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1. Introduction. In this paper we discuss various properties distinct
integers n;. ..., n, taken from a short interval may have, such as
s

[] neN™ for some me N, m > 2: the product of n,, ..., n, is a perfect
i=1

power:
[l n =] m for distinct subsets Iy, I, of |1,....f]: there exist two
iely iely

distinct subsets of |n,, ..., n,| that yield the same result if their elements are
multiplied ;
[T n™ =[] n" for distinct subsets I,, I, of {1,...,f} for certain
iely iel 5 ) o .
meN. icl, Ul,: there exist two distinct subsets of |ny, ..., n,| that yield
the same result if their elements are multiplied, when repetitions are allowed.
Stated differently: n,, ..., n, are multiplicatively dependent.

/
o (][] m)<f: the total number of distinct prime divisors in the prime

i=1
factorizations of the integers n,y, ..., n, is less than the number of integers.

By short intervals we mean intervals [n, n+k(n)]. where k(n) is a ‘small’
function of n (such as /'n, or log n), for arbitrary n> I.

Our results can be summarized as follows: the above properties never
occur in ‘very short’ intervals, sometimes in ‘short’” intervals and always in
‘large’ intervals.

For example, distinct sets of integers from

[n, n+c¢, (log n)*(loglog n)~?], for any n > 3,

have distinct products, for infinitely many ne N this also holds for [n, n+
+exp(c,(log n log log n)'/?)], but for infinitely many ne N there exist two
distinct sets of integers in [n, n+exp(c;(log n log log n)''?)] with equal
products and for all ne N the latter holds for [n, n+c¢,n°*°®]. The ¢,, c,,
¢y, ¢y are absolute positive constants.
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2. Basic lemmas and notation.

Notation. For primes p and ne N we define the non-negative integers
v,(n) by n=]] p"™. For ne N the number of distinct primes dividing n is

w(n) and the Erealesl prime dividing n > 2 is P(n), while P(1) := 1. As usual,
n(x) is the number of primes not exceeding x, gcd(n,, n;) denotes the
greatest common divisor of n, and n, and lem(n,, ..., n) is the least
common multiple of n,, ..., n,. In proofs we sometimes use the familiar
Landau symbols O and o, as well as < (having the same meaning as O),
for convenience. In the statements of our theorems we shall not use these
symbols and we reserve the symbols ¢, ¢q, ¢y, ..., ko, Ky, ..., Ng, ny, ... for
certain absolute positive constants. If m divides n we write mn. We denote
the number of elements of a set S with |S|. We write N™ for the set
in™: neNj.

To prove our main results in Sections 3, 4, 5 and 6 we need upper and
lower bounds for the number of integers in ‘short’ intervals which are
composed of ‘small' primes. The purpose of this section is to derive such
bounds. To be more specific we need the following definition.

DEerINITION. For k, ne N we define
fin, k)= Y 1.
n<v=ntk

Plvysk

We shall be interested in upper and lower bounds for f(n, k) in terms of &,
with k equal to various functions of n. Note that for k > n we clearly have
f(n, k) = k—(n(n+k)—n(k)), so

k—=2n/logn<f(n,ky<k for k=n.
Qur interests are in the cases whcre k <n.
LemMa 2.1. For k = n*, where 0 <a < 1,

f(n, k) < ak+2k/log k.

Proof. Let {ny,...,n;| ={n<v<n+k: P(v)<kj. For every prime
p < k delete one integer from n,, ..., n; with v,(—) maximal. The resulting
product is at most
T k- 1y/pd)
125! < k! <k

p=k

and at least n/ ™% so that f < (k log k)/log n+m(k).
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Note that Lemma 2.1 does not give an upper bound less than 2k/log k,
even when k becomes very small in comparison to n. The next lemma gives a
better upper bound for f(n, k) for such ‘small’ k (i.e. k < exp(g,(log n)'/?),
where ¢, is some positive absolute constant).

LemMMA 2.2. For k =exp(4~'(log n)'/?), where A >

i ) -k loglog 4
fin, k) < mdx% 1, ¢ log m log 4

31

where co is an absolute constant.
Proof. See [12]. p. 37. 3.104. The proof involves a theorem on lower

bounds for lineair forms in logarithms of rational numbers.

The next lemma shows that ¥ I <(1—y(a, fy—e)n* for suffi-
n<v<n+n*
v <nP
ciently large n and ff = o > 2/5. For f8 i o actually Lemma 2.1 is somewhat
stronger, but we shall use Lemma 2.3 only for f > a.

LEmMa 23. For 2/5 <a <1 put
o ffa3 for E<a<

da) = i
-1 for 1<gax1

and for B = o put
y(a, f) =1—a—(f—a)(B+a)/d(x).

Then for any y < y(a, f) we have, with N, a constant depending only on a, f

and 7,
(*) 1>9yN* for N=N,.

N<ns N+ N2
P(n) > NP

Proof. We follow the method of Ramachandra in [8]; we use the same

notation as in [8].
We have

£ 1= 5 (530G

X +x* %) log (x/n)
> 2 )R

Pimy>x1—F
n<xl—a s

x+x* log{_r,n}
B L = ( ) (n) log x

.‘Uu“:l!n.x

=:241_"2¢2.
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By Lemma | in [8] we have, provided that 1/3 <a <1,
2, =(1—-a)x*+0(x"/log x).

To estimate ¥, we divide [x%, x' %] into N segments [x", x'*!] where
o =P8, By =1—x (assuming f < | —a, otherwise X, =0). By the method
of Lemma 3 in [8] we have, for z > 3,

w2 )G

2x* e 1 1
< log(x"*1 %42)-( 14+0( 5 +— ) )]+ O(z max |R,)),
log z xi " log z ds:z

where the remainder terms R, can be estimated by Lemma 2 in [8]. We

obtain
-1j2 1/3
|Rd| - O(X“ —a)2 log x+x(l—rx13!2 (3) +(dz) )

]

Choosing z = x° we get

max ::iRd“ = O(max Ex{l—a]_r'2+ﬂlog X, x.'!{l—al."z—l.-’2.+36,'2. xl.n’.‘ié”'
d==

This is o(x*) if 6 <d(a), 2/5<a< 1.
Since log(x/n) < (1 —f;)log x for Pigngx

i 2x* [ '
2, < Z {“_B"}‘S_tb'g_i (Bi+1—Bi) log -"'(] +O(Eg?'))+”{x’,}

i=0

bi+1 we obtain

2 N-1
=(1+0(1))5 b Z (1=B)(Bis1—B)-
Note that
T (=B)Biss—B) — 41— f-2)(1—f+2)

when max (f;,,—p8)—0.
O0=sisN-1

Combining the bounds for X, and X, we obtain that
1-p— —-B
1 >(l—oc—~( F-al l+a}—s)x"

0

x<msx+x®
P{mbxl — 8

for any ¢ > 0 and any 0 <0 < d(a) for x sufficiently large. Changing 1—f
into f and choosing y < y(x, ) now gives the assertion.

We use Lemma 2.3 to obtain a lower bound for f(n, k) when k = n*, a
> a,y, Where 2, is a certain constant less than 1/2 (¢, = 0.49509...). We use
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the specific dependence of 3(a, ff) in Lemma 2.3 on x and f to obtain such a
bound.

LEmMMmA 2.4, For every o = ao(= 0.49509...) there exist a ¢(x) > 0 and a
ny(a) such that

f(n,k)>ce@k for k=n"n=ng(a).

