
MATHEMATICAL STRUCTURES - COMPUTATIONAL
MATHEMATICS - MATHEMATICAL MODELLING, 2
Papers dedicated to Professor L . /lieu's 70th Anniversary

Sofia, 1984, p . 152-157

ON THE FAVOURITE POINTS OF A RANDOM WALK
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Dedicated to Prof. L. Kiev on the occasion of his 70th birthday

1 . Introduction. Let X1, X2 , . . . be a sequence of i . i . d. r. v . 's with
P(Xz=+1)=P(XI=-1) = 2 and define the random walk {S(n)}, by S(0)=0,~
S(n)=X,+X2+ . . .+Xn (n=1, 2 . . . . ) . Consider also the r . v.'s 4(x, n) =No .
{k : kin, S(k)=x} (x= 0, +-I, . . . , n=l, 2, . . .) (where No{.- . } is the
cardinality of the indicated set) and ~(n) = supz ? (x, n) .

The random set n Ix : 4(x, n)= 4(n)} wí11 be called the set of favourite
points of the random walk {S(n)} at time n. The largest favourite points will
be denoted by fn =max{x : x(,F„} .

In this paper we intend to study the properties of the random sequence
{f„} and to formulate some unsolved problems on { n } .

In order to formulate our results we repeat the definitions of the upper-
lower classes by Uvy and remind the reader of the Erdös (1942) - Feller
(1943-46), (1933-34) test [3, 4, 51 .

Definition 1 . The sequence {u(k)}k_1 belongs to the upper class of
{S(n)} if

s(n) `=«(n) n' 11 ,
except for finitely many n with probability l .

Definition 2 . The sequence {l(k)}k , belongs to the lower class of,
IS(n)} if

S(n) > l(n) n'/ 2

infinitely often with probability 1 .
Theorem A. The increasing sequence {u(n)} belongs to the upper class

of {S(n)} if and only if

(1)

	

-Y n-ru(n)e

	

< ~O .

We remark that if up(n)=-(2L2(n)+3L3(n)+2L,(n)+ . . .+(2+&)Lp(n))'=
(c>0), then (1) holds true, but for the sequence lp (n)-(2L2(n)+3LAn)+2L 4(n)
+ . . •+2Lp(n))'12 we have
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- ul(n)12

- t (n)12p

n-llp(n)e

	

=c,,) (p=2,3, . . .),



i . e . {up(n)) belongs to the upper class and {lp (n)) belongs to the lower class
for any p=2, 3, . . . Here and in what follows

L ,(x)

	

log x if x --e
1(x)

l 1

	

if 0<x-e
and

Lp(x) = L1(Lp-1 (x)) •
On the properties of {f„) as a trivial consequence of Theorem A one can

see that f,,<u(n) . n 1 1'2 with probability 1 exceptt for finitely many n if fu(n))
belongs to the upper class of {S(n)), i . e. if Ju(n)) is increasing and (1) holds .

Hence we have a trivial result saying that f„ cannot be very large . In
our first theorem we prove that f„ occasionally will be large enough indeed .
In fact we have

Theorem 1 . For any s>0

J n > ((2-E)nL2(n))1 2

with probability 1 infinitely often .
Having this result, one can conjecture that f„ will be larger than any

function l(n)Jn i . o . with probability 1 if l(n) belongs to the lower class of
{S(n)). However it is not the case . Conversely, we have

Theorem 2 . f„- (n(2L 2(n)+3La(n)+2L 1(n)+2L,5(n)+2L6(n))) 1 12 with pro-
bability 1 except for finitely many n .

Theorem l, resp . 2, will be proved in Section 2, resp . 3 . In Section 4 we
present a few unsolved problems on Jz ,,.

2. Proof of Theorem 1 . Let a,,=exp (k'+O) (0>0,k-=I, 2 . . . . ) and intro-
duce the notations :

sál(k)= .d(k, 0, c, 6)={S([l-c)ak+1 ])-S([ak]) (2(1 -S)ak+1L2(tlk+1)) 1J2 1
(0<c<S<1, 0>0, k=1, 2, . . .),

R(k)= M(k, 0, s, C)={maxx(~(x, [(1-e)ak+>])--4(x, [ak)))< Cak+ 1 )

(0>0, C>0, 0<s< 1, k= l, 2, . . .),

W(k)='B(k, 0, s, D)={~(S([(I-S)ak+1]), [irk+1]) - (S([(I-E)ak+1]),

[(I-c)ak+1]) (2Dak+,L2(ak+1)) '12 )
(0>0, D>0, 0<£< 1, k= I, 2 . . . . )

-9(k) =!2(k, 0, s, E)={S([I - c)ak+1]) -

	

inf

	

S(l)>E(eak+0 112}(1-e)a k+1=- L= a k+t
(0>0, E>0, 0<&<1, k=1, 2, . . .) .

