; H; 1) the largest integer e for which a graph G described above
exists with |E|=e.

Note that RT(n; k;1)=RT (n; K;; 1) for the complete k-graph K,.

(1.10) Let Chrom (k) denote the class of graphs G with chromatic number at
most k.
Taking into consideration that RT (n, G, n+1) is the Turdn number of G,
a classical result of [7] generalizes (1.3) to

(1.11) For k=2, and for each GeChrom(k+1), RT(m G n+1)=
é-;-(l—--};]n*(1+o(l)).

We now remind the reader that a graph G={¥, E} is said to have arboricity number

at most k iff ¥ can be written as the union of sets ¥ =|J ¥; in such a way that
i<k

G(¥;), thesubgraph of G spanned by V;, is a forest for i<k.
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Now in our generalization of (1.8) the arboricity plays a role similar to that
of the chromatic number in (I.11). However, the analogy is not complete and we
need some more definitions to state the result.

Definition 1.12. Let /=3 and set A=[—'-] Let Arb()={G=(V, E): There is
a sequence  (Foi:k) such that Vo= 1V, GF) are lorest for ik, G
has no edge and V=@ for even /}. =

Note that for even /, Arb (/) is the class of graphs of arboricity §«;~, while
for odd [, Arb () consists of graphs whose vertex set is the union of an independent

set and of a subset spanning a subgraph of arboricity at most [-;—]
Note that K;eArb (/) for /=3. Now we are in a position to state our main

Theorem 1. For /=3 and GeArb(l) RT(n;G, o(m)=an*(1+o(1)).

Note that because of K;¢Arb (/) this vields the upper estimate needed for

(1.8). The proof of Theorem 1 will be given in Section 4.
We would like to point out an interesting phenomenon.

Definition 1.13. By the above result, for each G there is a smallest real number
¢.0=c<%} such that RT(n; G;o(n))=cn*(1+0o(1)). Let us denote this smallest
¢ by cgr(G)=c(G). We call it the critical number of G.

There are some graphs for which we can not determine the critical number.
Such is the two by two Turdn graph K, ,,=G,. By Theorem 1, we know that
¢(G,) =% but we have no other information.

On the other hand for all graphs G for which we can determine ¢(G) the
critical number turns out to be one of the a;; /=3,4,.... We do not venture to
conjecture that this is true in general, but we point out that our results imply that

¢(G) can not be arbitrary.
In Section 5 we shall prove

(1.14) For all graphs G, ¢(G)€la;, a;,4] for some odd I

Hence e.g. there is no graph G with }<c(G)<4.
The main tool of the proof of Theorem 1 1s a judicious application of Szeme-

rédi’s regularity lemma invented in [11] and improved in [12]. In Section 4 we will
restate this lemma for the convenience of the reader. We will use this lemma in
Section 6 to solve a problem stated in [6] as well. The other tools of the proof are
the tree building lemma (to be given in Section 2) and a generalization of Turdn’s
theorem for some discrete weight functions. This will be given in Section 3.
Finally, in Section 6 we will give the usual mess of miscellaneous unsolved

problems.
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2. The tree building lemima

First we restate an easy lemma of [8] which will serve as a basis of most
of the computations.

Lemma 2.1. Given ¢,e>0 and r there is an s such that for all sufficiently large
n and for all set system F C|n|=" with |F|=s there is a subsystem F'CF with
(F'l=r and |NF'|=(c"—e)n.

The graphs defined below will be used for constructing subtrees of a graph.

Definition 2.2. For r’,r"=1, a graph M =(V, E) is said to be an (r’, #")-graph
withroot x (xeV) if |V |=(@’)"+1 and for each y¢¥ which has distance at most
r’ from x the degree of y is at least r”. The edges adjacent to the root x of H
will be called the special edges of H.