For o >} this actually holds for any c(a) <2—o .

Proof. Let a, fi, v satisfy the conditions of Lemma 2.3, hence, the
inequality (#). Then, for k = n®

k 8
2ﬂ ;(”4"”---("‘*'“2 ” p;.(kﬂ!ﬂ}?* n P
k k! ferir i=1
plint 1)...in+ k) .
w'ere k < p; <...<p, are the first s primes exceeding k and s = o ((n+
+)...(n+k))—nr (k)— k.
It follows that

o((n+1)...(n+k) < ("= 1—y(Ba—1)+0((log k) '))k.
Since f(n, k)= k—w((n+1)...(n+k))+ = (k) we infer that
f(n, k)= (2—a "+y(Bla—1)+o(1))k.

Let a, be the constant defined by: 2/5 < ay < 1/2 and for a > a, there exists
a f>a with p(a, p) > (1 —2x2)/(f —a). (We have ag = 0.49509...).

Then for a > a, there exists a y < y(a, f) with 2—a '+ y(B/a—1) > 0,
which implies the first assertion of Lemma 2.4. The second assertion follows
by taking in the above discussion the trivial values y =0, f = a.

Remark 24. Plausibly, for every a > 0 there exists a ¢*(a) > 0 such
that f(n, k) > c*(2)k for k =n* n= ng(a).

This certainly holds for infinitely many ne N, as can be seen as follows.
We have

Y l~p)x for x-w,
P{r:::’,'z

where g(a ') > 0 is the Dickman function. Let ¢ < go(a ') and x large, then
there exists an interval [t, r+¢*] = [1, x] with te N large with at least ¢t*
integers n with P(n) <in*. As 3n® <3(t+*)* <1 the assertion follows.

LemmMa 25, Let n=3 and t <09(log n)/loglog n. Then the number
¥(n, n''"y of positive integers v < n with P(v) < n'" equals il_f.'m+"’(“).

Proof. See [1], Corollary of Theorem 3.1.

LEMMA 2.6. For every ¢ < 1/\:’5 there exist infinitely many ne N such that
the interval [n, n+k*(n)], with k*(n) =exp(c(log n loglog n)'/?), contains
only integers which are divisible by a prime p > k*(n) but not by p*.
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Proof. The number of integers in [1, n] which are divisible by a square
x* with x >n'" is at most ) [n/x*]=n/(1+o(l))n""

x=nlit
By Lemma 2.5, there exist at most n/t"" **"" integers in [1. n] which are
not divisible by a prime exceeding n'’. Take t such that (1+o(1))n""
= frfl 1—01“}‘ then

t =(1+0(1))(2 log n/loglog n)''2.

Call the above integers in [1, n] bad. Since their number is at most
2(1 +u[|)) n/n'" there must exist at least [{n'"] consecutive integers
m+1, m+[3nl"] which are not bad, ie. divisible by a prime p > n'’
but not by p?. Provided that n is sufficiently large, we have [$n'"] = k*(m).
In this manner we obtain infinitely many me N for which [m, m+k*(m)]
has the desired property.

In the next lemma we use the notation o(l) for several functions of n
tending to zero as n— o0.

Lemma 2.7. For every A = | there exist infinitely many ne N such that (he
interval [n, n+k*(n)], with

*in) = exp{l—té} (I1+o(1))(log n loglog n)”z},

3

contains distinct integers ny, ..., n, with

(n, i) <j'||";{ and f > k*{n]}'(l +ol D)1 +4)
Proof. By Lemma 2.5 there exist ¥ (m, m"") = m/t"" **V integers v in
[1.m] with P(v) < m'". Suppose every interval [ck,(c+1)k], e N, con-
tained in [m/2r'' ** ] contains at most m*" integers v with P(v) < m'".
Then
W (m, m") < m/20" O 4 (k) mP,
Choosing

= (I+0(1))(2 log m/loglog m)'/?

and

A1 !

ko= 3mt e < exp{ﬁ (I+0(1))(log m loglog m}"z}
V2

we obtain the contradiction ¥ (m, m') < m/t"" **")" Hence there exists an

interval [n, n+k], with n>=mj 2!‘”"”’}’ which contains distinct integers

ny, ...,n, with P(n) <m'" and f > m*". We have

k = exp{—lj%' (1+o0(1))(log n loglog n)”z} = k*(n)

N
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and
an ... n) < wim') < m* < f1A
while

f - mHt = A,*“”i_(l +nii}l-'1l+;‘.l_
3. Integers composed of few primes.
Derinition 3.1, The positive integers ny, ..., n; are said to be composed
of few primes if w(n,-...-n;) <f.
DeriNimion 3.2, The positive integers ny, ..., n, are said to be composed
of few integers if there exists p,, ..., p,€N with

(1)

_ vij
=[] p;
i=1

fo certain v;eZ with v; 20 (1 <i</f, 1 <j<w), while v <f.
* Note that the p; in Definition 3.2 are not required to be prime, which
makes the difference with Definition 3.1. We shall also consider, more
generally, the properties w(n; ... ng) < F(f), resp. < F(f), where F: N
— N is some given function with F(f) </ This last restriction is a natural
one since any f positive integers are composed of f integers, namely
themselves (take p; = n;, v; = 0;; in Definition 3.2). Being composed of few
integers is really weaker than being composed of few primes: m?* m(m+1)
and (m+ 1)* are composed of few integers but not of few primes (for most
meN). A still weaker property is being multiplicatively dependent (see § 6),
which is equivalent to Definition 3.2 without the stipulations v;; = 0. The
property of being composed of few integers (primes) is a basic one in the
context of this paper. From the existence of a set with w(n;-...-n;) < F(f)
we infer the existence of a subset with certain desired properties in several
instances (5.1, 5.2, 6.1).

We also recall a relation between the property of being composed of few
primes and another multiplicative property of consecutive integers (see [9]):

There exists no subset |ny,....,ng{ of [n+1,n+2, ..., n+k| with
w(n,-...-n;) < f<> There exist distinct primes p;, ..., p, with pjn+i for
T <

The following theorem shows that short intervals do not contain in-
tegers composed of few integers.

THeOREM 3.1. Suppose n,. ..., ne are distinct integers in [n, n+k] com-
posed of py. ..., p,eN (ie. n; =[] p;fij with v;; = 0), where [, n, ke N. Then

. =1
(Co, €y, &g are absolute positive constants):

(1) if @ <f then k= n"® = pt/- 1

(2) if o <f— 2f then k = n'VeDn,
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(3) if @ < /f then k > ¢,(log n/loglog n)®,

(4) if o <f then k > fOViE0

(5) if w <f then k > ¢, (log n/loglog n)’.

Proof. The first two results are special cases of

1 min (osd+ 04— 1)/2)

) ‘1easr-w
k=>=n

which follows from

[l m<lem(n,...n) [] ged(n,n.
i=1 1<i<j<i
See [12], p. 17.

The third result is elementary, too, but more involved. See [13] or [12],
Theorem 2.8, p. 23. On the other hand, (4) and (5) are non-elementary (a
lower bound for linear forms in logarithms of rational numbers is used). See
[13] and [12], p. 35. Note that (1), (2) and (4) give a trivial conclusion if s
large in comparison to n, but that the lower bound for k in (5) is independent
of f. This bound (5) was first proven in [9] in the case w(n;-...-n) <f.