Now we formulate a few lemmas .
Lemma 1 . There exists a positive constant A' such that

- 1-5
(1+©)

P(,4(k)) =°Kk
12,

P r o o f is trivial .
Lemma 2. (cf. K e s t e n (1965)[2]) . For any s>0 and 0>0 there exists a

constant C=Qc, 0)> such that P( (k, 0, c, Q)<-112 (k=1, 2, . . . ) .
'rhe following lemma can be proved easily by the reader .
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Lemma 3 . The conditional probability P(,4(k) I S([(1-E)ak+1])-S([ak])=Y)
is an increasing function of y (y>0) .

Lemma 4 . (cf. K e s t e n (1965)[2]) . For any 0>0, D>0, 0< E< 1 there
exists a positive constant K=K(0, D, e) such that

- D/E
P(W(k))>Kk

	

(k= l, 2, . . . ) .

A simple consequence of Lemma 4 is
Lemma 5. For any 0>0, D>0, E>0, 0<E< 1 there exists a positive

constant K= K(0, D, E, E) such that

- D/E
P(W(k).(k)) Kk

	

(k=1, 2, , . . . ) .

Lemma 6 . For any positive E, 0, S there exists a positive constant
C=C(e, 0, 5) such that

P(3(k, 0, c, C) j sf(k, 0, e, 5)) > 1/2 (k=1, 2, . . . ) .

Proof follows immediately from Lemmas 2 and 3 .
Lemma 7. For any 5>0 one can find positive constants c, 0, C, D and

K such that

P(s*4(k).V(k)W(k).9(k)).Kk_, (k= l, 2 . . . . ) .

Proof. We have

P(ji(k)°R(k)W(k) .9(k)) = P(sV(k) V(k))P(W(k)_(k))
_ 1-b 0+0

	

D

-P(M(k),rt(k))P(.l(k))P(`~(k)~(k))>2 Kk 1-2E;

	

Kk E ,

which proves the lemma .
Since the events Qf(k)9R(k)W(k)ó(k) (k=1, 2 . . . . ) are mutually indepen-

dent, Lemma 7 implies that with probability one infinitely many among them
will occur . The event a(k)R(k)V(k)_9(k) implies that

sup.Y(4(x, ak+>)--4(x, ak))>(2Dak+1L2(ak+1)) 1/2

and if

4(x, ak+r)- 4(x, ak)=supx(~(x, ak+1)-4(x, ak)),
then x>(2(1 - 25)ak+1L2(ak+1)) 112 .

Since (2a kL2(ak)) 112 =o((2at+,L2(ak+,)) 1 i2, our Theorem 1 follows from the
following

Lemma 8. (cf. K e s t e n (1965)(2]) . With probability one we have

	 ~(ak)lm sup	k -

	

12 <1 .
(2ak4ak))

1/2

3. Proof of Theorem 2. The following lemma can be obtained by a simple
calculation .

Lemma 9. For any i=0, 1, . . . , [L 2(n)]-1 and p=2, 3, . . . we have

lime{S([(i+1)	Len)

	

G(nj I ) Y ( gin)
)1í2I S~>(n(2L2(n)+3La(n)
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n-~w



_ (x-V' )a

+2L4(n)+ . . .+2Lp(n)))'12}=C2-
Y

e

	

2 dx (--<y<+-).

By a combinatorial argument one can see
Lemma 10. (Csáki-F ö l d e s (1983) [1 ]) .

2k-l

P(á(0, 2k)=l I S(2k)=2m)=21
(2m { l) (

k+m
)

2k

	

(1=0, 1, • . . , k-m)
(2k-1) (k+M)

and

limP(~(0,n)<xn112 1S(n) = [yn112 ] } =1-exp(-

	

(x+y)2-y2) (0<x< ).2

Given the sequence S([i	Lz(n)	 ]) (i=0, 1, 2_ .,[L2(n)1-l) the r.v.'s

~l(t)- (S ( [ l L 2 (n ) ])' [( l + 1)
L2(n) ])- 4(S ([t L2(n) ])' [Z L 2 (n ) ])

are clearly independent with distribution

P(rl(i)<y(	
LZ(n)

	 ) 112} =1-exP(- 2 ((y+AiP_A2))~

where

~i= (S([(i+ 1 ) L2(n) 1)-`S([i

	 LL(n)
])) (

	 Lnn) ) 1/2 '

By a simple calculation again one gets
Lemma 11 .