The following is obvious.
(2.3) For r=1 anarbitrary tree of r+ [ vertices is a subgraph of each (r, r)-graph.
The following lemma deals with situations when we are given a graph G=(V, E),
|V |=n, an integer p=1, sets V;, i<p|Vi|=n and mappings f;: E~[V ]z
for i<p. The aim of the lemma is to find a large subtree T of G such that, for ali
i<p, () fi(e) is still large. Here is a formal statement of the lemma.
ee’l

Lemma 2.4. (The tree building lemma.) Given ¢=0, r',r”, p=1 there exist ¢’ =0
and s such that for all graphs G=_V, E) with [V'|=n, [E|=sn and for all mappings
Jit E=[V)=, [Vil=n, for i<p, for all sufficiently large n one can find an (r’, r”)
subgraph HCE with

[N{fi(e): ecH} = c'n for i~ p.

(Note that in the statement of the lemma we have identified the (r’, +”)-subgraph
in question to its set of edges H, the vertex set being UH.)

Proof. We write down the proof for p=1, the rest being a mere technicality.
We prove a stronger statement by induction on r’. Namely we prove that given
c=>0, for every r”,t there are ¢’>0 and s such that for all G=(V, E) with
|E|=sn and for all f: E~[V,]=", |V,|=n, there are at least fn cdges of G which
are special edges of some (+/, r”)-subgraph HcCE satisfying

IN{f(e): e€H}| = c'n.

For r’=1 this follows from Lemma (2.1). Assume that the lemma is true for
r’ for all 77, 1", =0 with suitable &>0 and 3.

Let G=(V,E) and f: E-[V4]=e", |V |=|V\|=n be given and let n be
sufficiently large. By the induction hypothesis, we can arrange that for

E = {e: e is a special edge of some (r’, r”+1)-graph
H(9cG with f(e) = N{f(e): ecH()A|f(e)| = &n}

we have |E|=in. For ecE, let g(e) denote the endpoint of e, which is not the
root of H(e).
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Apply Lemma 2.1 for the graph G=(V, E) and for the mapping f: E—

i,
In case 7 and n are large enough and ¢’>0 is small enough we will get

that for
E ={ecE: There is an (1,r") graph H(e) with root x and such
that g(¢) =x for e€H(e), and |[f(e)|=cn for

J@) = N{fe)eH )Y}

|E{=tn holds. Let now ecE, Clearly, there is an (r'+1, r")-graph H contained in
U{H(e'): ¢c H(e)} suchthat e is a special edge of H and

Iﬂ{f(e’)!: CEH) = IN{fe): ecH(e))} = c'n.

3. The generalization of Tuardn’s theorem for weight
functions taking values 0, 4, 1

In this W=(V,w) will denote a multigraph i.e. ¥ is a set, and w: [V ]*—~
e {Os '.I‘Z_'x I}‘

In [2] these objects were called multigraphs, for ec[F 1% w(e)=0 means that
¢ is not an edge, w(e)=4 means that e is asimple edge w(e)=1 means that e is
a double edge. Qur notation suits our present purposes more, and our lemma is
unfortunately not covered by the numerous interesting resulis proved there.

Definition 3.1. Given W =(V, w), we define two graphs Gi,=(V, El},)
GY=(V,EY) by setting

Efy = {e€[V]2: w(e) =1, EY = {e€[V]*: w(e) =1}
Put e(w)= Zv'pwte) (i.e. “the number of edges” of W), and d,(x)= 2 w({x, y})

PEV

(“‘the degree of x€V m w’)
Now the following definition of a “complete /-subgraph of w” is not entirely

natural but seems to work well, and suites our final aim.

Definition 3.2. Let W=(V, w) be given. The pair (X, ¥) XcYcV is a complete
l-subgraph of w iff [X]PcEY, [YRPCEY, and |X|+|Y|=l

Lemma 3.3. (The generalization of Turdn's theorem.) Assume 1=3, |V|=n and
W =(V, w) does not contain a complete l-subgraph (X, Y). Then e(w)=an*(1+0(1)).

Remark. Note that we will prove a much better result since we can determine an
extreme cinfiguration for sufficiently large n. It is also obvious that generalizations
for weight functions say taking values {0, 4, %, 1} are immediate but we consider
this out of the scope of this paper.

