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1 . Introduction . In this paper we discuss various properties distinct
integers n 1 , . . ., of taken from a short interval may have, such as

f

H n, e N"` for some m c- N, m > 2 : the product of n l , . . ., of is a perfect
i=1

power ;

11 n. _ fl n, for distinct subsets l i , 12 of ; l, . . ., f ; : there exist two
icl I

	

iEl )
distinct subsets of (n 1 , . . ., nf , that yield the same result if their elements are
multiplied ;

[ n
"Zi

= = 11 nm' for distinct subsets 1,, '2 of

	

f'} for certain
i'l1

	

"1 2
m; EN. 'C- 1 1 v 1 2 : there exist two distinct subsets of ; n1	nf ', that yield
the same result if their elements are multiplied, when repetitions are allowed .
Stated differently : n 1 , . . ., of are multiplicatively dependent .

f
co(f j n;) < J': the total number of distinct prime divisors in the prime

i=1
factorizations of the integers n1 , . . ., of is less than the number of integers .

By short intervals we mean intervals [n, n+k(n)], where k(n) is a `small'
function of n (such as v; n, or log n), for arbitrary n > 1 .

Our results can be summarized as follows : the above properties never
occur in `very short' intervals, sometimes in `short' intervals and always in
`large' intervals .

For example, distinct sets of integers from

[n, n+c 1 (log n) 2 (log log n)-2 ],

	

for any n > 3,

have distinct products, for infinitely many n E N this also holds for [n, n+
+exp((' 2 (log n log log n)'' 2 )], but for infinitely many n e N there exist two
distinct sets of integers in [n, n+exp((- 3 (log n log log n)'/ 2 )] with equal
products and for all nEN the latter holds for [n, n+t'4n'-"] . The ( 'I , C'2,
c 3 , c4 are absolute positive constants .
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2 . Basic lemmas and notation.
Notation . For primes p and n E N we define the non-negative integers

vP (n) by n = 11 p ° P (n) . For n EN the number of distinct primes dividing n is
P

o) (n) and the greatest prime dividing n >, 2 is P(n), while P(1) := L As usual,
7z(x) is the number of primes not exceeding x, gcd(n i , ni) denotes the
greatest common divisor of nl and n 2 and lcm(nl , . . ., nf ) is the least
common multiple of n l , . . ., nf . In proofs we sometimes use the familiar
Landau symbols O and o, as well as < (having the same meaning as O),
for convenience . In the statements of our theorems we shall not use these
symbols and we reserve the symbols c, co , c l , . . ., ko , k,, . . ., no, n l , . . . for
certain absolute positive constants . If m divides n we write m1n . We denote
the number of elements of a set S with IS1 . We write N' for the set
,n'" : ncNI .

To prove our main results in Sections 3, 4, 5 and 6 we need upper and
lower bounds for the number of integers in `short' intervals which are
composed of `small' primes. The purpose of this section is to derive such
bounds. To be more specific we need the following definition .

DEFINITION . For k, n EN we define

f (n, k) _

	

1 .
n<v-<n+k

P(v) -<k

We shall be interested in upper and lower bounds for f (n, k) in terms of k,
with k equal to various functions of n . Note that for k >, n we clearly have
f (n, k) = k- (7r (n + k) - 7r (k)), so

k - 2n/log n < f (n, k) < k for k 3 n .

Our interests are in the cases where k < n .
LEMMA 2.1 . For k = n", where 0 < a < 1,

f (n, k) < ak + 2k/log k .

Proof. Let ,n i , . . ., nf } _ , n < v < n+k : P(v) < k ; . For every prime
p < k delete one integer from n l , . . ., of with vP(-) maximal. The resulting
product is at most

x
E [(k - I)/Pjj

1 1 p
j- )

	

< k ( < k k
P_<k

and at least of-n(k), so that f < (k log k)/log n+7r(k) .



Note that Lemma 2.1 does not give an upper bound less than 2k/log k,
even when k becomes very small in comparison to n . The next lemma gives a
better upper bound for f(n, k) for such `small' k (i .e. k < exp(eo (log n) 112 ),
where c o is some positive absolute constant) .

LEMMA 2.2. For k = exp(d - ' (log n)'/ 2 ), where d > 3,

f (n, k) < max 1, co _ k log log d
log k log d

where c o is an absolute constant .

Proof. See [12], p. 37, 3.10 .4. The proof involves a theorem on lower
bounds for lineair forms in logarithms of rational numbers .

The next lemma shows that
n<, _<n+rP

110) 1<ntt
ciently large n and /3 > a > 2/5 . For /i = x actually Lemma 2 .1 is somewhat
stronger, but we shall use Lemma 2 .3 only for J3 > a .

LEMMA 2.3 . For 2/5 < a < 1 put

3a-3 for s <~ iv (x) _ a-3

	

for

	

'
and fór > a put

Then for any y < y(a, fl) we have, with N o a constant depending only on a, /3
and y,

1 > yN" for N > N o .

x<m_<x+x"
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y(a, /3) = 1-a-(P-a)(fi+a)/b(a) .

N <n-< N+ N"
P(n) > 0

Proof. We follow the method of Ramachandra in [8] ; we use the same
notation as in [8] .

We have

xx+X

	

X
1 =

	

~ 9I	7C -
n<<_

	

n

	

n

1 7r (x+ x"

	

'x' log (x/n)
- 7C

n

	

n } log x

- I
IT

-I x')-7r(x) log(x/n)

xü <n yxl x

	

n lll
l

	

\n// )t log x
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By Lemma 1 in [8] we have, provided that 1/3 < a < 1,

E 1 =(1-a)x'+0(x'/log x) .

To estimate 12 we divide [xi), x' -'] into N segments [xfl i, x# ' + 1 ] where
/10 = fl, NN = 1-a (assuming # < 1-a, otherwise Z2 = 0) . By the method
of Lemma 3 in [8] we have, for z > 3,

n
x+x'

	

x
--

x~i<n<A+1

	

n ) n (n)

2g
`` log (x fl i +' #'+2)-

C
I +0(1+ 101 ~~ + 0 (z max

to

	

x#i

	

z

	

d < z

where the remainder terms Rd can be estimated by Lemma 2 in [8] . We
obtain

/

	

x

	

'i2
(Rd

I

= O
\f
xlog x+x(1-~)3

z(d)

	

+ (X )1/3

d

Choosing z = xő we get

max ;zjRdl ; =O(max,x( ' - x` )12 +őlog x x311-a)/2-1i2+3aiz 'x 113 +a ; ) .
d<_

This is o (x') if b < ó (a), 2/5 < a < 1 .

Since log (x/n) < (1- fli ) log x for xai < n < xfli+ ' we obtain

Note that

N - 1

	

2x'
1 2 < `~ (I -A) log x A+l-A)log x • 1+0

2

	

N-1

_ (I +o(1))- x' E (1 -I'i)(I'i+1 - F'i) .b

	

i=0

N-1

y_ (1-fMAIl-Ni)-2(1- - a)(1 - ~+a)
i=0

when max (F'i+ i - /' i) -0 •
0<i<N- 1

Combining the bounds for 2 : 1 and 2: 2 we obtain that

1 > 1 -,or-	
S

	

E x'
x<m<x+x°
p(m)>x l P

for any : > 0 and any 0 < 8 < 6 (a) for x sufficiently large . Changing 1-/3
into # and choosing y < 7(a, #) now gives the assertion .

We use Lemma 2.3 to obtain a lower bound for f'(n, k) when k = n', a
ao , where a o is a certain constant less than 1/2 (a o = 0.49509 . . .) . We use

ogl x//
+o(x')}

J

11ZdU,
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the specific dependence of -,(a, f1) in Lemma 2.3 on x and /i to obtain such a
bound .

LEMMA 2.4. For every a > a o ( = 0 .49509 . . .) there exist a c (a) > 0 and a
no (a) such that

f (n, k) > c(a)k for k = n, n >, no (a) .