The next theorem is the main result of this section.

TueoreM 3.2. For ne N let k(n):= min (ke N: [n, n+k] contains distinct
integers composed of few primes|. Let ¢ > 0. Then (¢, ¢, are absolute positive
constants):

(1) k(n) > co(log n/loglog n)® for all ne N with n > 3,

1
(2) k(n) > exp ((—,2—::)(1013 n log log n}”z) Jfor infinitely many ne N,
\/

(3) k(n) < exp((\.s’5+£}{log n loglog n)''?) for infinitely many ne N,
(4) k(n) < c,n*°® for all neN.

Proof. See for (1), Theorem 3.1(5). From Lemma 2.6 we infer (2): the
primes p > k*(n) must all be distinct. Lemma 2.7 immediately gives (3). From
the proof of Lemma 2.4 we see that w((n+1)...(n+k) <k if k = n'° n=ng,
which implies (4).

When the number of elements [ of a set {ny, ..., n;| < [n, n+k] with
w(ny-...onp) < f 18 restricted, then better lower bounds for the length k of the
interval than k > (log n/loglog n)* can be obtained. When f is small in
comparison to the size n of the integers involved then 3.1 (1) and 3.1 (4) are
superior to 3.1 (5). When f = f, = 2/¢§ then 3.1 (5) is better than 3.1 (1). If
f < k*3 then 3.1 (4) gives a better bound for k than 3.1 (5), e.g. when f = k%
0 <2 < 2/3, then k > (log n/loglog n)**. In the extreme case when f =k+1
(le. ny,....n; are the consecutive integers n, n+1,...,n+k) we have
k = exp(c(log n)'’?). Actually we have the following results about this im-
portant special case of consecutive integers.
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Tueorem 3.3. There exist absolute positive constants ¢y, ¢,, C3, ¢4 such
that
(1) w((n+1)...(n+k)) <k for all (n, kye NxN with k = ¢, n®*°°,
(2) ((n+1)...(n+k)) =k for all (n, k)e NxN
with k < exp(c,(log n)''?),
(3) w((n+1)...(n+k)) = k for infinitely many (n, kye Nx N
with k = ¢;n'®
(4) o((n+1)...(n+k)) <k for infinitely many (n, kye Nx N ,
with k < c¢yn'’.

Proofl. For (1) we refer to the proof of Theorem 3.2 (4). To prove
(2). note that, since every prime exceeding k divides at most one integer in
[ n+k], we have w((n+1)...(n+k)) = k—f(n, ki+=n(k). So it is sufficient
sto show that f(n, k) < n(k) for k <exp(c,(log n)*'?). This follows from
Lmma 2.2 if ¢, is sufficiently small. In [3] an averaging argument is g.ven
tuat proves (3). Actually this argument can be used to prove both (3) and (4),
as we show now. For n, ke N with n >k >1 we put t:=[n/k] and we
denote by @, (m) the number of distinct primes exceeding k that divide me N.
Since every prime > k divides at most one integer among k consecutive
integers we have

=1

k
(%) Yoo ([] m+ik+p)=Y (Y 1)
i=0 J=1 p>k n<vsnttk .

plv

The right side of (*) equals

tk log n 1
L l)sz(log(—— -)+0( ))
kcps_znﬂi. P L<p§n-‘:—ﬁc log k log k

Put

K k
min = o ([] (n+ik+j)=:m and max uk[n (h+ik+j)=:M

O=i=r—1 i=1 O=si=st—1 j=1

Since the left side of (%) is at least mr and at most Mt it follows that

log n ¢, ) ( log n C,
<k(1 L d M>k{log[2" 2
" (Og (Io;, A) gk, ° B\ion k) Tozk

where C, and C, are certain absolute positive constants. Tak_e 0<e
<exp(—C,). Then for all sufficiently large ne N and k:=[cn'’] there
exists an 0 <i<1r—1 wrlh

k
M = o, ([] (n+ik+j) > k.

i=1
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This implies (3), if ¢; <c¢-27 ' Now take ¢, > exp(C,;+2). Then for all
sufficiently large ne N and k:= [c, n'] there exists an 0 <i<t—1 with

k
m=a.([] (n+ik+)) < k—2k/log k.
i=1
Since n(k) < 2k/log k this implies (4).
Finally we remark that for every ke N we have

w(n+1)...(n+k) = k+n(k)—1

for all sufficiently large n, eg. n = expexp(Ck), where C is an absolute
constant. See [12], p. 38. On the other hand. for every ke N there exist,
though only conjecturally for k = 2, infinitely many ne N with w((n+1)...
.n+k) = k+mn(k). See [3].

i

4. Multiplicative dependence.

DeriviTion 4.1, The positive integers Ay, ..., n, are multiplicatively de-
] ' I
pendent if there exist my, ..., meeZ, not all zero, with [] nt=1.
i=1

Equivalently, n,, ..., n, are multiplicatively dependent if they can be
divided into two sets having equal products, where repetitions are allowed.
-Also, ny, ..., n, are multiplicatively dependent iff there exist p,...., p,eN
with @ < f such that

=[] p¥ with v;eZ (I<i<fl1<j<o).
i=1

Note that being composed of few integers (Section 3) implies being
multiplicatively dependent.

Lemma 4.1, Suppose ny, ..., n, are distinct (f = 2) integers in [n, n+k]
which are multiplicatively dependent. Then k = n'/V/ 71

Proof. We have [| n" =[] n;? with meN for te(IuJ)= {1, ....f].

iel jel

We may assume that I nJ = Q. Let max im;: telwJj =m, . By symmetry

ity . . m;
we may assume that toel. Then H:FU'U divides || nj’. hence
el

ﬂll mI( n'; ml[}
" =ged (n O[] ) ] gedng. ny)
Jed Jel

Since ged(n,, ny) divides |n, —njle 1, .... k| we conclude that
m | |m
nvgk vgk
THeOREM 4.1. For ne N let k(n):= min (ke N: [n, n+k] contains distinct
integers which are multiplicatively dependent|. Let ¢ > 0 be arbitrary and let
Co. ¢y be certain absolute positive constants. Then

tifi= I}m;n
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(1) k(n) > cqlog n loglog n(logloglog n)™' for all ne N with n > 15.

1 N e 5 ;

(2) k(n) > cxp( (——2—5:)[]0g n log log n]‘-"-) Jor infinitely many ne N,
\\y

(3) k(n) <explly §+z:}(log n loglog n)''?) for infiritely many ne N.

(4) k(n) < c; n®*°° for all neN.

Proof. Suppose [n, n+k] contains distinct integers ny, ..., n, which are

J
multiplicatively dependent: [] n" = 1 for certain m;e Z with m; # 0 (without
i=1

loss of generality). Then P(m) <k for i=1,...,f, hence [ <f(n k). To
prove that k > log nloglog n(logloglogn)™! we may assume that
k<(logn®> and then we have, by Lemma 22 that f(n k)
< k(log 3k) *loglog(3k). Combining this with flog k = log n (Lemma 4.1)
we obtain (1).

To prove (2) we invoke Lemma 2.6: these intervals [n, n+k*(n)] do not
comain integers n, with P(n,) < k*(n). The third result (3) follows from
Lemma 2.7: w(n;-...-n;) <[ implies that n;, ..., n, are multiphcatively
dependent.

Similarly, (4) follows from Theorem 3.3 (1).