Proof. The idea of Zykov’s proof of Turan’s theorem, the so-called symmetrization,
works. See [13]. We will only outline the proof.
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Assume W =(V,w) does not contain a complete / subgraph (X, ¥),
and ¢(w) is maximal. Choose two vertices x#p, {x, y}§ EYj,. Assume d,,(x)=d,(»).
Define w’ so that w(e)=w’(e) for y¢e and w'({z, y})=w({z, x}) for zeV. Then
e(w’) is still maximal and w’ does not contain a complete /i~subgraph. Indeed,
if (X,Y) were a complete / subgraph of w’, only one of x,y could occur in ¥,
and if it was y, we could change it to x. By repeated applications of this operation
we can assume thal there is a w with maximal e(w) and such that {x, y}¢ E}}s
is an equivalence relation. Denoting the equivalence classes by Ay, ..., Ay
we know that for i<j<m either w(x, y)=% for all xeAd;, yeAd; or w(x, y)=1
for all x¢A;, y€A;. Moreover m<I—1, since any one clement subset of a [Y]*C
E}j, can be chosen as X. We now know that G} does not contain a complete
I—m subgraph. Choose now x€A4;, yed; i#j<m, w(x, y)=%. Assume d,(x)=
d,(3). Define w’ as follows: w(e)=w'(e) if eNA4;=9, and for e={z, y}, yed;
let w(e)=w({x, y)). Then e(w)=e(w). Now to see that W’ docs not contain
a complete /-graph (X, Y) it is sufficient to see that GY does not contain a complete
(I—n1)-graph. If it did, then this complete (/—m)-graph could contain at most one
element from each A4;: i<m and it could only meet one of the equivalence classes
A;, A;. Ifit met A4;, we could change the common element with 4; to an element
of A; obtaining a complete ({ —m)-graph in Gy as well.

By repeated application of the above operation we can obtain a w_with
maximal e(w), not containing a complete /-graph (X, ¥) and such that {x, y}4 Ey
is an equivalence relation, and denoting the equivalence classes of this relation by
B,, ..., B,._;, the A-partition is a refinement of the B-partition.

From now on we assume that n is sufficiently large. Next we can assume
that each B; contains at most two A;-s, since an easy computation shows that if
B; contains more than two A;’s then splitting B; to two almost equal paris
B, o, Biy, and defining for x, yé B w'(x, y)=1 iff x€B,, y€B;; and w(x, y)=0
otherwise, e(w’) =e(w)+o(1) but w’ still does not contain a complete J-graph (x, ).

Next, if two B’s say B, and B, isj contain two A,-s, then an easy
computation shows that one does not decrease w more than by o(l) by first
equalizing the size of B;, B; and then the A4,’s contained in their union. After
that an easy computation shows that we are better off by splitting B,UB; into
three equal parts choosing them as new B’-s and making them 4;-s well. It follos
that there is a basically maximal configuration either of the form V=B,U...UB,, _,,
By=A,UA,, A;.,=8B, for 2=i<m=m'+1, m+m’<l or of the form

V=2B8U..UB,, m=m’, A;=B; for i<m=][}]
In case / is odd, only the second possibility can occur and [(B;]—[B;l=1 for
i, j<m’. In case ! is even, the first possibility occurs and computation shows that
one gets the “largest” e(w) in case w is regular, i.e. the sizes of the sets are deter-
mined in such a.way that d,(x)~d, () for x, »¢¥. The reader can easily check
that this gives the numbers ¢, for 7=3. §
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4. Restatement of the regularity lemma. Proof of Theorem 1

Definition 4.1. Let G=(V, E) be a graph

() For 4, BCV set eg(A, B)=e(A, B)=|EN[A, B]*!| and dg(4, B)=
d(A, B)=f|j(4f’{‘_’l-—%1— provided 4, B0,

(ii) For ¢>0, A, B#0, A, BCV the pair (A, B) is said to be e-regular
if for all Xc A4, Yc B with |X|=¢|A|, |Y|=¢|B|

|d(X,Y)—d(A4, B)] < ¢ holds.

