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1. Introduction. Let X, X, ... be a sequence of i. i d. r.v.’s with
P(X, = +1)=P(X;= —1) =5 and define the random walk {S(n)};z_, by S(0)=0,

S(n)=X,+Xo+---+X, (n=1, 2,...). Consider also the r.v.’s &(x, n)=No.
{k: k=n, S{R)=x} (=0, +1,...., #=1,2,,..) (where No{...} is the
cardinality of the indicated set) and &(n)=sup,&(x, n).

The randomset #,={x: &x, n)=¢§(n)} will be called the set of favourite
points of the random walk {S(#)} at time n. The largest favourite points will
be denoted by f,=max {x: x¢Z,}.

In this paper we intend to study the properties of the random sequence
{f.} and to formulate some unsolved problems on {#,}.

In order to formulate our results we repeat the definitions of the upper-
lower classes by Lévy and remind the reader of the Erdés (1942) — Feller
(1943-46), (1933-34) test 3, 4, 5).

Definition 1. The sequence {w(k)};_, belongs to the upper class of
{S(n)} if

S(r)=u(n) n'?,

except for finitely many n with probability 1.
Definition 2. The sequence {l(k)};>, belongs to the lower class of.
{S(n)} if
S(n)=1(n) n'?
infinitely often with probability 1.

Theorem A. The increasing sequence {u(n)} belongs to the upper class
of {S(n)} if and only if
— u*(n)j2
(1) nu(n)e < oo,

We remark that if w(n)=(2Ly(n)+3Ls(m)+2L(n)+ - +(24+E)L(n))'?
(>0), then (1) holds true, but for the sequence [,(n)=(2Ly(n)+3Ls(n)+2Ly(n)
+ oo +2L (n))'? we have
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i e {u,(n)} belongs to the upper class and {I,(n)} belongs to the lower class
for any p=2, 3,... Here and in what follows

Li{#)y= log x {f x=e
1 if O<x=e
and

Lp(x) = Ll(Lp—l (x)).
On the properties of {f,} as a trivial consequence of Theorem A one can
see that f,<u(n).n'? with probability 1 except for finitely many n if {u(n)}
belongs to the upper class of {S(n)}, i.e. if {u(n)}is increasing and (1) holds.
Hence we have a trivial result saying that f, cannot be very large. In
our first theorem we prove that f, occasionally will be large enough indeed.

In fact we have:
Theorem 1. For any €>0

fa=((2—e)nLon))'?

with probability | infinitely often.

Having this result, one can conjecture that f, will be larger than any
function in)n i. o. with probability 1 if /() belongs to the lower class of
{S(n)}. However it is not the case. Conversely, we have

Theorem 2. f,=(n(2Ly(n)+3Ly(n)+2L(n)+2Ls(n)+2Lg(n)))"? with pro-
bability 1 except for finitely many n.

Theorem 1, resp. 2, will be proved in Section 2, resp. 3. In Section 4 we
present a few unsolved problems on &#,.

2, Proof of Theorem 1. Let a,=exp (&%) (0>0,k=1, 2,...) and intro-
duce the notations:

A(k)=st(k, 0, & 8)={S([1—e)ap])—S[as))=(21 —8)ar1Lo(ars1))'"’}
D=ectcl, B30, A=l 2...)
B(R)=B(k, 0, &, C)={max(&(x, [(1—)ax1))—E(x [a:])< Ca}s,
(0>0, C>0, O<e<l, k=1, 2,...)
C(k)="%(k, 0, & D)={&(S((1—&)arsi]) [@gs1])—E(S(1—E)ass4]),
[((1—8)aps])=(2Days,Lo(a,,))' %)
(6>0, D>0, O<e<l, k=1,2...)
Ak)=2(k, 0, &, E)={S([1~8Jf?k+d)*[ inf S()=E(ea,s1)'?

—8)a, 1 Slsa, .,

@50, £>0, O<ce<cl, £=1,2...)
Now we formulate a few lemmas.
Lemma 1. There exists a positive constant A such that
1—8

Pt (k) =Kk '

(140)

Proof is trivial.

Lemma 2. (cf. Kesten (1965)2]). For any e>0 and 0>0 there exists a
constant C=C(g, 0)>0 such that P(B(k, 6, &, C))=1/2 (k=1, 2,...).

The following lemma can be proved easily by the reader.
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Lemma 3. The conditional probability P(B(k)|S((1—e)aw]))—S(a:))=y)
is an increasing function of y (y>0).

Lemma 4. (cf. Kesten (1965)[2]). For any 0>0,D>0,0<e< there
exists a positive constant K=K(®, D, &) such that

RER)=Kh  (k=1,2...).

A simple consequence of Lemma 4 is
Lemma 5. For any 6>0, D>0, E>0, 0<e<1 there exists a positive
constant K=K, D, E, &) such that

— Dje
P(€(k)Z(k)) =Kk =1, 3, 54}
Lemma 6. For any positive & 0, 8 there exists a positive constant
C=Clg, 0, d) such that
P(#(k, O, &, C)|AL(k, 6, g 8))=1/2 (k=1,2,...).

Proof follows immediately from Lemmas 2 and 3.
Lemma 7. For any §>0 one can find positive constants e, 0, C, D and
K such that
P(A(R)B(R)E(R)2(R)=KE™ (R=1,2,...).
Proaof. We have

P(A(R)B(k)E(R)D(k)) = P(4 (k)B(R))P(€(k)D(R))

= P(B(k)A (R)P(S (R)P(B(R)D (k) =~ Kk 0

which proves the lemma.