5. Equal products. In this section we investigate intervals which contain
distinct subsets of integers S; and S, with equal products: []| s= [] s.
. o . 58 559
Note that this property is stronger than multiplicative dependence:
the latter guarantees the existence of distinct subsets S, and S, with [] s™
se8q
=[] s™ for certain m(s)e N, s€S, US,. Observe that integers in S, ~ S,
se8 9
can be deleted from both §, and §, without destroying the equality of the
products, so we may always assume that §, and §, are disjoint.
Lemma 5.1. Suppose n,. ..., n; are distinct (f = 2) positive integers with
w(ny-...-ng) < flog 2/(log(fv)), where v = max [1+uv,(n)}. Then there exist

1<i<f
pprime
distinct disjoint subsets S, and S, of \ny. ..., ny| with equal products.

Proof. For every subset S < [n,,...,n;| put

p{S]' _ 1—[ S I—[ pt'ptb'p..

se8 P
Then
v,(S) =Y v, () <(w—1)IS|<(v—1)f,
seS
" so the number of distinct integers p(S), § < iny, ..., nef, is at most
(14+(w—1)f)" < (uf)” < 2. The number of distinct S equals 2/, hence the
conclusion (elements in S, NS, can be deleted from both §; and §,).
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CorovLary S.1. In the above situation, let [, e N be minimal with
p K I (vf1)”. Then there exist disjoint subsets T, and T, of \ny, ..., ny| with
equal products and |Ty, v T, > f—f;.

Proof. Choose any subset F; of |I,...,f] with |F,| =/, (if this
is impossible take T, = T, = @). This gives disjoint S, and S, in F, with

[ n= n n;. Remove n;, i€S;US,, from {ny,...,n,| and start again.
ie8 €Sy
This gwes sets S,, S;, S3, S,,..., disjoint from each other, with

[T n= 1] m (¢t=1,2,..). The process stops when there are less than
ie§ ieSy
i ZGIIC;TIEHIb lel”l Take T = S; and T, = |J §;.

indd ieven

In the case when {n;, ..., n;| is the set {n <v < n+k: P(v) < k| we can
relax the condition in Lemma 5.1 to get equal products:

LemMa 5.2. Let n, ke N with k = k, and suppose

'k
‘(n, k) > 2 —— logloglog k.
f(n, k) > ok og log log

Then there exist two disjoint subsets of \n+1, ..., n+k| with equal products
(and at least f(n, k)—2k logloglog k/log k elements).
Proof. Let \ny,...,n; < in<v<n+k: P(v)<k| with

(A1) f=2k-

where o (k) shall be chosen later. Delete all n, with P(n;) > k/x (k). The
number of deletions is at most

Y (+[kpD = (1+0(h)k 'Of (k)

ki rik)y=p=k }"

Hence S, = {n;: P(n;) < k/oc (k)] has more than f/3 elements. For all S = §,,
we define

pS) =1Ts= 11 2" I1 P =:p.(9)p2(8),

se8 pely peP3
where P, = |p < k/log k| and P, = |k/log k < p < k/ow(k)]. We have
v,(S) =Y v,(s) < mdx w,(s)] Y 1< (log k) Z 1,

se8 se8
pls PI-"
log(n+k)
log 2 B
assumption on f(n, k) and Lemma 2.1).

since  v,(5) < and k > exp((log n)*’?) (this follows from our
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For peP, the trivial bound ) 1<k gives v,(S) < k(log k)*". For

S8
pls

peP, we have Y 1< 1+[k/p] <1+log k, hence v,(S) < (log k)"
SEN
pls

The number of distinct integers p(S) = p, (S) p,(S) is therefore at most
'k (log k}ocn:“’:l ((log “om}lf’zl _ exp(—k—— (lgi_l(_)gi+o{1})).

Since the number of distinct S =S, equals 2°%' > 23 we can infer the
‘existence of two distinct S; and S, in S, with p(S;) = p(S,) if

: 3 k (loglog k
. —E 8 7 o)
(52) 12 56 logk( sofk o })

Now choose = (k) = 3(loglog k)(logloglog k)~', then (Al) and (A2) are

k
satisfied if > 2 — logloglog k.
' log k

As in the proof of Corollary 5.1 it follows that there exist two disjoint

subsets of {n < v < n+k: P(v) < k| with equal products and at least f (n, k)—
k

-2 IE logloglog k elements.

Lemma 5.3. Suppose [n, n+k] contains f distinct integers which can be
divided into two distinct sets having equal products, where n, k. f €N with n
>2. Then

'21:3; s/s2 kkl:;gnk'
Proof. Let [[m =[] n; where {I,....f] =1uJ with I, J disjoint
(without loss of”:'gener;;;ly}. Then for iel, n; =ged(n, || n;) divides
[1 ged(n;, nj), hence n < k!, Similarly, n < k''!. Since one of ﬁ or |J| does

Jjed
not exceed [ f/2] we obtain the first inequality. For any set |n;| of integers in

[n, n+k] we write, for every prime p, max v,(n) = v, = v,(nj). Then we

have
., o :
Y ty(m) =Y |in: i #i(p), p’ divides n;!
i #ilp) i=1
Up

[k/p’] < vy (k).

i=1
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:ri

Now if [ | n, = ]_[ where I nJ = Q. then we have, for every p with i(p)el,
el

that p" dmde [,n 7™ Hence
=)

W< [In=T1 " 11 )

i #ilp)
iel

< l—[ 1| I—[ pl-'pl'ﬂ['i: < l—[ pr_,,ik!r - kT_

Similarly n’! < k! (< k*). Since one of |I| or |[J] is at least f/2 we obtain the
second inequality.

THeorem 5.1. For neN let k(n):=min (ke N: [n, n+k] contains two
distinct subsets of integers with equal products!. Then, for arbitrary & > 0 and
a certain dbSUf’h‘.‘é’ constant ¢,

log n

I/ 4
(1) k(n) > - ( ) for all ne N with n = 4,

lin,log n

. |

(2) kin) > cxp((——;—e:){log n loglog n]“"") for infinitely many ne N,
.\\ 2

(3) k(n) < exp((y 2+¢)(log n loglog n)! ] for infinitely many ne N,

(4) k(n) < en®*2° for all ne N.

Proof. From Lemma 5.3 it follows that if [n, n+k] has two distinct
subsets of integers with equal products then k = ((log n)/log k)* which implies
(1). Since [[ m =[] n; with I'nJ =@, and all n,e[n, n+k]. implies that

=) jed
P(n,) <k for all . Lemma 2.6 immediately gives (2). To prove (3), choose
I <4 <1+ 2.then, by Lemma 2.7, for all n in an infinite subset N of N there

exist distinct integers ny, ..., ngin[n, n+exp((y 2+¢)(log n loglog n)''?) )] with
£ > k¥ (AT and w(n, - ng) < f1%. Now we can use Lemma 5.1:
we have v < (log 2n)/log 2+1 hLﬂLC w(ng-...ong) < f1% < (flog 2)/log( fv)

for all ne N with at most finitely many exceptions.

To prove (4) we use Lemma 5.2 and Lemma 24: if k= n
> n, then the assumptions of Lemma 5.2 are satisfied hence k(n) < n
To include n < n; we simply take ¢ sufficiently small.

In view of Remark 2.4 it is plausible that k(n) = O,(»n") for all ¢ > 0.