(iii) A disjoint partition of ¥, ¥ = |J C;, is said to be an equitable partition
=

i=m
of length m+1 if |C)|=|C/| for 1=i=m, C, is the exceptional class of the

partition.
(iv) An equitable partition ¥'= (J C; is said to be e-regular if [Cy|=en

i=m
and (C;, C;) is e-regular for all but em?® pairs (i, j) I=i<j=m.

Szemerédi’s regularity lemma [12]. For every g,>0 and m, there are n,=ny(ey, Mo}
and m;=my(e,, my) such that for every graph G=(V¥, E) with [V |=n>n,(go, my)

there is an g,-regular partition ¥V =|J C; of ¥V with
iEm

My < M < My (Eg, Mo).

Now to prove our Theorem 1 we will prove its “finite”” form, i.e.

Theorem 2. Assume =3, H=(Vy, Ey)¢Arb({) and &>0. Then there exist
8=0 and ny such that for a graph G=(V,E) with |V|=n=>n,, |[E|=(a,+&)n*
and a(G)=0n, H is isomorphic to a subgraph of G. {Here x(G) as usual de-
notes the size of the largest independent set of G.)

Proof. Let |Vy|=r. We now describe the order in which we are going to choose
the parameters featuring in the lemmas. In the proof we are going to apply Lemma2.4
repeatedly =/ times with p=I/ and r’,r"=r starting with ¢;=¢/2 and then
applying the lemma for sets of size ¢'n ¢’=c, and so on. This gives us numbers
€15 -y >0, and numbers s, ..., 5 (from Lemma 2.4). We than fix g of the
regularity lemma so that & is smaller than c,-&/4. We then choose m, of the
regularity lemma so large that Lemma (3.3) should apply for graphs having (a4 ¢/4)n*
edges and m=m, vertices, and so that 1/my<e¢/4. The regularity lemma yields
us numbers #; and m,. We will assume that n=>n, and we will choose J so small,
that even a subset AcCV of size =(1/m;)gp must contain sn edges where s=
max {s;: i =/}.

Let Vy=|J VH, k=[l/2] be a partition establishing that HeArb (/). First

i=k

we apply the regularity lemma and obtain an g,-regular partition of length m+1

(my<=m=m,) V=1\J C; of the set V.

i=m
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We now define a weight function w: {l,...,m}~{0,1/2,1} as follows:
For l=i<j=m

0 if d(C;, C,-)-::% or (C;,C;) is not gy-regular

1

1 +s_o
2 " 2 \and (C,, C)) is sy-regular

w({i,JP =J = ¥ 5 = d(Ci, C)) <
1

; 1 e
if d(G,C)=> Ft3

Clearly, e(w)y= 2 d(C, Cj)—f:ms—someé[a,-l--})m* because 1/m, is small.
1l=i{<j=m

Hence we can apply Lemma 3.3. We get subsets XcYc{l, ..., m} such that the
pair (X, Y) is a complete /-graph for the weight function w.

Let [i., vany iﬂ—1}= Y\X, {fll’ cuey fu+,_l}=X “+29=}.

To continue we need more notation. For x¢¥, BCV, Vg(x, B)={y¢B:
{x, y}€E} and vg(x, B)Y=[Vg(x, B)|- vg(x, B) is the degree of the vertex x for B.

For 0=XcV let llg(X, B)= ﬂxVG(x, B).

x€E

Assume now for a minute that 0. The pairs (C,,,Cy) O<j<u+v are
all ep-regular, by the definition of w, and because of [Y]PC Eyy,. Hence vg(x, C;)=
§|—;-—s°]-IC:,| for all 1=j<u+v, for a positive portion of x€C,,.