For a > ' this actually holds for any c(a) < 2-a - ' .
Proof. Let a, fl, y satisfy the conditions of Lemma 2.3, hence, the

inequality ( * ) . Then, for k = n",

C2enlk

	

(n+ l) . . . (n+k)

	

s

/'

	

p > (k «)yk
'

	

p"k

	

k !

	

p>k

	

i=1
pl(n+ 1) . . . (n+k)

w' ere k < p l < . . . < pS are the first s primes exceeding k and s = m((n+
+{i ) . . . (n + k)) - 7r (k) - yk .

It follows that

w((n+1) . . .(n+k)) < (a-'-l-y(f3/a-l)+O((log k) - '))k .

Since J '(n, k) > k-co((n+1) . . .(n+k))+7r(k) we infer that

f (n, k) > (2-a - ' +y(fl/a-1)+o(1))k .

Let a o be the constant defined by : 2/5 < ao < 1/2 and for a > a o there exists
a # > a with y(a, f3) > (1-2a)/(#- a) . (We have ao = 0.49509 . . .) .

Then for a > a o there exists a y < y(a, fl) with 2-a -' +y(/3/a- 1) > 0,
which implies the first assertion of Lemma 2.4. The second assertion follows
by taking in the above discussion the trivial values y = 0, # = a .

Remark 2.4. Plausibly, for every a > 0 there exists a c*(a) > 0 such
that f (n, k) > c* (a) k for k = n", n > n o (a) .

This certainly holds for infinitely many n E N, as can be seen as follows .
We have

,

	

1 ~ o(a - ') x for x , 0"',
n-<x

P(n) < 0/2

where o(a - ') > 0 is the Dickman function. Let c < O(a - ') and x large, then
there exists an interval [t, t+t"] [1, x] with teN large with at least ct"
integers n with P(n) < ' n". As i n' < i (t + ta)" < t" the assertion follows .

LEMMA 2.5. Let n > 3 and t < 0 .9 (log n)/log log n . Then the number
1P (n, n ') of positive integers v < n with P(v) < n

	

equals n/t
Proof. See [1], Corollary of Theorem 3 .1 .

LEMMA 2.6. For every c < 1/,,/2 there exist infinitely many nE N such that
the interval [n, n+k*(n)], with k* (n) =exp(c(log n log log n)'/ 2 ), contains
only integers which are divisible by a prime p > k* (n) but not by p2 .
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Proof. The number of integers in [1, n] which are divisible by a square
x 2 with x > n'/` is at most En/X2] = n/(l+o(1))n''

x>nl/t

By Lemma 2 .5, there exist at most n/t`('+°(')> integers in [1, n] which are
not divisible by a prime exceeding n'/" . Take t such that (1+o(1))n'/`

t = (1 + o (1)) (2 log n/log log n) 1/2 .
Call the above integers in [1, n] bad. Since their number is at most

2(1 + o (1)) n/n'" there must exist at least [' n'"] consecutive integers
m+1, . . ., m+[' n'"] which are not bad, i .e. divisible by a prime p > n'"
but not by p 2 . Provided that n is sufficiently large, we have [' n"'] > k* (m) .
In this manner we obtain infinitely many m e N for which [m, m+ k* (m)]
has the desired property .

In the next lemma we use the notation o(1) for several functions of n
tending to zero as n -> oo .

LEMMA 2.7. For every ti > 1 there exist infinitely many n c- N such that the
interval [n, n+k*(n)], with

1+
k* (n) = exp	 (1 + o (1))(log n log log n)'

	

,
v 2

contains distinct integers n i , . . ., of with

o) (n, . . . nf) <

	

and

	

f > k*(n)at'++~~ .

Proof. By Lemma 2.5 there exist '(m, m") = m/t('+°(')>` integers v in
[1, m] with P(v) < m'" . Suppose every interval [6k, ((r+1)k], cc-N, con-
tained in [m/2tt1+°(1))'m] contains at most m~l` integers v with P(v) < m"
Then

Choosing

t = (1 +0(1))(2 log m/log log m)'/'

and

k = 3m" _ tt' 4 o(l))r = exp -+ 1 (1 +0(1))(log m log log m)á '' 2
tit

we obtain the contradiction P(m, m'") < m/t('+°"')` Hence there exists an
interval [n, n+k], with n > m/2t('+°(i)>` which contains distinct integers
ni , . . ., of with P(n i )

	

m1 l' and f > m`/ . We have

k = exp {1+~ (1 + o (1)) (log n log log n)'

	

= k* (n)
l~

P(m, m'/) < m/2tt'+~('»'+(m/k)m



and

while
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w(n1 . . . nf ) < 7E (M
I

`)
< m1/t

.f >
mz;r =k*(n)A(1+)t>>)/ir'i

3 . Integers composed of few primes .
DEFINITION 3 .1 . The positive integers ni , . . ., of are said to be composed

of few primes if a )(n, • . . . • nf) < ./'.

DEFINITION 3.2. The positive integers n1 , . . ., of are said to be composed
of ,few integers if there exists p 1 , . . ., p,,, E N with

(1)

j= t

fo certain vij eZ with v ij > 0 (1 < i < f, 1 <,j < w), while w < .f'.

Note that the pj in Definition 3 .2 are not required to be prime, which
makes the difference with Definition 3 .1 . We shall also consider, more
generally, the properties w(n 1 • . . . • nf ) < F (f ), resp. w < F (f), where F : N
-> N is some given function with F(f) < f: This last restriction is a natural
one since any f positive integers are composed of f integers, namely
themselves (take pj = nj , v ij = 6ij in Definition 3 .2) . Being composed of few
integers is really weaker than being composed of few primes : m2, m(m+ 1)
and (m+ 1)2 are composed of few integers but not of few primes (for most
m c- N) . A still weaker property is being multiplicatively dependent (see § 6),
which is equivalent to Definition 3 .2 without the stipulations vij 0. The
property of being composed of few integers (primes) is a basic one in the
context of this paper. From the existence of a set with w (ni • . . . • nf) < F (f)
we infer the existence of a subset with certain desired properties in several
instances (5 .1, 5 .2, 6.1) .

We also recall a relation between the property of being composed of few
primes and another multiplicative property of consecutive integers (see [9]) :

There exists no subset :n	nf ; of :n+1, n+2, . . ., n+k) with
w(n, • . . . •nf ) < f

	

There exist distinct primes p 1 , . . ., p k with p i le+i for
i=1, . . .,k .

The following theorem shows that short intervals do not contain in-
tegers composed of few integers .

THEOREM 3 .1 . Suppose n i , . . ., of are distinct integers in [n, n+k] com-
(1)

posed of p 1 , . . , pw e N (i .e . ni =

	

pj `j with vij > 0), where f, n, k c- N . Then
j= t

(co, c 1 , t,o are absolute positive constants) :
(1) if o) < f then k > n 1 ``° > n r "

-,~

(2) if o) <J'-,,'2f then k > n 1/v(2f)
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(3) if w < %f then k > c o (log n/log log n)6,
(4) if w <./* then k > n

o/ á (2f)

(5) if w < f then k > c, (log n/log log n) 3 .

Proof. The first two results are special cases of

1/

	

min

	

((o!A+(n,-1)/2)

k i n 151"f-"

	

,

which follows from

fj ni < lcm(n,, . . ., n;)

	

gcd(ni , nj ) .
i= 1

	

1 5i <_<ti

See [12], p. 17 .
The third result is elementary, too, but more involved . See [13] or [1?I,

Theorem 2 .8, p. 23. On the other hand, (4) and (5) are non-elementary (a
lower bound for linear forms in logarithms of rational numbers is used) . See
[13] and [12], p. 35. Note that (1), (2) and (4) give a trivial conclusion if f_s
large in comparison to n, but that the lower bound for k in (5) is independent
of f : This bound (5) was first proven in [9] in the case w(n	nf) < f.