Note that the lower bound k > (log n/loglog n)*> for the length of an
interval [n, n+ k] containing f (= 1) distinct integers which can be divided
into two disjoint sets with equal products, can be improved if the number f
of integers involved differs appreciably from k''? (use Lemma 5.3): e.g., if f is

U.496 and n

0.496
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bounded then k = n?/: if [ < k* 0<a<1/2 then k > (log n/log log n)**; if
f=¢ek 0<e<I, then k > n"?

We also observe that for x = «, there exists a ¢, > 0 such that there
exist equal disjoint products in [n, n+k], k = n*, with at least ¢, k terms (and
this is -probably true for x > (). This follows from Lemma 5.2 and Lemma
24. On the other hand, for « < 1 there exists a ¢, < 1 such that there do not
exist equal disjoint products in [n, n+k], k =n*, with ¢,k or more terms.
This follows from Lemma 2.1 (with ¢, = x+o0(1)).

6. Power products. In this section we investigate sets of distinct integers

ny, .... np with the property that there exists a non-trivial way to multiply
;
them that yields a perfect power: || n;"e N™ for certain m, my. ..., meN

i=1

with m= 2 and mym; for i =1. ..., f. A variant results when one does not
allow for repetitions (m; = 1 for i = 1, ..., f): distinct integers the product of
which is a perfect power. Before turning to results on power products in
short intervals we give some results related to the well known Erdos—
Selfridge theorem ([4]) which states that the product of two or more
consecutive positive integers is never a perfect power.

What happens if one deletes one (or more) integers from a product of
consecutive integers ? It is trivial to show that if one deletes one integer from
a product of three consecutive positive integers then the resulting product is
never a perfect square (it can be a perfect power but it can be proven that
the only instance is 2.4). Deleting one out of four does not give a square
either (as we hope to prove soon). However, deleting one out of nine (or
ten) positive consecutive integers does produce a square sometimes:
(1:)2-3-4:5-6-8-9-10 1s a square. We shall prove (see Corollary 6.1) that
there exists a constant k(1) such that if one deletes 1 integer from a product
of k(1) or more consecutive positive integers then the resulting product is
never a perfect power.

Another natural question is: do there exist (infinitely many) products of
consecutive positive integers which are twice a perfect power? Since x*—2y?
=1 has infinitely many solutions x, ye N there exist infinitely many ne N
with n(n+1)e2N*. Theorem 6.1 implies that, apart from these infinitely
many products n(n+1)e2N?, there exist at most finitely many other prod-
ucts n(n+1)...(n+k) with n. ke N which are twice a perfect power.

Tueorem 6.1. Let 0 <0 < 1/2 and ae N*. Let ny, ..., n; be two or more
integers obtained by deleting at most ok/log k integers from k conseculive
positive integers, where ke N (k = 2) is arbitrary. Then

/

iy . T
l_[ n'¢aN"™  for any m, my,...,meeN
i=1
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with m=2 and ged(m;, m)=1 for i =1, ... f, except for at most finitely
many such sets: |ny, ..., n;|. If aeN, aéNZ then the same is true but then
there are also the infinitely many exceptions ny, n, with nynyeaN?, 1<
[ny—ny| < 2.
Proof. Suppose the conditions of Theorem 6.1 are satisfied and,
moreover, k = max |{2P(a), ko(d)], where k,(d) is some (large) constant de-
I

pending only on J. We shall prove that [| n"eaN™ gives a contradiction.
i=1
The cases with k < max [2P(a), ko(d)} shall be treated at the end of the
proof. Let n,, ..., n, be contained in (n, n+k], where ne Nu |0].
Suppose k = n. Then there exist more than oJk/log k primes p in
((n+k)/2, n+k] = (n, n+k], hence n; = p for some i. Since 2p > n+k we have
ptn; for j+#i and since p>k/2> P(a) we obtain a contradiction from

S
[] neaN™ So k < n.
i=1

Suppose n k (< n). By the well known theorem of Ingham, the
number of primes p in (n, n+k] is asymptotically k/log n, hence exceeding
ok/log k. So n, = p for some i and smce p>n=>k we have pfn; for j#i

2/3
=

and we obtain a contradiction from H n*eaN™ as above. So k < n??.
i=1
For ko <k <n®-”, where ky is an absolute constant, the number of
integers v in (n, n+k] with P(v) > k exceeds ¢k (> ok/log k) by Lemma 2.1.
Hence P(n) = p >k (> P(a)) for some i. Since p > k we have p fn; for j#i

2/3

!

and we deduce from [] nijaN’" and ged (m;, m) = 1 that p™n,. This implies
i=1

(k+1)"< p™<n <n+k, hence k < n'/™

Put n; = ¢; x7", with a;e N m-free (i.e. v,(a;) <mfor all p),fori=1,...,f.
We distinguish two cases now.

Case 1: m > 3. We refer to the paper of Erdds and Selfridge [4]: it is
easy to see that, since k < n'/™ and m > 3, all products g;a; (1 <i,j<f) are
distinct. This implies ([4]) that Z 1 < x(log x)" ' (1+0((log x) "))
Assuming without loss of generdhly 1hat a; <...<a; we infer that
a, > tlogt+1tloglog t+0(t), in particular, g, =1t logt for t =1, (an ab-
solute constant). So, for T = 2,

(*) ] a = exp( E log(r log 1)+ O(1)) = exp(Tlog T+ Tloglog T+0(T)).

1=1 =2

Choose for every prime p dividing the product a;-...-a; an inlege.r
n(pleiny, ..., ny with max v,(n) = v,(n(p)).

l=sisf
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Then

[11 i< [ im; #ntp). pl divides a; ]

W

i=1
n; #n(p)¥p

7
[1 a=]]piz:
P

m— 1 5 m— 1 ;
1 Si<finp #nip),pldivides n; ] T [k/ph
& A

< T "™ <[ p'™! < k!.
P P

J
Note that every prime p dividing || @, does not exceed k: if pla then

i=1
s
p<P(a)<k and if ptya, pla; then, since [| i €aN™ we have p|a; for
i=1
some j # i, hence plged(q;, a)lged(n;, n)|[n;—njell, ..., kj. So there are
f

at most n(k) primes dividing [] a;.
i=1

Put f* =/f—mn(k) ( = 2). We have

£ !
[Ta< [] a<k!'<kk
t=1

i=1
n; #nip)vp
Combining this with (=) (with T =f¥*) gives

log log k

s B
! sk(l log k

+0(1/log k}).

This contradicts f = k—dk/log k, since k = kq(d).
!
Case 2: m=2. As we saw above, [| 4 divides (][] p)k! Hence it

i=1 psk
divides, in fact,

(l—I p);\I l—[ Pvp(”til-)—!.‘p(k!)— 1 for any 5 < p < k_

p<k psP
Now
s / &
Lvla)=Y 1= 3 1< F 1=klp+1)+0((log k)log p)

for all p < k.
Also,

v,(k!) = k/(p—1)+O((log k)/log p) for all p<k.
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Hence
1 ;) — v k) — . 2 log
[] ot 'gexp(_;\- Y S omplog k})
p<P p<p P - '
— exp(—ck+0(k/P)+O((P log k)/log P)),
2 log
where o= ) " 8P Since k! [1 p=cxp(k log k+0(k/log k) ~we

pprime PZ = p=k
conclude, choosing P = k/log k, that

J
[1 a < exp(k log k—ck+ 0 (k/log k)).
i=1
On the other hand, the ¢, are square-free and (without loss of generality)
ay <...<a;. Hence q; =di for any d <n?/6 and i=>iy(d), a constant
depending only on d. Hence, for some constant ¢, > 0,

2 o
[] @=d'f!eo =exp(flogf—(1—logd)f+0O(log f)).
=1

1
s

Combining the estimates for || a; gives
i=1

f < k—(6—1+log d)k/log k+ O (k/(log k)?).