Applying Lemma 2.1 we can arrange that there is a subset 4,=C,, [44|=r

such that [[15(4,, Cij)|§c1”{1';8°) for 1=j<u+v, where c¢; is still larger than

1
&. Repeating this procedure u times we get sets A, C;, ..., 4,.,CC,,_,,

|Ag|=...=|4,_4|=r and such that thesets T¢(\U 4;, C;)=C] havesize %é,f%}—g“)
i<u 1

for u=j<u+v, and c, is still larger than &,.
Now we turn our attention to the set C;. Now because of [X]>c E}, for all

Jy u=<j<u+v, vg(x, C,’-)E(-;—-l-e_a"] [lez[—%—+-§-} |Cjl, for x€Cj} where CicCl

2
is still large enough to contain s edges as required by Lemma 2.4. Now for x, yeC},
{x, V}EE, u<j<u+v let fi({x, yD=Volx, CPN¥:(y, C)=Ms({x, y}, C}). Then
f{x, yp=+I|Cjl. Now, by Lemma 2.4 we can choose an (r,r)-graph H,CE,
UH, = A,cC;c(;, in such a way that for each u<j<u+v

def
1 n{(l—&)
159{,, g (e, Cf_,)‘ = C"HT'
Since A,=UH, this implies
s
Ml O 0
ni,

Clearly, we can continue this procedure, and define the sets 4,cC;; for j<u+rc
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in such a way that for j<j'<u+v [4;, A;)''CE, and that for usj<u+v, G(4))
contains an (r, r)-graph. Let B,=A.,UA,, ., for v<[u/2]=k

Bupy+j=Aus; for j=<v, and
B,=0 jfor | even and
Bk =4 (n/2)+1 jbf I odd

Now for v<k, the graphs G(B,) contain a tree isomorphic to H(VH).
For v<[u/2] this is true because G(B,) contains a K,, and for [u/2]<v<k
this is true by (2.3) because G(B,) contains an (r, r)-graph. |

5. The counterexamples

5.1. There exists a sequence G, ,=(n, E,,) of graphs, such that |E, ,|=0(n?),
#(G,)=o0(n) and the girth of G, , tends to infinity. See [3].

5.2. There exists a sequence G, ,={n, E,,) of graphs satisfying the following
conditions:

E

L?-..'.'-:.'Z'-.‘?-1 = %s 'K-i e Gﬂ,ln G(Gz.n) = O(”)
Note that G,, can be chosen so that n=4,,UB,, and all but o(n®) edges of
G,, arein [4,, B, "' See [1].

As it is pointed out in the paper of Bollobis and Erdés, it is not known il

G..,, can be chosen so that |E,, ,|=n%8 holds for all n. This leaves a corresponding
open problem for all even /,/=4. Itis also not known if G,, can be chosen so that
Ga,(As,n)s Ga,n(Be,,) have large girth as well. If this was the case, our argument
on p. 20 would yield that cg,(H)=c, for some / for all graphs H.

53. Let k=1. There exists a sequence G5,=(m Ef,) of graphs such that,
Koy S OF s EE{,,!E-‘:-%[I ---:—] n*=day.. 0% and a(G§,)=o(n). See [4].
For the convenience of the reader we describe a proof. We assume that » is
divisibie by k. In the other cases we can argue similarly. Let n= U 4;, [4i|=n/k
i=k

for i<k. Let Gi=(A,, E‘,"), i<k be isomorphic to G, ,; defined in 5.1.
Clearly E¥,= U [4i, A]**U(U £) satisfies the requirements of 5.3.
f-=j-=k i-=k

[=2 ==
5.4. Let k=2. There exists a sequence G%,=(n, Ef,) of graphs satisfying the
following conditions

|E¥,| 1 (3;:_5

K‘-’-& e G:,n! ne - 'i" 3k—2] = dyy and

a(Gs,)=o0(n) for n - e
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Proof. We assume for the sake of simplicity that n is divisible by 3k—2. Choose

the pairwise disjoint sets A4;: i<k—1 insuch a way that n= Au )= 3;:: -
and !A:Imss 5 for O<i<k—1. Let Gy=(4,, £y) be 1somorphlc to the graph