The next theorem is the main result of this section .
THEOREM 3.2. For n E N let k (n) : = min ; k c N : [n, n + k] contains distinct

integers composed of,few primeri . Let t > 0. Then (co , c, are absolute positille
constants)

(1) k (n) > c o (log n/log log n) 3 for all n E N with n > 3,

(2) k(n) > exp CC 12 e (log n log log n) 1
/ 2 for infinitely many n e N,

(3) k(n) < exp((,,F2 +E)(log n log log n) 1 / 2 ) for infinitely many ncN,
(4) k (n) < c, no .116 for all n e N.
Proof. See for (1), Theorem 3.1(5) . From Lemma 2.6 we infer (2) : the

primes p > k* (n) must all be distinct . Lemma 2 .7 immediately gives (3) . From
the proof of Lemma 2.4 we see that w((n+1) . . .(n+k)) < k if k 3 WE 0 , n > n o ,
which implies (4) .

When the number of elements f of a set ,n,, . . ., nf ; c [n, n+k] with
w (n	nf) <,f is restricted, then better lower bounds for the length k of the
interval than k > (log n/log log n) 3 can be obtained . When f is small in
comparison to the size n of the integers involved then 3 .1 (1) and 3 .1 (4) are
superior to 3 .1 (5) . When f >fo = 2/io then 3.1 (5) is better than 3 .1 (1) . If
J',< k 2 /3 then 3 .1 (4) gives a better bound for k than 3.1 (5), e .g. when f = V,
0 < a < 2/3, then k > (log n/log log n) 21 x . In the extreme case when f = k+ 1
(i .e . n 1i . . . , of are the consecutive integers n, n + 1, . . . , n + k) we have
k > exp(c (log n) 1 / 2 ) . Actually we have the following results about this im-
portant special case of consecutive integers .



THEOREM 3 .3. There exist absolute positive constants c l , c z , c3 , c 4 such
that

(1) w((n+1) . . .(n+k)) < k for all (n, k)EN x N with k > cl no.a96

(2) a) ((n +1) . . . (n+k))>,k for all (n, k)c-NxN
with k < exp(c z (log n) 1,/2) ,

(3) co((n+ 1) . . . (n+k)) > k for infinitely many (n, k)EN x N
with k > c3 v i le,

(4) co((n+1) . . .(n+k)) < k for infinitely many (n, k)c-NxN
with k < c4 n l 'e.

Proof. For (1) we refer to the proof of Theorem 3 .2 (4) . To prove
(2); note that, since every prime exceeding k divides at most one integer in
[n, n+k], we have co((n+1) . . .(n+k))> k-,f(n, k) +7r(k) . So it is sufficient
vto show that f (n, k) < 7r(k) for k < exp(c z (log n) i*' 2 ) . This follows from
Lmma 2.2 if c z is sufficiently small . In [3] an averaging argument is g .,,en

that proves (3) . Actually this argument can be used to prove both (3) and (4),
as we show now. For n, k e N with n > k > 1 we put t : _ [n/k] and we
denote by w k (m) the number of distinct primes exceeding k that divide m c N .
Since every prime > k divides at most one integer among k consecutive
integers we have

The

Put
k

	

k

min co k (H (n+ik+j))_ :m and

	

max t-ok(tj (it +ik+j))_ : M .
0<i-<t-l j= l

	

0si,t--l j=l

Since the left side of ( * ) is at least nit and at most Mt it follows that

m < k
C
log log n

)
+ Cl

	

and M > k log log n - Cz

log k

	

log k

	

log k

	

log k '

where Cl and C, are certain absolute positive constants. Take 0 < c
< exp (- C z ) . Then for all sufficiently large n c N and k

	

there
exists an 0 < i < t-1 with

k

M=(ok (tj (n+ik+j))>k .
j=1

r- 1

(o k (f1 (ii +ik+j))=

	

(

	

1) .
i=0

	

j=l

	

p?k n<c<n+tk
pw

right side of ( *) equals

I tk

	

( I
k<p<n+ik p +O k<17-n+tk
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1) = tk(log (log	 k) +0 (log k))'
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This implies (3), if c 3 < c-2 - ' ' . Now take c 4 > exp(C,+2) . Then for all
sufficiently large n c N and k : _ [c4 n` '] there exists an 0 < i < t- f with

k

m = 69 k (H (it +ik+j)) < k-2k/log k .

Since (k) < 2k/log k this implies (4) .
Finally we remark that for every k cN we have

w((n+ 1) . . . (n+k)) > k+n(k)- 1

for all sufficiently large n, e .g. n > expexp(Ck), where C is an absolute
constant . See [12], p . 38. On the other hand, for every k E N there exist,
though only conjecturally for k > 2, infinitely many n c N with w ((n + 1) . . .
. . . (n+k)) = k+n(k) . See [5] .

4. Multiplicative dependence.

DEFINITION 4.1 . The positive integers r2, . . ., of are multiplicatively Je-
t

pendent if there exist m,, . . ., mf c Z, not all zero, with

	

nm' = 1 .
~=1

Equivalently, ni , . . ., of are multiplicatively dependent if they can be
divided into two sets having equal products, where repetitions are allowed .
Also, n, . . ., of are multiplicatively dependent iff there exist p 1 , . . ., p,, E N
with o) <J' such that

CU

n;

	

pj

j= 1

with

	

v ;j EZ

	

(1 < i <J, 1

	

j < (a) .
j= 1

Note that being composed of few integers (Section 3) implies being
multiplicatively dependent .

LFmMA 4 .1 . Suppose n l , . . ., of are distinct (,f > 2) integers in [n, n+k]
which are multiplicatively dependent . Then k , n1 to - 'r .

Proof. We have 11 nm' = rj njj with m,EN for tc(I uJ) c ~1,	
iEr

	

JEJ

We may assume that I n J = 0 . Let max gym, : t E I v J ; = m,o . By symmetry
we may assume that t o E L Then n,óo divides H nj j, hence

n,óo = gcd (nm"
10

	

i
, [I it"" ')I H gcd (%, n )

jE.r

	

JEJ

Since gcd(n, o , n) divides

	

n j J E ; l, . . ., k ; we conclude that
1,11 m,0 < k U-um,o

nm ` o < k

J E,1

THEOREM 4.1 . For n E N let k(n) : = min ik e N : [n, n+ k] contains distinct
integers which are multiplicatively dependent ; . Let a > 0 be arbitrary and let
co , c, be certain absolute positive constants . Then
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(1) k (n) > c o log n log log n (log log log n)- ' . for all n E N with n > 15 .

(2) k (n) > exp 1--E (log n log log n)' 12 for infinitely many n E N.
2

(3) k(n) < exp((.\í2+r)(log n log log n) 1,12) for infinitely many neN.
(4) k (n) < c i n"' for all n e N .
Proof. Suppose [n, n+k] contains distinct integers n i , . . ., of which are

f
multiplicatively dependent : II n ;" i = 1 for certain mi e Z with mi 0 (without

i=
'loss of generality). Then P(n i ) < k for i = 1, . . .J1 hence f f (n, k) . To

prove that k > log n log log n (log log log n) - ' we may assume that
k < (log n) 2 and then we have, by Lemma 2.2, that J '(n, k)

k(log 3k) -2 log log(3kf. Combining this with f log k > log n (Lemma 4.1)
we )btain (1) .

To prove (2) we invoke Lemma 2 .6: these intervals [n, n+k*(n)] do not
contain integers ni with P(ni ) < k*(n) . The third result (3) follows from
Lemma 2.7 : o-) (n, . . . nf) < f implies that n i , . . ., of are multiplicatively
dependent .

Similarly, (4) follows from Theorem 3 .3 (1) .