Since ¢ — 1+ log(?/6) > 1/2 we obtain a contradiction with [ = k—dk/log k.
0 < 1/2 and k = kq(9).

Now we consider, finally, the cases for which 2<k <k,
:=max |2P(a), ko(d)}. Suppose we have f distinct integers n. ..., n, in an

S
interval [n, n+k], where n, keN, such that [] n"eaN™ for certain m,
i=1
my, ...,mpeN with m =2 and ged(m;, 2) =1 for i =1, ..., f In [14] it was
proven that this implies k > ¢ logloglog(n+15), where ¢ =c¢(a) is some
positive constant depending only on a, provided /=3 or f =2 and ae N2
Since k < ko we infer that n < ng, a constant depending only on a and 4. So
both » and k are bounded and there can be only finitely many sets

;

gy ..., ng) = [n, n+k] for which [] n/*eaN™ for some m, my, ..., meN
i=1

with m = 2 and ged(m;, m)=1 for i=1,...,f.

COROLLARY 6.1. For every re Ny and every ac N there exists a minimal
k,(1)e N with the following property. Let ny, ..., n; be integers obtained by
deleting t integers from k,(t) or more consecutive positive integers. Then

I

[1 n:";’ ¢ aN™

i=1
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for any m, my, ... .meN with m>2 and ged(m;, m)=1 for i=1, ..., [.

Moreover,

(1) k,(t) < ct logt for any ¢ > 2 and all t > t,(c), a constant depending
only on a and c.

(2) ky(t) =t log t for infinitely many teN.

Proof. Let t =0 and aeN and 0 <6 < 1/2 be given. Let k satisfy
Ok/log k = t. 1f ny, .... n, are obtained by deleting  integers fromn+1, .... n+
+k and [] n'"eaN™ for certain m, my, ..., m;, then, by Theorem 6.1, k

i=1
< kg(a, 0), a constant depending only on a and 0. So if k,(t) satisfies
k,(0)/log k,(t) = 0~ " rand k,(t) > ko(a, d) for some 0 < 6 < 1/2 then it satisfies
the property defined in Corollary 1. This proves the existence of k,(1) and
also (1). To prove (2) we argue as follows. For every ke N there exists a
t < m(k) such that there exists some way to delete r integers from 1, 2, ..., k
such that the remaining integers have a perfect square as their product (by
Lemma 6.2). Since certainly the primes in (k/2, k] have to be deleted we have

n(k)—m(k/2) <t < m(k),

so there exist infinite sequences k; <k, <... and t; <1, < ... with
<m(k) and (k)!ny...n eN?

for certain distinct ny, ....omeil, .. kj. So k()= k+1Z=p,+]1
> 1, log t; (p, denotes rth prime number).

Note that k,(0) =2 (if we change the definition of k,(1) somewhat by
taking m; = 1 for all i) by the Erdos Selfridge theorem and that k(1) = 11,
ks (0) = 11 since 10!e7N2.

Lemma 6.2. Let ny, ..., n, be distinct positive integers and let me N
with m = 2. There exists a subset |ng: i€l] of \ny,...,ng with at least
f=w(ny ... ny) elements such that

[1n"eN" for certain me {1, ....m—1}, iel.
iel
Proof. We may assume f > w(n,-...-ng) (otherwise take I =0Q). Let
Jo {1, ... f] with |J| = 1 +@(n;-...-n). Then n;, jeJ are composed of less
than |J| primes, hence multiplicatively dependent: [ nj’ =1 for certain
jed

a;e Z, not all zero. In fact we may assume that not all a; are divisible by m,

since the only root of unity in N is 1. Reduce all m; modulo m, then we

obtain a nonempty J, =J with [] nj’e N", where m;e{l....,m—1] for
islp

j€do. ;
Now remove the n; with jeJ, from {n, ..., n;j. Choose another set
J with I4+w(n;-...-n;) elements from the remaining integers and repeat
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the above procedure. We obtain disjoint sets Jo, J§', J@&, ..., J9, ...,
with || nj’e N™ for certain m;e{l,...,m—1}. Take I =) JY, then
jEJl'_(;}] v

[Tni?eN™ and |I| > f—w(ny ... ny).
Jel

THEOREM 6.3. For meN with m = 2 and ne N we define
k"™ (n) = min (ke N: [n, n+k] contains two or more distinct

1
integers, ny, ..., ng, say, for which [] n;*e N™ for certain
i=1

my, ...,mee N with mjym; fori=1,.. f]
and
k(n) = min (ke N: [n, n+k] contains two or more distinct integers the
product of which is a perfect power).
We have, for certain positive absolute constants cg, ¢y, C5,
(1) k™ (n) > c(m) loglog n for all ne N with n = 3, where ¢(m) =com™'°
(1) k(n) > ¢, logloglog n for all ne N with n=> 15.
For every ¢ > O there exists an infinite set N, of positive integers with
(2) k™ (n) > exp((1/</2—¢)(lognloglog n)*'?) for ne N, and all m> 2,
(2) k(n) > exp ((l/\-":’é—a}llog n loglog n)''?) for neN,.
For every ¢ > 0 there exists an infinite set N, of positive integers with
(3) k"™ (n) < exp((\/2+¢)(log n loglog n)''?) for ne N, and all m > 2,
(3) k(n) <exp((y 2+¢)(log n loglog n)''2) for ne N,
(4) k™ (n) < c,n%*°% for all neN and all m > 2,
(4) k(n) < c,n%*°® for all neN.

’

Proof. Suppose ny, ..., n; are two or more distinct integers in [n, n+k]

s
with [ m*e N™ for certain m, my, ..., me N with mfm; for i=1,...,f.

. i v .
Put m* = m/ged (m;, m) and write n, = a; xi* with a;e N m¥-free (i = 1, ..., f).

!
Suppose p|a; for some i. Since || a;'e N™ and q; is m¥-free we infer that pla;
i=1

for some j#i. Hence p|ged(a;, aj)lged(n;, n)||m—nje|l, ..., k. Hence
<[] Pt <3 fori=1,..f
=k

Case 1: m¥ = 3 for some i. Choose j # i. We have

m m;
F(x):=a;x;7—d =a;x;"

for some d with 0 < |d| <k, where m* >3 and m¥ > 2. We now use an
explicit version of the estimates of SprindZuk for the solutions x, yeZ of the
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Diophantine equation F(x) = Ay™ (see [17]). Using that a;, a; <3"" we
obtain that (n <) ujx;'jgexp[(f'"m"] for some absolute constant C. This
implies (1), for this case.