Gy, 4njsx-2 defined in 5.2 and for O<i<k—1 let G,=(4,, E)) be isomorphic to

Gy, gnjax—2 defined in 5.1.
Put Ef,= U EU U [A;, A;]"*. A computation shows that, by 5.2.

i<k=1 I<k=<j-—

Ef . :
.E_’:é_.l.-paa !f n = oo,

By 5.1 and 5.2, «(G§.,) =o(n). Finally if Xcmn and [X]PcEj, then
|XNAZ=3 and [XNA}=2 for O0<i<k—1, hence |X|=3+2(k-2)=2k—1. |]

5.3 and 5.4 conclude the proof of (1.8). We are now in a position to prove

our claim (1.14).

Assume that for some graph G=(V, E) cpr(G)<a, for some odd /=3.
Then, by 5.3, for all sufficiently large n, G G{/21 holds. But, because of, by 5.1,
the girth of G,, tends to the infinity, GCGQ"*] implies that the arboricity of
G is at most [//2]. This in turn implies that Ge¢Arb (/—1) and then, by Theorem 1,
¢g,7(G)=a;_, holds as well. []

6. Miscellaneous remarks

First we would like to mention that using the methods of this paper we can
prove a more general statement,

6.1. Assume ki, ..., k,=3. There is a constant ay, . such that
R(n; ke, oo ks o(m)) = ag,. i n3(1+0(1)).

Moreover the numbers ay,, . can be obtained as Ramsey numbers of multiple graphs
W={v, w

We preserve the formulation of a more precise statement, and the proof of
it for later publication. This will be done in a joint work with M. Simorovits, to
whom we would like to express our thanks for his helpful comments concerning the
work published in this paper as well.

To make the rather vague statement 6.1 a little more comprehensible we write
down a special case of it we obtained earlier.

Definition 6.2. Let r=2 and let RX(3, ..., 3%) be the largest integer for which there
is a 2-partition [m]*= {J E; of length r of n such that the graphs G;=(n, E;)
i=r
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do not contain Kj;, and is such that for all j<n there is an i<r such that G
does not contain an edge adjacent to j. Clearly

B8, ) & B3 i 35) & B35 35).

Now our methods give

Theorem 3. RT (1, 3, ..., 3%, o(n))=-;~[l—-i;@—l-—37)] n¥(1+0(1)).
gl -oes I7

The proof is based on a simple application of the regularity lemma, along
the lines described in the proof of Theorem 2. Since R;j(3, 3, 3)=R,(3, 3)=5
we get

Corollary. RT (n;3,3,3, o(n))-—--ﬁ-n’(l +o(1)).

This was explicitly stated as a problem.

The first author stated several times the following problem: Is it true that
RIS, iy 3°)=Ru(3, ...y 3'-:}) for all r=3? Finally Fan Chung proved (oral com-
munication) that this is not the case. The constructions are quite involved.

Finally we mention another type of problems. For a graph G=(V, E) let
2,(G) be the size of the largest subset ACV for which G(4) does not contain
a complete K, graph. Clearly a(G)=ay(G).

Let RT(n; k;/|r)=max {e:3G=(V, E) (V|=nA|E|=eAK, ¢ G, (G)<I)},
provided the set after the max sign is nonempty. We are again interested in
RT((n, k, o(n)|r). Again, as in the original problem, one can with a special argument
generalize (1.4) and show that for k=1

(6.3) RT(n, 3k +1, o(n)|3) “';17{1"?12] n?(1+o(1)).

Now one would conjecture that an application of the regularity lemma and
an appropriate generalization of Turdn’s theorem for weight functions taking
values {0, 1/3,2/3, 1} should yield the answer in cases 3k+2, 3k+3 as well
However, this is not the case and though we have partial results there remain simple
unsolved problems. Here is the simplest unsolved case:

We can prove that R(n, 5, o(m)[3)= 1/12 n®(1+0(1)). Is this best possible?
To show this an analogue of the Bollob4s—Erd&s graph (2) would be needed which
we think will be extremely hard to find. At the moment we can not even disprove

RT (n, 6, o(n)|3)=0(n?.
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