5. Equal products . In this section we investigate intervals which contain
distinct subsets of integers S i and S 2 with equal products : [I s = fJ s .

sEsJ

	

sFS2

Note that this property is stronger than multiplicative dependence :
the latter guarantees the existence of distinct subsets S, and S2 with r1 s"s)

_ H s-(" for certain m(s)EN, s E Si U S2, Observe that integers in S 1 n S 2
s6s2

can be deleted from both S i and S 2 without destroying the equality of the
products, so we may always assume that S, and S2 are disjoint .

LEMMA 5 .1 . Suppose n i , . . ., of are distinct (f > 2) positive integers with
w (n i • . . . • nf) < f log 2/(log (fv)), where v = max { 1 + v p (ni ) ; . Then there exist

1<i< .f
p pri me

distinct disjoint subsets S i and S2 of

	

. . ., nf1 with equal products .
Proof. For every subset S c ;ni ,

	

nf { put

p(S) _ F1 s = H Pup' s) .
SEs

	

P
Then

vp(s) _ I vp(s) < (v-1)151 < (v -1) f,
,Es

so the number of distinct integers p(S), S c {n i , . . ., nft , is at most
(1 +(v-1) f )° (vf " < 2f . The number of distinct S equals 2f, hence the
conclusion (elements in Si n S2 can be deleted from both S i and S2) .
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COROLLAR 5 .1 . In the above situation, let ji EN be minimal with
2j ' > (vii)" . Then there exist disjoint subsets T, and T2 of ;n,, . . ., nf ; with
equal products and IT, v T2I > f-Ji .

Proof. Choose any subset F, of :1, . . ., f ; with IF, I =J 1 (if this
is impossible take T, = T2 = 0) . This gives disjoint S, and S2 in F, with
H ni = H ni . Remove ni , 'C-S, U S2, from , n,, . . ., nf , and start again .
iES,

	

'ES2

This gives sets S,, S 2 , S3 , S4 , . . ., disjoint from each other, with

H n i = H ni (t = 1, 2, . . .) . The process stops when there are less than
LEs21 - 1

	

LES21

J1 elements left . Take T, = U Si and T2 = U Si .
iodd

	

ieven

In the case when (n,, . . ., nf ; is the set ,n < v < n+k : P(v)<k; we can
relax the condition in Lemma 5 .1 to get equal products :

LEMMA 5.2. Let n, k c N with k > k o and suppose

,k
f (n, k) > 2 log k log log log k .

Then there exist two disjoint subsets of ,n+ 1, . . ., n + k ; with equal products
(and at least f (n, k)-2k log log log k/log k elements) .

Proof. Let gin,, . . ., nf , c ~n < v < n+k : P(v) < k ; with

(A 1)

	

log x (k)
f >, 2k -- log k -'

where x (k) shall be chosen later. Delete all n i with P(ni ) > k/x (k) . The
number of deletions is at most

log x (k)
(1 + [k/P]) _ (1 + o (1)) k

k/clkl<p<k

	

log k

Hence S o = ;n i : P(ni ) < k/x (k) ; has more than f/3 elements . For all S c So
we define

P(S) = HS = 11 P
D
p
(S)

11
PCP(S) = : P1 (S)'P2(S),

SEs

	

Pei',

	

pCP2

where P, _ ~ p < k/log k ; and P2 = k/log k < p < k/x (k), . We have

vp (S) _ I vp (s) < max ; v p (s),' I 1 < (log k)` 1 1,
5Es

	

s

	

,Es

	

sCs

log (n+ k)
since vp (s) <

log
2

	

and k > exp((log n)' 2 ~ (this follows from our

assumption on f (n, k) and Lemma 2.1) .
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For pcP, the trivial bound I 1 < k gives vp(S) < k(log k)o( ' ) . For
ES
P1s

P E P 2 we have I 1 < . 1 + [kl`p] < 1 + log k, hence vp (S) < (log k)o ( ' ) .
ses

The number of distinct integers p(S) = p, (S) P2 (S) is therefore at most

(k (log k)otPi~ ;(log k)ot'if~P21 =exp
(lo

kg

k

(logl(kg) k
+0(1)

Since the number of distinct S c So equals 21só > 2f 13 we can infer the
existence of two distinct S, and S 2 in So with p(S,) = p(S2 ) if

3

	

k

	

log tog k
(A2)

	

f > log 2 log k

	

oc.
(k) -+ 0( 1) l .

Now choose cc (k) = 3 (log log k) (log log log k) - ', then (A 1) and (A2) are

satisfied if f > 2 ---
k
- log log log k .

log k

As in the proof of Corollary 5 .1 it follows that there exist two disjoint
subsets of :n < v < n+k : P(v) < k ; with equal products and at least f (n, k)-

k
- 2 - -- log log log k elements .

log k
LemMA 5.3 . Suppose [n, n+k] contains f distinct integers which can be

divided into two distinct sets having equal products, where n, k, f e N with n
> 2 . Then

2logn < <2 klogk

log k .
i

	

log n

Proof. Let H n i = H nj , where ~ 1,	; = I v J with 1, J disjoint
iEt

	

jCJ

(without loss of generality). Then for i c 1, ni = gcd (ni, H nj ) divides
jCJ

fJ gcd (ni , n), hence n < k 1 J1 . Similarly, n < 0 1 . Since one of III or IJI does
je.1

not exceed [f/2] we obtain the first inequality . For any set ;ni ; of integers in
[n, n+k] we write, for every prime p, max vP (n,) = vp = vp(n i(p) ) . Then we

have

''P

- u p (n i ) _

	

1',n, : i

	

i(p), pi divides ni ;i
i i(pl

	

j= l

"P

[k/pl] < up (k!) .
j= l
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Now if H n i = fl nj , where I n J = 0, then we have, for every p with i ( p) E 1,
E!

	

jPJ

that pLp divides H p °p(n ) . Hence

< H ni = H i pLp 11
r
p(ni)

ieL

	

p

	

i -i(p)
iel

( P°p(r ;) i <

	

p°p(k
) = k! .

p

	

#i(p)

	

p
ieIuJ

Similarly nI Jl < k! (< k k) . Since one of III or I JI is at least fl2 we obtain the
second inequality .

THEOREM 5.1 . For n e N let k(n) : = min (k e N : [n, n+k] contains two
distinct subsets of integers with equal products ;. Then, for arbitrary k; > 0 and
a certain absolute constant c,

1

	

log n \2
for all n e N with n >, 4,

4 log log n

exp

	

1 -E (log n log log n) " or infinitely many n E N,

exp((,, 2+E)(log n log log n)") for infinitely many neN,

cn0 49 b for all n E N.

Proof. From Lemma 5 .3 it follows that if [n, n+k] has two distinct
subsets of integers with equal products then k > ((log n)/log k)' which implies
(1) . Since fI n i = H nj with hn J = 0, and all n r E [n, n+k], implies that

iE1

	

j'J

P(n r ) < k for all t, Lemma 2.6 immediately gives (2) . To prove (3), choose
I < ;, < 14- i; v 2, then, by Lemma 2 .7, for all n in an infinite subset _N of N there

exist distinct integers n i , . . ., n .f in [n, n + exp ((,y 2 + t.) (log n log log n) i12 )] with
f > k* (n)t~ ,- ° i ' t (' + ;.) and (o (n, - . . . - nf) <,/'"' . Now we can use Lemma 5.1 :
we have v < (log 2n)/log 2 + 1 hence co (n ) - . . . - n f ) < < ( flog 2)/log (fv)
for all n E N with at most finitely many exceptions .