Since the events A(k)B(k)Y6(R)2(R) (k=1, 2,...) are mutually indepen-
dent, Lemma 7 implies that with probability one infinitely many among them
will occur. The event o/(k)#(k)€(k)Z(k) implies that

sup, (B(x, @piy)—8(x% @)= (2D k1 Lo(@ps 1)
and if
80, @pr)—8(x, @p)=5up,(8(%, Apr)—E(x, @p)),
then x=(2(1 —28)a,41Lo(@si )V
Since (2a,Ly(a,))"?=0((2a441La(@441))", our Theorem 1 follows from the

following
Lemma 8. (cf. Kesten (1965)[2]). Witk probability one we have

, E(ap)
1 up—————=1.
oo P Qagloag)

3. Proof of Theorem 2. The following lemma can be obtained by a simple
calculation.
Lemma 9. For any i=0, 1,...,[Ly(n)]—1 and p=2,3,... we have

n

im PASG+ 1) DS (T ) < 3 () 1Sy (a2Laln) + 3Le(n)
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(x—2 )
el T o 2 - 5
+2Ly(n)+ -+ -+ 2L, (n)))"?} = %fwe dx (—oo<y< + )
By a combinatorial argument one can see
Lemma 10. (Csdki-Foldes (1983) [1]).
(2m+11(§k+_,:}
P{&(0, 2k)=1| S(2k)=2m)=2' ———— (I=0, 1,...,k—m)
(k=1 ()

and
lim P{&(0, 7)< xn'2| S(n)=[ yn'7]}= 1 —exp (— 5 (x+3P—y%) (0=x<<2).

Given the sequence S([i I:(n} D) (=0, 1, 2,...,[Ln)]—1) the r.v.'s

() =& (i D [+ VgD —ES Qi i)
are clearly independent with distribution
PN(D<I( ) }=1—exp(— 5 (y+A,—AY),
where
A= (S ([l + 1)L D —S (i D) (2™

By a simple calculation again one gets

Lemma 11.
d {osfs':'&fn-}‘(‘)*é K( Lan) L(n)'?| A=y, i=0, 2,..., [Ly(n)]—1}

=CL(m)~,

where K=K(Y, Yo - -+ Vitam—1) is a big enough positive constant, C>0 is
also big enough.

Define the r.v. v, by v,=inf{k: S(k)=(n(2Ly(n)+3Ly(n)+2L,(n)+2Lg(n))}
Theorem A implies

Lemma 12.
v, =n(l— ﬁ:{ )
with probability one except for finitely many n and
P(v,=n)< g

= L)L) PLn)Lnln)

Applying again Kesten’s result and Lemma 12, one gets
Lemma 13. There exists a C>0 such that

P{sup (§(x, 7)—&(x, v)=C(n 'Lﬁ(:{')m} 2 _L% ‘

155



ntroduce the following notations:
A(n)={ fu=((2Lo(n)+ 3Lo(n)+2Ly(n)+ Ls(n)))"2},
B(n)={v,=n},
€(n)=%(n, K)={ _— ;11«'(1;__&0(“)9(0 =K( 7 L)',

L;,(n} 112
L) ¥

W) =2(n, C)=(sup (§(x, n)—&(x, va)=C(n

Then we have

dc[@n(@U{ max  n=sup(E(x, n)—E(x, v,)}
O i=[Laln)—Ly(m)] S

Ul2n(€u {uaf«:u'ff:ﬂf o (E(x, n)—E(x, v)DI=(# N 6) U(# N 2).

Hence
c

Ly(n)(Lo(n))* P Lo(n)Ly(n)PLyn)

P(A)=

which implies that among the events 2/([a,]) (where a,=exp (Uo—gi)—‘f’_)) only

finitely many will occur with probability 1.
In fact the above proof gives a bit more:
Lemma 14. Among the events

AN R)={ sup f,=(a(2Ls(ax)+3Lo(a)+2Loax)+2Ly(a,)))'"}
=4,

only finitely many can occur with probability 1.
This lemma and the trivial inequality

(@x(2Lo(@y)+ BLy(ap)+ 2L (ay) +2L5(a,) + 2Le(a,))'
(@1 (L A1)+ 3L @y 1) + 2L (A1) + 2L (@ 41)))'

implies our Theorem 2.

4. A Few Unsolved Problems. 1. The upper and lower estimates of f,
are far away from each other. It is not very hard to find somewhat better
estimates, however a precise description of the upper and lower classes of f,
seems to be hard.

2. Our Theorem 1 stated that f,=((2—e)nly(n))'? infinitely often with
probability 1. Its proof shows that when f,=((2—e)nly(n))"2 then &(f, n)
=&(n) will be larger than (2DnLy(n))'? (where D is a small enough positive
constant) infinitely often with probability one. As it is well known for any
fixed x

lim sup —2% ™ ___ 1 with probability one.

Suppose that for a random sequence {x,} we have
. E(xn n) =
lm:_'sgp (2nLom)'? .
Our question is: how big can x, be?
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3. Everyone cat see immediately that No {#,}=2 infinitely often with
probability one. Can we say that No {#,}=3 infinitely often with probabi-
lity one?

4. Consider the random sequence v, for which No {#,}=2 What can
we say about the sequence {v,}? Can we say, for example, that lim,,..v,/n= o
with probability 17?

5. What are the properties of the sequence |f,.,—/f,|? Is it true that
lim SUPsaen | fri1—fn| =<0 ? If yes, what is the rate of convergence?

6. Does the sequence f,/yn have a limit distribution? If yes, what is it?

7. Is it true that O¢.#, infinitely often with probability one?
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