P (mot max
)I

	

_K(	Ln2(n ) L4(n))' 12 I Al =yi, i=0, 2, . . . , [L2(n)] -1 }

C(L(n))-1 ,

where K=K(y, y 2) . . • , yfL,(n))_I) is a big enough positive constant, C>0 is
also big enough .

Define the r. v . vn by v,r =inf (k : S(k)>_(n(2L2(n)+3L3(n)+2L4(n)+2L6(n))}
Theorem A implies

Lemma 12 .

v„ > n(1-	L2(n) )

with probability one except for finitely many n and

P(v n)n

	

L I (n)L2(n)) I12

c
4(n)L I(n)L 5 (n)

Applying again Kesten's result and Lemma 12, one gets
Lemma 13. There exists a C>0 such that

P(sup (4(x, n)-~(x, vn))~C(n L4(n) _
)' J2} <

Lq( )
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ntroduce the following notations

,4(n) _ {

	

(n(2L,(n)+3L3(n)+2L4(n)+L6(n)))112},

(n) = {v„ -n},

W(n) =W(n,K) ={

		

nlax

	

Ln
	 L 4 (n ))1i2

} ,
O: i<[L.(n)--Ls(a)1

L 5(n)
Y(n) = -9(n, C) = {SUP ((x, n) - (x, vn))=C(n	L2(n)	 ) I -

Then we have

r

sd c [,~j (1 (W U {

	

max

	

>1i- sup (~(x, n)-~(x, v„))})
o_i [L,(n)-L,(n) ]

	

X

U [ .,v n (e u {

	

max

	

% sup (~(x, n)-4(x, vn))})l (::: (v n w) U (m n !2) .p-zi.-[L2(n)] -[L,(n) ] X

Hence
C

..
L, (n)(L2 (n))312L3(nXL4(n))2L5(n)

which implies that among the events 4([aj) (where ak = exp (	k , 2	 ) ) only
(log k) ~

finitely many will occur with probability 1 .
In fact the above proof gives a bit more
Lemma 14 . Among the events
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sd*(k)-{ sup fn (ak(2L2(ak) + 3L3(ak)+ 2L4(ak)+ 2L5(ak))) 112 }
n<ak

only finitely many can occur with probability 1 .
This lemma and the trivial inequality

(ak(2L2(ak)+ 3L3(ak)+ 2L4(ak)+ 2Lo(ak)+ 2Ls(ak)))' 12

(ak+1(2L2(ak+1)+3L3(ak+1)+2L.1(ak+1)+2Ls(ak+1»)112

implies our Theorem 2 .
4 . A Few Unsolved Problems. 1 . The upper and lower estimates of fn

are far away from each other . It is not very hard to find somewhat better
estimates, however a precise description of the upper and lower classes of f7Z
seems to be hard .

2 . Our Theorem 1 stated that fn>((2-s)nL 2(n)) 1 12 infinitely often with
probability 1 . Its proof shows that when fn>_((2-c)nL 2(n)) 1 1 2 , then 4(fn, n)
=4(n) will be larger than (2DnL2(n)) 1 12 (where D is a small enough positive
constant) infinitely often with probability one . As it is well known for any
fixed x

Jim sup - ~(X, n)12 =1 with probability one .
n-+-

	

(2nL2(n))

Suppose that for a random sequence {xn} we have

lim sup	~(Xn' n)12 =1,
n-4-

	

(2nL2(n))

Our question is : how big can x„ be?



3. Everyone can see immediately that No {.F„}>_2 infinitely often with
probability one . Can we say that No {F„}>3 infinitely often with probabi-
lity one?

4. Consider the random sequence v„ for which No

	

What can
we say about the sequence {vj? Can we say, for example, that liiil,_vjn=,
with probability I ?

5. What are the properties of the sequence fn+ ~-fn ? Is it true that
lim sup /, jf„+i -f„ (_ c,o ? If yes_, what is the rate of convergence?

6. Does the sequence fnlJn have a limit distribution? If yes, what is it?
7. Is it true that 0(.F,, infinitely often with probability one?
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