To prove (4) we use Lemma 5 .2 and Lemma 2 .4 : if k > n ° .496 and n
ni then the assumptions of Lemma 5 .2 are satisfied hence k(n) < n"'

To include n < ni we simply take c sufficiently small .
In view of Remark 2.4 it is plausible that k (n) = 0,(n') for all -. > 0 .
Note that the lower bound k > (log n/log log n) 2 for the length of an

interval [n, n+k] containing f ( 1) distinct integers which can be divided
into two disjoint sets with equal products, can be improved if the number f
of integers involved differs appreciably from k ) / 2 (use Lemma 5 .3) : e .g ., if f is
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bounded then k > n 2 J ; if ,f < , 0 < a < U2 then k > (log n/log log n)" ; if
f,i:k, 0<i;<1, then k, n'~ .

We also observe that for x >, a o there exists a c, > 0 such that there
exist equal disjoint products in [n, n+k], k = nx, with at least e,k terms (and
this is .probably true for a > 0) . This follows from Lemma 5.2 and Lemma
2.4 . On the other hand, for a < 1 there exists a cx < 1 such that there do not
exist equal disjoint products in [n, n+k], k = n', with c, k or more terms .
This follows from Lemma 2 .1 (with c,, = a+o(1)) .

6. Power products . In this section we investigate sets of distinct integers
n,, . . ., of with the property that there exists a non-trivial way to multiply

J
them that yields a perfect power :

	

n;"` E N' for certain m, m,, . . ., mf e N
=1

with m > 2 and m,r mi for i = 1, . . . , f: A variant results when one does not
allow for repetitions (mi = 1 for i = l, . . .,f) : distinct integers the product of
which is a perfect power . Before turning to results on power products in
short intervals we give some results related to the well known Erdös-
Selfridge theorem ([4]) which states that the product of two or more
consecutive positive integers is never a perfect power .

What happens if one deletes one (or more) integers from a product of
consecutive integers? It is trivial to show that if one deletes one integer from
a product of three consecutive positive integers then the resulting product is
never a perfect square (it can be á perfect power but it can be proven that
the only instance is 2.4) . Deleting one out of four does not give a square
either (as we hope to prove soon) . However, deleting one out of nine (or
ten) positive consecutive integers does produce á square sometimes :
(1-)2-3-4-5-6-8-9-10 is a square. We shall prove (see Corollary 6.1) that
there exists a constant k (l) such that if one deletes I integer from a product
of k(1) or more consecutive positive integers then the resulting product is
never a perfect power .

Another natural question is : do there exist (infinitely many) products of
consecutive positive integers which are twice a perfect power? Since .x 2 -2v 2
= 1 has infinitely many solutions x, y E N there exist infinitely many n EN
with n(n+l)e2N 2 . Theorem 6.1 implies that, apart from these infinitely
many products n (n+ I) E 2N2 , there exist at most finitely many other prod-
ucts 11(n+1) . . .(n+k) with n. keN which are twice a perfect power .

THEOREM 6.1 . Let 0 < 6 < 1 /2 and a c N2 . Let n,, . . ., of he two or more
integers obtained by deleting at most ak/log k integers from k consecutive
positive integers, where k E N (k > 2) is arbitrary . Then

.t

I n ;n ' $ aN' for any m, ml , . . ., m,,-EN
i-1
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with m > 2 anti gcd(m i , m) = 1 for i = 1, . . ., f; except for at most . finitel17
many such sets- ~ n,, . . ., nf } . If a E N, a ~ N 2 then the same is true but then
there are also the infinitely many exceptions n,, 112 with n i n2 E aN2, 1
án 2 -n,I < 2 .

Proof. Suppose the conditions of Theorem 6.1 are satisfied and,
moreover, k > max i2P(a), k o (6)}, where ko (b) is some (large) constant de-

f
pending only on d . We shall prove that 11 ni"i e aNm gives a contradiction .

i=1

The cases with k < max (2P(a), ko (6),'- shall be treated at the end of the
proof. Let n,, . . ., of be contained in (n, n+k], where n e N v ~0 ; .

Suppose k > n . Then there exist more than 6k/log k primes p in
((n+k)/2, n+k] c (n, n+k], hence ni = p for some i . Since 2p > n + k we have
p X ni for j i and since p > k/2 > P(a) we obtain a contradiction from
f

n;"' e aN'" . So k < n .
+= I

Suppose n 2 J 3 < k (< n) . ~By the well known theorem of Ingham, the
number of primes p in (n, n+k] is asymptotically k/log n, hence exceeding
6k/log k . So n i = p for some i and since p > n > k we have p X ni for j ii.
and we obtain a contradiction from II nmi E aNm as above. So k < n 2/3

i= I

For ko < k < n 2 /3, where ko is an absolute constant, the number of
integers v in (n, n+k] with P(v) > k exceeds ók (> t5k/log k) by Lemma 2 .1 .
Hence P(ni ) = p > k (> P(a)) for some i . Since p > k we have p X it, for .j i

f
and we deduce from II n;i E aNm and gcd (m i , m) = 1 that p'"l ni . This implies

i= i
(k+ 1)m < pm < n i < n+k, hence k <

Put ni = a i xm, with a i c N m-free (i .e . vp(a i ) < m for all p), for i = 1, . . . , f.
We distinguish two cases now .

Case 1 : m > 3. We refer to the paper of Erdös and Selfridge [4] ; it is
easy to see that, since k < n' lm and m > 3, all products a i ai (1 < i, j <f) are
distinct . This implies ([4]) that

	

1 < x(log x) - ' (l +0 ((log x)
"i<X

Assuming without loss of generality that a, < . . . < of we infer that
a, > t log t + t log log t + O (t), in particular, a, > t log t for t > t o (an ab-
solute constant). So, for T > 2,

(*) rl a, > exp(I log (t log t)+O(1))=exp(Tlog T+Tloglog T+0(T)) .
=2

Choose for every prime p dividing the product a, • . . . -a, . an integer
n(p)E ;n,, . . ., nf ; with max v p (n i ) = vp (n(p)) .

1 -<i <_f



Then

Note that every prime p dividing F1 ai does not exceed k : if pea then
i= I

f
p < P (a) < k and if p X a, p jai then, since fj a ;'i E aN', we

i=1
some j

	

i, hence plgcd(a i , aj)l gcd(n i , nj )l Ini -njlE'1, . . ., k, . So there are
f

at most 7r (k) primes dividing

	

ai .
i=1

Put f * =f- 7E (k) ( 2) . We have

Now

for all p < k .
Also,

i=1

	

p
n i #n(p)dp

Products of integers in short intervals

f

	

v 1 ;1-<i-<f :ni#n(p),pJdividesai~i

11 ai = 11 pj ; i

m-1

	

m-1
~

	

E i{15i<f :ni#n(p),pidividesni}j

	

E [klpjl
< 1 1 pj =1

p

	

p

f.

	

~ .
f1 at < 11 ai < k ! < kk .
t=1

	

i=1
ni #n(p)dp

Combining this with ( *) (with T =J'*) gives

log log k
f* < k (1--

		

+O (1 /log k)) .
log k

This contradicts f > k-6k/log k, since k > ko (b) .
f

Case 2 : m = 2. As we saw above,

	

ai divides
i=1

divides, in fact,

(f1 p)k! 11 p"P[nai)-vp(k!)-1
p-k

	

p-P

<11p
j=1

	

<k (

(11 p)k!
p-k

for any 2 < P < k .

have plaj for

Hence it

f

	

f
vp (a i ) _ 1 =

	

1 <

	

1 = k/(p+ 1)+O((log k)/log p)
i=1

	

i=1

	

i=l

	

n<v-n+k
pl ai

	

up(ni)odd

	

vp(v)udd

v,(0) = k/(p-1) +0 ((log k)/log p)

	

for all p < k .
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Hence

rAl-i)-vp(k')- 1

	

2 log pH p

	

e x p -k 1 z- +0 (it (P) log k)l
P<P

	

PSP p -1

=exp(-6k +0 (k/P) +0 ((P log k)/log P)),

2 log p
where o =

	

z

	

Since k ! H p = exp (k log k + 0 (k/log k)) we
Pprimc p - 1

	

P<k
conclude, choosing P = k;log k, that

f
ai < exp (k log k - (rk + 0 (k/log k)) .

i=1

On the other hand, the a i are square-free and (without loss of generality)
a, < . . . < a,,, Hence a i > di for any d < 11 2/6 and i > io (d), a constant
depending only on d . Hence, for some constant s o > 0,

f
U a i > dJ,f ! s o = exp(f'log f-(1 -log d) f+O(log f)) .U

J,
Combining the estimates for H a i gives

i=1

f < k-((7 -1+log d)kjlog k+0(k/(log k)~) .