I
Case 2: m¥ = 2 for all i. Then || m;e N? In [14] it is proven that this
i=1
implies that k > (loglog n)*(logloglog n)~' so (1) also follows in this case.
This proves (1). For the proof of (1) we refer to [14]. We note that a lower
bound for min k"™ (n) seems unattainable in the present state of mathematics.
mz=2
That it is possible to prove the lower bound (1) for k(n) is due to the
requirement in the definition of k(n) that all multiplicities m; are 1. (Actually
it would be sufficient to require only that ged(m;, m) = gcd(m;, m) for some
I #j).
To prove (2) we use Lemma 2.6: let ny, ..., n; be any distinct integers in
[n, n+k*(n)] and let p|n,, p*¥ny, p>k*(n). Then ptn; for j#i hence
i) f

v,([] ™) =m,, in particular || n"¢N™ for any m, m,, ..., meeN with
i=1 i=1
mym, for i=1,...,f Since clearly k(n) = min k" (n), we obtain (2) im-
m=2
mediately from (2).
The inequality (3) follows from Lemma 2.7 and Lemma 6.2. Since clearly
k(n) < k'®(n) we also have (3).
To prove (4) we note that, by Lemma 24, we have

fn,ky>ck=nk)+2 for k=n"*% and n=n,,

where ¢ and n; are positive constants. Now use Lemma 6.2 to obtain (4).
Again by k(n) < k'®(n), the inequality (4)' follows immediately.
In the next two theorems we give some results about sets |n,, ..., ny| of

I

integers in short intervals [n, n+k(n)] with the property that []| n; is a
i=1

perfect power where the number [ of elements is restricted.

s
THEOREM 6.4. Let n, ke N be arbitrary and suppose || n; is a perfect
i=1
power for distinct (f = 2) integers ny, ..., ng in (n, n+kJ. Then

[ < k—dyk/log k,

where 0, is a positive absolute constant.
On the other hand, for all n, ke N with k= n there exist distinct
o

ny, ..., npe(n, n+k] with l—[ n, is a perfect power and

i=1

[ = k—4k/log k.
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For every a with 1/2 < a <1 there exists a ¢, < 1 such that if n,, ..., n,

;
are distinct (f = 2) integers in (n, n+k], where k = w*, with [| n; is a perfect

power then
f <k
On the other hand, for every a = ay there exists a c* > 0 such that for all
n there exist distinct integers, n,, ..., ng, say, in (n, n+kJ, where k = n*, with
4
[T ni is a perfect power and
i=1
f>ckk.

Proof. To prove the first assertion we use Theorem 6.1: we obtain
f < k—3k/log k provided that k > ko, an absolute constant. Now choose
0<dg (<3 such that Jyk/logk<1 for 2<k <k, then f<k-—1
< k—0dpk/log k also holds when 2 < k < k, by the Erdos-Selfridge theorem.
To prove the second assertion we argue as follows: for k = n we have
o(n+1)...(n+k)) =n(n+k). By Lemma 6.2 there exist, therefore,

]
Ny, ..o Npe(n, n+k] with f > k—n(n+k) for which [] n; is a perfect square.
i=1

Furthermore we have m(n+k) < n(2k) < 4k/log k.
-

To prove the third assertion, assume || m; is a perfect power, where
i=1
ny, ..., n, are distinct (f = 2) integers in (n, n+k], k=n*=>n"2 Then
P(m)<kfori=1,....f (a prime p > k cannot divide two distinct integers
in (n, n+k] and p? cannot divide an integer in (n, n+k] either, since
(k+1)> > n+k), so f <f(n, k). Now use Lemma 2.1.
The last assertion follows from Lemma 24 and Lemma 6.2.
THEOREM 6.5. For m and feN with m=2 and [ =2 there exist
gy =& (m.f) >0 and &5 =e5(m, f) > 0 such that if [n, n+k] contains f dist-
inct integers with a perfect m-th power as their product then k > &, (log n)%.
For meN with m=2 and ¢eR with 0<e&<1 there exist 0,
=0y(m, &) > 0 and 6, = 05(m, &) > 0 such that if [n, n+k] contains f distinct
integers with a perfect m-th power as their product and [ = ek then
k> 6, (log )2
Proof. This has been proven in [14]. Similar assertions, though with
different numbers ¢,, &,, d,, d,, hold for the property
i
[l e N*  for certain m;e N not divisible by m,
i=1
see the first part of the proof of Theorem 6.3 and the proof of Corollary 4 in
[14].

Suppose m and [ are given integers, m = 2, { = 2. How far do we have
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to go from n to obtain f distinct integers which have a perfect mth power as
their product? Trivially, the first f mth powers larger than or equal to n
have a perfect mth power as their product, so we do not have to go further
than n+Cn' V™ C = C(m, f). We are not able to find a better upper bound
than Cn' '™ valid for all n (it does not exist when f = m = 2). One method
to try and find one is to search for [ distinct neighbouring integers n; of the

form n; = q; x[", where the a,, ..., a; are pre-chosen (m-free) integers with
)

|| a;e N™, for example a, -...-a,_, arbitrary and a; = (@, *...-a,_ ;)™ '. One
i=1

can show (see [15]) that this gives an upper bound Cn' '™~ !mu-b ¢
= C(m, [) valid for infinitely many neN ((m, [) # (2, 2)). In particular, for
every m, [ withm=>= 2, [ =2, except (m, [)=(2, 2), there exist infinitely many
ne N such that between n™ and (n+1)" there exist [ distinct integers whose
product is a perfect m-th power.

This method (with pre-chosen ay. ..., a;) is certainly not able to produce
upper bounds Cn” with ¢ < 1—1/m—1/m(f—1), as was proven in [15]. In
particular, if [n, n+k] contains 2x{, 3x3. 6x3, then k > ¢(g)n'** for any
# > 0. An interesting example of three distinct integers whose product is a
perfect square is 10082, 10086, 10092 (= 2x{, 6x3, 3x3), found by Selfridge.

7. Generalizations and problems.

7.1. Integral values of a polynomial. Let FeZ [X], where we assume, for
simplicity, that F is irreducible. We shall consider the integers F (1), te Z. We
are interested in the following properties of F(n,), ..., F(n;), where n,, ..., n,
are distinct integers:

i
() o(]] F(ny) <.

i=1
" (2) F(ny), ..., F(ny) are multiplicatively dependent.
(3) [] F(n)= [] F(n) for distinct subsets N, N, of |n,, ..., n.}.

neNy neN 5

"

(4) |] F(n) is a perfect power.

i=1

In the preceeding sections we have shown that when F(X) = X these
properties

(A) never occur when ny, ..., n, are any distinct (f = 2) integers in any
“short™ interval,

(B) always occur for some distinct (f = 2) integers n,, ..., n, in any
“large” interval.

We can prove the (A)-theorems also for the general case: there exist
positive constants ¢;, ¢;, ¢3, ¢4, s, depending only on F, such that for all
n=15 we have
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(1A) For all distinct (f =2) integers ny,....np in [n, ntcpx

, s
x (log n)*/(loglog n)'*] we have o([] F(n))=/.

i=1

(2A) For all distinct (f = 2) integers ny, ..., n; in [n, n+c;logn/loglogn]
the integers F(ny), ..., F(n;) are multiplicatively independent.

(3A) For all subsets N, # N, of integers in [n, n+c; log n/loglog n]
we have n F(n) # l_[ F(n).

neNy neN o
(4A) For all distinct (f =2) integers ny,....np in [n, n4cyx
: 2
x(logloglog n)*] the product || F(n;) is not a perfect power.
i=1

These results can be proven like in the special case F(X) = X, using the
following lemma. :

LemMa ([16]). Let FeZ [ X] be irreducible. Then for any distinet integers
x, y we have

ged (F(x), F(y) < celx—y|7,

where ¢, and c¢- are constants depending only on F.