Since (7- 1 +log(n2 /6) > 1/2 we obtain a contradiction with f > k-8k/log k,
6 < 1/2 and k > k o (J) .

Now we consider, finally, the cases for which 2 < k < k o
= max ;2P(a), ko (6) ; . Suppose we have f distinct integers n,, . . ., of in an

)
interval [n, n + k], where n, k c N, such that

	

nm i E aN' for certain m,
i= I

ml , . . ., mf eN with m > 2 and gcd(m i , ; :) = l for i = 1, . . ., f. In [14] it was
proven that this implies k > c log log log (n+15), where c=c(a) is some
positive constant depending only on a, provided f > 3 or f > 2 and a c- N 2 .
Since k < k o we infer that n < no , a constant depending only on a and d . So
both n and k are bounded and there can be only finitely many sets

f
n,, . . ., nf ; c [n, n+k] for which

	

nm i eaN' for some m, m1 , . . ., mf eN
i= 1

with m > 2 and gcd(mi , m) = I for i = 1, . . ., f.

COROLLAR 6.1 . For every t e N o and every a c- N there exists a minimal
k,, (t) e N with the following property. Let n,, . . . , of be integers obtained by
deleting t integers from k,, (t) or more consecutive positive integers . Then

f
nmi ~ aNm

i= 1
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for any m, m i , . . ., mfcN with m > 2 and gcd(mi , m) = I for i = l, . . .,J .

Moreore r,
(1) k a ( t) < ct log t for any c > 2 and all t > t,, (c), a constant depending

only on a and c .
(2) k i ( t) > t log t for infinitely many t E N .

P r o o f. Let t> 0 and a e N and 0< 6< 1/2 be given . Let k satisfy
A/log k > t. If n,, . . ., o f are obtained by deleting t integers from n+ 1, . . ., n+

+k and 1~ nmi caN' for certain m, m,, . . ., mf , then, by Theorem 6 .1, k

< ko (a, 6), a constant depending only on a and 6. So if ka (t) satisfies
ka (t)/log k a (t) > 6 - ' t and ka (t) > ko (a, 6) for some 0 < 6 < 1 112 then it satisfies
the property defined in Corollary 1 . This proves the existence of ka (t) and
also (1) . To prove (2) we argue as follows . For every k e N there exists a
t < 7r(k) such that there exists some way to delete t integers from 1, 2, . . ., k
such that the remaining integers have a perfect square as their product (by
Lemma 6.2) . Since certainly the primes in (k/2, k] have to be deleted we have

n(k)-7r(k/2) < t < 7r (k),

so there exist infinite sequences k, < k z < . . . and t, <12< .-, with

t i < n (ki )

	

and

	

(k i ) !/n, . . . n, . E N2

for

	

certain

	

distinct

	

n,, . . . , n, i E ;1, . . ., ki ; .

	

So

	

k, (t i) > k i + 1 > p, i + 1
> ti log ti (p, denotes tth prime number) .

Note that k, (0) = 2 (if we change the definition of ka (t) somewhat by
taking mi = 1 for all i) by the Erdös --Selfridge theorem and that k, (1) > 11,
k, (0) > 11 since 10! c7N 2 .

LEMMA 6.2 . Let n i , . . ., of he distinct positive integers and let meN
with m > 2 . There exists a subset ;ni : iel ; of (n,, . . ., nf ; with at least
f- e) (n, . . . n f ) 'elements such that

H nm i e N'

	

for certain m i c ; 1, . . , m - I ; , i e 1_
i6l

Proof. We may assume f > w(n,	nf) (otherwise take 1 = 0) . Let
J c (1, ._f ', with ~J1 = 1 +w(n, • . . . - nf) . Then nj , j cJ are composed of less
than ~J1 primes, hence multiplicatively dependent : 11 na = 1 for certain

~Fj

aj E Z, not all zero . In fact we may assume that not all a i are divisible by m,
since the only root of unity in N is 1 . Reduce all mj modulo m, then we
obtain a nonempty JO c J with fj nji e N', where m; E ;1, . . ., m- 1 ; for

JEjo
jCJO .

Now remove the n, with icJo from ;n,, . . ., nf ; . Choose another set
J with l+w(n	nf) elements from the remaining integers and repeat
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the above procedure . We obtain disjoint sets Jo , Jó ), Jo ), . . ., J(0 ,
with 11 n;' E Nm for certain mj c ;1, . . ., m-1 1 . Take 1 = U J", then

j ,Jo)
njieN' and III >f-co(n, . . . nf) .

jel

THEOREM 6.3 . For m c N with m> 2 and n c N we define

km ) (n) = min {k c N: [n, n+k] contains two or more distinct
f

integers, ni , . . ., nf , say, for which I~ n`E Nm for certain
i= 1

ml , . . ., mf EN with m,rmi for i = 1, . . .,fl
and

k(n) = min ', keN: [n, n+k] contains two or more distinct integers the
product of which is a perfect power .

We have, for certain positive absolute constants c o, e 1 , e z ,
(1) k(m) (n) > c (m) log log n for all n c N with n > 3, where c (m) = co m -10
(1)' k (n) > c i log log log n for all n c N with n > 15 .
For every E > 0 there exists an infinite set N i cf positive integers with

(2) k"I(n) > exp((1;,/2-a)(log nloglog n)'/ 2) for neN, and all m > 2,

(2)' k(n) > exp((1/,, 2-s)(log n loglog n)'/ 2 ) for ncN 1 .
For every c > 0 there exists an infinite set N z of positive integers with
(3) k`m~(n) < exp((,í2+a) (log n log log n)'/2 ) for nEN z and all m > 2,

(3)' k (n) < exp ((, 2 + r) (log n log log n)") for n c N z ,
(4) k ( m' (n) < c z no-496 for all n c N and all m > 2,
(4)' k(n) < c z no .496 for all ncN .

Proof. Suppose n1 , . . ., of are two or more distinct integers in [n, n+k]
f

with n;"'EN' for certain m, m1 , . . ., mf EN with m,} mi for i = l, . . ., f .

Put m* = m/gcd (m i , m) and write n, = a ; xi
m

`: with a; E N m*-free (i = 1, . . ., f ) .