The first problem we propose is

P1: Prove (3A) for intervals larger than in (2A) also when the degree of F
exceeds 1 (see Theorems 4.1. (1) and 5.1. (1)).

We are only able to prove (B)-theorems when the degree of F equals
(one or) two, and the intervals are actually “very large”:

Let FeZ[X] be of degree 2. There exists a number ny, depending only on
F, such that for all n > nq the interval (n/log n, n) contains

(1B) a set of integers S, with w([] F(s) <|S,l.

e85

(2B) a set of integers S, such that F(s), s€S, are multiplicatively
dependent,

(3B) two distinct sets S,, Sy of integers with [| F(s)= ] F(s),

5689 583
(4B) for every me N, m = 2, a set S,, of integers with || F(s)™¥eN™ for
58y
certain m(s)e |1, ....,m—1}, se8§,,.

Proof. It follows from Lemma 4 and Lemma 5 in [2] that, if F is
irreducible of degree 2, for all n > ny the interval (n/log n, n) contains at least
con(log n) 'loglog n logloglog n integers v with P(F(v)) < n. This clearly
holds, too, when F is reducible and of degree 2. Let S, be the set of these v,
then (1B) holds (we take n, sufficiently large) and (2B) follows immediately.
To prove (3B) we invoke Lemma 5.1. The set S; does not necessarily fulfill
the conditions of Lemma 5.1; let ST be the subset of S, obtained by deleting
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all v with P(F(v)) > n/log n. The number-of deletions is at most

Y 9(?)([;}-% 1) < ]O; = (loglog n+0(1)).

nllogn<p<n

Here o(p) denotes the number of xe {0, 1,..., p—1] with F(x) =0 mod p.
Hence |S¥| > 3IS,l. if ny is sufficiently large. We apply Lemma 5.1 to
'F(s), seS¥| to obtain (4B). To prove (4B) we apply Lemma 6.2 to the set
{F(s),seS,].

CoroLLARY. Let F = X>+bX+ceZ[X]). Then there exist infinitely
many finite sets S = Z with || F(s)e N* and infinitely many finite sets T < Z

58

with || F(1)e N.

el

Proof. We obtain the sets S = N from (4B) with m = 2. From (4B) with
m =3 we obtain infinitely 7" < N with “ F(™eN* with m()e!l, 2}.

Since F(t)> = F(t) F(—t—b) and t # —t-—b for t # b/2 this gives the sets T.
Note that if F = X?4bX +ceZ[X] then, for certain g€ N, there exist
infinitely many xe N such that F(x)esN? (e.g. for any ¢ = F(t) with t such
that F(1)e N—N?). Hence there exist infinitely many sets S of two distinct
integers with || F(s)e N
SEN

We propose for consideration:

P2: Let FeZ[X] be of degree at least three (and irreducible). Do there
exist infinitely many sets \ny, ..., ng| of integers with property (4)?, (3)?, (2)?,
(1)?

We finally mention that we can prove the following results on the values
of a polynomial taken at integers from a short interval (see [10] and [6] for
the case F(X) =

Let FeZ[X] be irreducible. There exist positive numbers ¢y, ¢q, €;0,
¢y, depending only on F, such that for any n>= 3 we have

(5) if n,, n, are distinct integers in [n, n+cg(log n)°] then F(n;) and
F(n;) do not have the same set of distinct prime divisors.

(6) if n,, n, are distinct integers in [n, n+c,q(loglog n)''] then F(n,)
and F(n,) do not have the same greatest prime divisor.

7.2. Some more problems. In Section 6 we considered the property

)
[1 ne N™, where m, my, ..., meeN with m>2 and mfm; fori=1,...,f
i=1
and ny. ..., np are two or more distinct integers in an interval [n, n+k]. with
n, ke N. We noted that it is a difficult matter to prove a lower bound for A

when there is no (further) restriction on the multiplicities m; (we only have A
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= 2 for n larger than an absolute constant by Tijdeman’s result [11] on the
Catalan equation), but that we can prove k > loglog log n when (e.g.) m;, = 1
for i=1,....f. On the other hand, it is more difficult to prove the
occurrence of the property in an interval [n, n+k] when there are restric-
tions on the m;.

Py: Let me N with m = 3. For ne N we define

kY (n) = min (ke N: [n, H-H\J contains two or more distinct integers
whose product is a perfect m-th power! .

Find upper bounds for kJ"(n) valid for (1) all ne N (2) infinitely many
neN.

Let feN be fixed and let P be some property of sets of integers. For
ne N define kp ((n) = min (ke N: [n, n+k] contains / distinct integers having
property Pj. Find upper bounds for kp (n) for the properties P occurring
in this paper. For example:

P,: Given ne N find an upper bound for the minimal ke N for which there
exist three distinet integers in [n, n+k] whose product is a perfect square.

Another complication in a search for integers in an interval with a
certain property would be to insist that one of them is fixed. For example:

For ne N let k{n} be the least integer such that there exist n =a; < ...

< ay = k(n) with ﬂ a;e N2,

So k(1) =1, k(2) =6, k(3)=28, k(4) =4, k(5 =10, k(6) =12, k(7) =
k(8) =15, k(9) =09, k(10) = 20, ...

Clearly k(n) < 2n for n = 10: let x* be a perfect square in (n/2, n), then
n-2x*-2ne N%. On the other hand, clearly k(n) > n+ P, (n), where P, (n) =0
for ne N* and P, (n) is the largest prime p with v,(n) odd for ne N— N It
follows that k(p)=2p for primes p=>5. We show that k(n)<n+
+3(P,(mn)''?: We may suppose that n¢ N°. Let p be a prime with v,(n)
odd. Let 1,e N be minimal with n+ pt,e pN?. Then n+pl,<n+2./np+p
and n-[ | (n+4 pt,)e N*, where the product is over the primes p with v,(n) odd.

Since the n+pr, are distinct we obtain

k(< n+2 nP,(m+P,(n)<n+3, P*(n}_n
Ps: Can the bounds for k(n) be improved?

We observe that k is 1-to-1: Suppose m < n and k(m) = k(n). Then there
exist m=a; <...<a,=k(m) and n=5b, <...< b, = k(n) with

E 4
[l aeN* and [] bjeN~
i=1 i=1
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Hence

i=1 Jj=1
and, since a, =b,, also
F=x g—1
I_] ﬂ' l_] tU € FUZ
i=1 Ji=1

Cancelling any other integers that occur twice we obtain a set of
integers from m to at most max a,_,, b,_,| whose product is a square,
contradicting the definition of k(m).

It may be possible to prove that distinct sets of neighbouring
integers have distinct products, i.e. there exists a function k: N — N with
lim k(n) = « such that if S, and S, are distinct sets of integers from

n ¥

intervals [n,, n;+k(n)], i = 1, 2, where n,, n, are arbitrary integers > 1, then

[Ts#II s

se8 seS

2
Note that k(5) would have to be | in view of 5:6:7 = 1415 and that
k(n) < 3 log n for infinitely many »n in view of [7]:

(25 +1)...(2X+ k) = (2T 422 1 +4) (2 + 24).

We certainly do not see how to obtain such a function k explicitly. Note
that for the restricted problem with n, =n, we can take k(n)
= [c(log n/loglog n)*] for sufficiently large n, by Theorem 5.1. (1).
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