Suppose pl a ; for some i . Since

	

aim' c Nm and a i is m*-free we infer that pl at

for some j

	

i . Hence pIgcd(ai , a)l gcd(n„ nj)lIn i -nilc,l, . . ., kj . Hence

ai y I-I pmi ' < 3km for i = 1,	f'•
p<k

Case 1 : m* > 3 for some i . Choose j i . We have
m

	

mF (x,) : = aj xj - d = a; x ;

for some d with 0 < Idl < k, where m* > 3 and m* > 2 . We now use an
explicit version of the estimates of Sprind2uk for the solutions x, y e Z of the
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Diophantine equation F(x) = Ay' (see [17]) . Using that a;, a j < 3km we
obtain that (n <) a, x;' < exp(C" ' k ) for some absolute constant C . This
implies (1), for this case .

f
Case 2 : m* = 2 for all i . Then fj n i c N2 . In [14] it is proven that this

i=1
implies that k > (log log n) 2 (log log log n)- ' so (1) also follows in this case .
This proves (1) . For the proof of (1) we refer to [14] . We note that a lower
bound for min k (m'(n) seems unattainable in the present state of mathematics .

m32
That it is possible to prove the lower bound (1)' for k (n) is due to the
requirement in the definition of k(n) that all multiplicities mi are 1 . (Actually
it would be sufficient to require only that gcd(m i , m) =gcd(mj , m) for some
i

	

j) .
To prove (2) we use Lemma 2.6 : let n,, . . ., of be any distinct integers in

[n, n + k* (n)] and let pl n, , p',{' n, , p > k* (n) . Then p X nj for j 54 i hence
.r

	

r
vp(11 nm') = m,, in particular j 1 nm` ~ Nm for any m, ml , . . , mf c N with

f=1

	

í=1
m X m; for i = 1,

...j. Since clearly k (n) >

f > k - 4kllog k .

min k ( " (n), we obtain (2)' 1m-
m32

mediately from (2) .
The inequality (3) follows from Lemma 2.7 and Lemma 6.2 . Since clearly

k (n) < k' 2) (n) we also have (3)' .
To prove (4) we note that, by Lemma 2.4, we have

.f'(n, k) > ck > 7E(k)+2

	

for

	

k > n0.49 ' and n > n,,

where c and n, are positive constants . Now use Lemma 6.2 to obtain (4) .
Again by k(n) < k (2) (n), the inequality (4)' follows immediately .

In the next two theorems we give some results about sets (n,, . . ., nf ; of
f

integers in short intervals [n, n+k(n)] with the property that H ni is a

perfect power where the number f of elements is restricted .
f

THEOREM 6.4. Let n, k c N he arbitrary and suppose n i is a perfect

power for distinct (f > 2) integers n i , . . ., of in (n, n+k] . Then

f < k-á0 k/log k,

where 60 is a positive absolute constant .
On the other hand, for all n, k c N with k > n there exist distinct

f
n,, . . ., nf c(n, n+k] with

	

n; is a perfect power and
i=1
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For every a with 1/2 < a < 1 there exists a c x < 1 such that if n,, . . ., of
f

are distinct (f > 2) integers in (n, n+k], where k = n", with

	

ni is a perfect
+= 1

power then
1 < c, k .

On the other hand, for every x > a o there exists a c* > 0 such that for all
n there exist distinct integers, n,, . . ., nf , say, in (n, n+k], where k = n", with
J ,

n i is a perfect power and
i= 1

J' > c,*, k .

Proof. To prove the first assertion we use Theorem 6 .1 : we obtain
J' < k- 4-k/log k provided that k > k o , an absolute constant. Now choose
0 < 6 0 ( < 3) such that 6 0 k/log k < 1 for 2 < k < ko , then f < k -1
k-6 0 k/log k also holds when 2 < k < k o by the Erdös-Selfridge theorem .
To prove the second assertion we argue as follows : for k > n we have

w ((n + 1) . . . (n+ k)) _ 7z (n + k) . By Lemma 6.2 there exist, therefore,
f

ni , . . ., nf c(n, n+k] with J',> k-n(n+k) for which H n i is a perfect square .
+= 1

Furthermore we have 7t(n+k) < n(2k) < 4k/log k .
f

To prove the third assertion, assume

	

n i is a perfect power, where
i= 1

n,, . . ., of arte distinct (f > 2) integers in (n, n+k], k = n" > n 1 / 2 . Then
P(ni ) < k for i = 1,	f (a prime p > k cannot divide two distinct integers
in (n, n+k] and p 2 cannot divide an integer in (n, n+k] either, since
(k+1) 2 > n+k), so f <f (n, k) . Now use Lemma 2 .1 .

The last assertion follows from Lemma 2.4 and Lemma 6.2 .
THEOREM 6.5. For m and f e N with m > 2 and f > 2 there exist

F, =F, (m, f) > 0 and Fz =r; z (m, f) > 0 such that if [n, n+k] contains f dist-
inct integers with a perfect m-th power as their product then k > f:, (log n) 2 .

For m e N with m> 2 and F e R with 0< F< 1 there exist 6
_ 6, (m, F) > 0 and d z = 62 (m, F) > 0 such that if' [n, n+k] contains f distinct
integers with a perfect m-th power as their product and f > Fk then
k > 6, (log n)62 .

Proof. This has been proven in [14] . Similar assertions, though with
different numbers t.1, E2, b,, 62, hold for the property

f
fj nm` E N' for certain mi E N not divisible by m,
i=1

see the first part of the proof of Theorem 6 .3 and the proof of Corollary 4 in
[14] .

Suppose m and _1' are given integers, m > 2, J'>, 2 . How far do we have
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to go from n to obtain f distinct integers which have a perfect mth power as
their product? Trivially, the first f mth powers larger than or equal to n
have a perfect mth power as their product, so we do not have to go further
than n+Cn'-'t'", C = C(m, f) . We are not able to find a better upper bound
than Cn' - 'tm, valid for all n (it does not exist when f = m = 2) . One method
to try and find one is to search for f distinct neighbouring integers ni of the
form ni = a i xm, where the a,, . . ., of are pre-chosen (m-free) integers with
f

ai E Nm, for example a, • . . . • af_ , arbitrary and of = (a, • . . . -a,-- ,)m-' . One
i= t
can show (see [15]) that this gives an upper bound Cn` `im- 'tm (" ) C
= C (m, f) valid for infinitely many n c N ((m, f) (2, 2)) . In particular, for
every m, f with m > 2, f > 2, except (m, f) =(2, 2), there exist infinitely many
n eN such that between nm and (n+ 1)m there exist f distinct integers whose
product is a perfect m-th power .

This method (with pre-chosen a,, . . ., af ) is certainly not able to produce
upper bounds Cn° with o < 1-1/m-1/m as was proven in [15] . 1n
particular, if [n, n+k] contains 2x2, 3xz, 6x3, then k > c(a)n't 4- ' for any
t : > 0. An interesting example of three distinct integers whose product is a
perfect square is 10082, 10086, 10092 (= 2x2, 6x3, 3xi), found by Selfridge .

7 . Generalizations and problems .
7 .1 . Integral values of a polynomial . Let FEZ [X], where we assume, for

simplicity, that F is irreducible . We shall consider the integers F(t), t c- Z. We
are interested in the following properties of F(n,), . . ., F(nf), where n,, . . ., of
are distinct integers :

f
(1) ctw(II F(n i )) < ff

i=i

(2) F(n,), . . ., F(nf ) are multiplicatively dependent .

(3) [1 F (n) _ fj F (n) for distinct subsets N,, N2 of ; n,, . . ., nf ; .
nc .N,

	

neN2

J ,

(4)

	

F (n i ) is a perfect power .

In the preceeding sections we have shown that when F(X) = X these
properties

(A) never occur when n,, . . ., ny are any distinct (f > 2) integers in any
"short" interval,

(B) always occur for some distinct (f > 2) integers n,, . . ., of in any
"large" interval .

We can prove the (A)-theorems also for the general case : there exist
positive constants c,, c 2 , c 3 , c4 , e s , depending only on F, such that for all
n > 15 we have
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(1 A) For all distinct

	

2) integers III, . . ., of in [n, n+c, x
r

x (log n) 3/(log log n)"2] we have w ( I F (n i )) > f

(2A) For all distinct (f > 2) integers n,, . . ., nf in [n, n+c 3 log nílog log n]
the integers F(n,), . . ., F(nf ) are multiplicatively independent .

(3A) For all subsets N, # N z of integers in [n, n+c 3 log n/log log n]
we have H F(n)

	

11 F(n) .
neN,

	

ncN2

(4A) For all distinct

	

2) integers n,, . . ., of in [n, n+c 4 x
f

x (log log log n)"] the product

	

F (n;) is not a perfect power .

These results can be proven like in the special case F(X) = X, using the
following lemma .

LEMMA ([16]) . Let FEZ [X] be irreducible . Then for any distinct integers
x, y we have

gcd(F(x), F(y)) < cb jx-yj`',

where c b and c, are constants depending only on F .
The first problem we propose is
PI : Prove (3A) for intervals larger than in (2A) also when the degree of F

exceeds 1 (see Theorems 4 .1 . (1) and 5 .1 . (1)).
We are only able to prove (B)-theorems when the degree of F equals

(one or) two, and the intervals are actually "very large" :
Let F E Z [X] be of degree 2 . There exists a number n o , depending only on

F, such that for all n > n o the interval (n/log n, n) contains
(1B) a set of integers S, with co( I-I F(s)) < IS,j,

SES,

(2B) a set of integers S, such that F(s), sES, are multiplicatively
dependent,

(3B) two distinct sets S z, S 3 of integers with fj F(s) = l1 F(s),
sCSZ

	

sES3

(4B) for every m c N, m , 2, a set Sm of integers with

	

F (s)m'" ) c Nm for
Sesm

certain m(s)E,1, . . ., m-1 ;, SE SM .

Proof. It follows from Lemma 4 and Lemma 5 in [2] that, if F is
irreducible of degree 2, for all n > n o the interval (n/log n, n) contains at least
ao n (log n) -' log log n log log log n integers v with P (F (v)) < n . This clearly
holds, too, when F is reducible and of degree 2. Let S, be the set of these v,
then (1B) holds (we take no sufficiently large) and (2B) follows immediately .
To prove (3B) we invoke Lemma 5 .1 . The set S, does not necessarily fulfill
the conditions of Lemma 5 .1 ; let Sf be the subset of S, obtained by deleting
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all v with P(F(v)) > n/log n . The number of deletions is at most

o(p)( n
]+1) -n- (log log n+0(1)) .

n/loge <p _< n

	

P

	

log n

Here o(p) denotes the number of xe i0, 1, . . ., p-1 } with F(x) - 0 mod p .
Hence ISil > 2'JSil, if no is sufficiently large . We apply Lemma 5.1 to
F (s), s c S i ; to obtain (413) . To prove (413) we apply Lemma 6.2 to the set
(F(s), seSj ) .

COROLLAR . Let F = X 2 +bX+ccZ[X] . Then there exist infinitely
many finite sets S c Z with H F (s) E N2 and infinitely many finite sets T c Z

scs
with H F (t) E N3 .

r eT

Proof. We obtain the sets S c N from (413) with m = 2 . From (413) with
m = 3 we obtain infinitely T' N with 11 F (t)" ) E N3 with m(t) c- :1, 2 ; .

rET'
Since F (t) 2 = F (t) F (- t - b) and t

	

-t-
b for t b/2 this gives the sets T.

Note that if F = Xz + bX + c E Z [X] then, for certain 6 E N, there exist
infinitely many x E N such that F (x) E 6N 2 (e .g . for any a = F (t) with t such
that F (t) E N- N2 ) . Hence there exist infinitely many sets S of two distinct
integers with H F (s) E N`' .

scs
We propose for consideration :
P2 : Let FEZ [X] be of degree at least three (and irreducible). Do there

exist infinitely many sets in, . . ., nf; of integers with property (4)?, (3)?, (2)?,
(1)'?

We finally mention that we can prove the following results on the values
of a polynomial taken at integers from a short interval (see [10] and [6] for
the case F(X) = X) .

Let FEZ [X] be irreducible. There exist positive numbers c 8 , c g , c io ,
c ii , depending only on F, such that for any n > 3 we have

(5) if ni , nz are distinct integers in [n, n+(-,,(log n)` 9] then F(n i ) and
F(n2 ) do not have the same set of distinct prime divisors .

(6) if ni , n z are distinct integers in [n, n + c i o (log log n)`"] then F (ni )
and F (n2) do not have the same greatest prime divisor .

7.2 . Some more problems . In Section 6 we considered the property
f

nm i E N'", where m, m,, . . , mf c N with m > 2 and m Xmi for i = 1, . . . ,f
~= r
and ni , . . ., of are two or more distinct integers in an interval [n, n+k], with
n, k e N. We noted that it is a difficult matter to prove a lower bound for k
when there is no (further) restriction on the multiplicities mi (we only have k
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> 2 for n larger than an absolute constant by Tijdeman's result [11] on the
Catalan equation), but that we can prove k > log log log n when (e.g .) m, = 1
for i = 1, . . .j. On the other hand, it is more difficult to prove the
occurrence of the property in an interval [n, n+k] when there are restric-
tions on the m; .

P3 : Let m E N with m> 3 . For n c N we define

k'"" (n) = min 'k c- N: [n, n+ k] contains two or more distinct integers
whose product is a perfect m-th power ; .

Find upper bounds for k* r (n) valid for (1) all n e N (2) infinitely many
ncN.

Let f e N be fixed and let P be some property of sets of integers . For
n e N define kp,f (n) = min ;keN : [n, n+k] contains,/' distinct integers having
property P ; . Find upper bounds for k p , f (n) for the properties P occurring
in this paper . For example :

P4 : Given n e N .find an upper bound _for the minimal k e N for which there
exist three distinct integers in [n, n+k] whose product is a perfect square .

Another complication in a search for integers in an interval with a
certain property would be to insist that one of them is fixed. For example :

For n E N let k (n) be the least integer such that there exist n =a, <. . . .
f

< of =k(n) with

	

a i E N2 .

So k (1) = 1, k (2) = 6, k (3) = 8, k (4) = 4, k (5) = 10, k (6) = 12, k (7) = 14,
k(8) = 15, k(9) = 9, k(10) = 20, . . .

Clearly k (n) < 2n for n > 10 : let x Z be a perfect square in (n/2, n), then
n - 2x' • 2n E N2 . On the other hand, clearly k (n) > n+ P* (n), where P* (n) = 0
for n E N2 and P* (n) is the largest prime p with vp ( n) odd for n E N- N2 . It
follows that k(p) = 2p for primes p > 5 . We show that k(n)<n+
+3( P* (n) n)1/2 : We may suppose that n ~ N 2 . Let p be a prime with vp ( n)
odd. Let t P EN be minimal with n+ptP epN2 . Then n+pt, < n+2, np+p
and n-j 1 (n+ptp)EN', where the product is over the primes p with v P (n) odd .

Since the n+ptP are distinct we obtain

k(n) < n+2 . nP*(n)+P*(n) < n+3 ,,, P,k (n)n .

P5 : Can the bounds for k (n) be improved?

We observe that k is 1-to-1 : Suppose m < n and k(m) = k(n) . Then there
exist m = a, < . . . < of = k(m) and n = b, < . . . < bg = k(n) with

J

	

s
a i e NZ

	

and

	

]l bj E N2 .
t= 1

	

;= 1



Hence

and, since of = bg , also

[1]
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9
~ai [1b,eN2
i= t

	

j=1

f-1 g-1

f1 ai 11 b, e Nz .
i=1

	

j=1
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Cancelling any other integers that occur twice we obtain a set of
integers from m to at most max oaf_ i , bg_ t ; whose product is a square,
contradicting the definition of k(m) .

It may be possible to prove that distinct sets of neighbouring
integers have distinct products, i .e. there exists a function k : N --> N with
lim k(n) _ ac such that if S t and S z are distinct sets of integers from
n- x
intervals [ni , ni +k(ni)], i = l, 2, where n t , n z are arbitrary integers > 1, then
H s jl ss
ses 1

	

"Esz
Note that k(5) would have to be 1 in view of 5

	

= 14 . 15 and that
k(n) < 3 log n for infinitely many n in view of [7] :

2' (2' +l) . . .(2' +k)=(2k+i +2)(2r`+t +4) . . . (2k+1 +2k) .

We certainly do not see how to obtain such a function k explicitly . Note
that for the restricted problem with n j = nz we can take k (n)
_ [c(log n/loglog n) 2] for sufficiently large n, by Theorem 5.1 . (1) .
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