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PROELEMS AND RESULTS ON ADDITIVE PROPERTIES OF GEMERAL
SEQUERCES, IV.

by

P. Erdbs, A. SdrkGzy and V. T. Sbs

1. Let A={a,,a;,...] {a1<a2<...} be an infinite sequence
of positive integers, put A(n) = § 1 , and for n = 0,1,2,...
2zA
azn

let RQ{n), szn}, Ra(n) denote the number of solutions of

3 -
(1) CI ay =n ., a €A, ay cA,
" - =
[zl a, ay no, x<y, 8,¢ A ay £A
and
{2} e, * ay =N, x5y , & €4, ays A,

respectively.

In Parts 1 and I! (see [4] and [5]) Erd8s and Sérkozy
studied the regularity properties ¢f the function Rifn) . In
Part III [5), the authors of this paper showed that under certain
assumptions on A& , R1(n+1}-Ri(n) cannot be bounded. The aim of

this paper it to study the monotcnity properties of the functions

ke(r) . Ry(n} and Ry(n) , respectively. (See [2], (3] and 7]
for other relzted results and nroblems.)

Firct we will determine thcse sequences A for which the
furction Rifn} is monotoncus ircreasing from a certain point

onwards.




THEOREM 1.
The function R,(n) is monotonous increasing frem a certain

point onwards, i.e., there exists an integer ng with

£
—

Ri{n+1) z R1(n} for nzng

if and only if the sequence A contains all the intecers from a

certain point pnwards, i.e., there exists an integer n, with
(5) AN {n1.n1v1.n1*2,...} = fni,n1+1,n1+2,...}

it is, perhaps., scmewhat surprising that the benaviour of
the functien RE("} is different. Namely, there are much more
sequences A for which R2{n] is monotonous$ increasing. In
fact, we will show that

THEOREM 2.

tet B = {b,,b,,...} ({b,<by<...}) be 2 sequence of positive

integers such that

{i) B is a "Sidon-sequence", i.e.,

5 & o K
. by€B . b €B, D, CB, b €8, o xb b b

n‘*D:bU*bV X

X ¥
imply that b =b, and b sb .

(i1) all the elements of B are even,

and
(iii) b €8, by €= imply that {bx+by),-'2 §E
Then the complement of E , i.e., the seguence
{€) AlZ T2, 5 M - B

is such that the function Rzin} is monotlonous inCcrezsing:

(7) Ra{n+1) 2 Ryin) for n = 1,2,...
2 2




.

{Probably, a similar construction could be given alse for
R3tn) in place of Rz(n) ; unfortunately, we have not been
able to give such a construction.)

By using the greedy algorithm, it can be shown easily that

there exists an infinite sequence B such that

B(n) = § 1» n'/3
bEB

bsn

(for a1l n )

and it satisfies (i), (ii), (iii) and {iv) in Theorem 2. In this

way, we obtain the existence of a sequence A such that

Aln) < n-l:n”3

for large n and R,(n) is monotonous increasing from a certain
point onwards.

On the other hand, we conjecture that if

A(n) = o(n)

then Rz(n) and Rs(n) cannot be monotonous increasing (from
a certain point onwards). In fact, perhaps, it is enough to

assume that

Aln)

n £ 1

Tim  inf
n + 4@

holds. Unfortunately, we have not been able to prove this. In-
stead, we will prove the following slightly weaker assertion:

THEOREM 3. If

n
[8) Mn) = 0(10_9_71) 4
then the functions Rz(n} and R3(n} cannoct be monotonous in-

creasing from a certain point onwards, i.e., for j=2 or 3, there




S

does not exist an integer "y such that
(¢} Rj{n+$) T Rj{n} for n:‘nU

It is worth to note that by using the method of the proof
of Theorem 3, we could study the more general problem when we
count the solutions of (1), {(2) and (3), respectively, with cer-
tain weishts, j.e., we study the monotonity properties of the

functions

- T g.a_ . and Y sl oL,
51 i“n-j jeng2 4 m-3 jsﬁgz i'n-j

respectively, where UysRyper. Bre rnon-negative resl numbers

{satisfyine certain assumptions).

2. PROOF OF THEOREM 1.

Assume that {5} holds and dencte the complement of 4 by
B= 1b1,b2....,bt}
B = {D1.b2,...,bt3 g {1,200 = {31.32,...:
{Clearly, (5) implies that E s finite.} Then for n>2b, we

we have

a_+a _=n i+j=n bx«-a =n

e (n-1) = 27 1= (n-1)-2t

sc that, obviously, R1(n} is menotonous increasinge for n> Zb

Assume now that for some n. , {4) helds. We eve tc show

that this implies the existence of &n integer n, seztisfying

om

{(¢). In order to prove this, we start out from the foilowing

trivial fact (which wés vsed also by Dirac in [1 1): % n 2¢€ 4




< &

then R,(n) 1is even while if n;2€A then R1{n] is odd.

(In case of the functions Rzin) and R3[n) s Such an assertion
does not hold. This is the reason of that that the study of the
functions szn} and Rg(n) is more difficult.) Thus (4) im-

plies that for 2ak > ng we have
R1(23k+1]-R1(Zak-1) = (R1(Zak41)-Rf(Zak})+(Rl(Zak)-ﬂ1(2ak-1))z
2 141 = 2,

hence for n>ng

Ry(n) 2 Ry(2[(n-1)/2]+1) & 1 (Ry(2j+1)-R (25-1))2
ng/2<jsl(n-1)/2)

2 (Ry(2j+1)-R,(25-1)) & ] 2 -
nUf'Zgjsf{n-HfZ] : ! ng/2<3sl(n=1)/2]

JEA jCA
= 2(Al1(n-1)J2})-A[nDHEJ)2 2(A{n/2)-1-ﬂfn032)) = 2A(n/2)-¢:1

{where c. depends on A and ny but it is independent of n )}

so that
(10} RT(n) > 2A{(ns2) - ¢, for n=1,2,....

Let B = {b1,b2....} (b1<h2<...) denote the complement of

A~

B = fbi,bz,...} g A58l A g

and put

"
—

B(n)

CASE 1.
Assume first that

1im sup (B{2n)-E(n)) = += .

n=++e



Let us write

Let us define an infinite sequence N1<N2<..- of posi-

tive integers in the following way:

(1) 4f 5=0 then Tet 1im —p— =0,

(12) if 0>0 then let 1im (B(2N)-B(N,)) = += .
k=tw

Let k be a large integer, put

max L 1 =M
Nk<n§3Nk a+b=n
ast{b52Nk
a€EA, bEB

and let N be an integer with deigSNk for which this

maximum is assumed:

¥ 1 =M.
a+b=N
ast<b§2N

a€A, bEB

k

Then we have

= T
ZNkH M2

s

N <nE3N, a+b=n 2N
ashk<b§2N

ach, bER

k<b§2NK
k a€A, bEE

1]{ T 1= AN (B(2K)-B(N,))

hetnice




o

A(N_){B{2N }-B(N )
(13) M2 %— L W k 2

On the other hand, in view of (10) we have

2R(N/2)-c <Ry (N) = ] sz | 1
ax+ay=ﬂ ax+ay=ﬂ
axE&,ayEA axEA.ayEA
a sN/2
[
=27 1- 1y =
{axEA axeA. N-a _&A
a,sN/2 a,-K/2

a+b=N
aEA ,bEB
a<b

= 2[A(N;2} - 3 1 &

a+b=N
2€A ,bEE
asuk<b52Nk

< z[A(N/Z) - 3 1} = 2(A(N/2)-M)

hence
(14) Mm<dec
7 -
(13) and (14) yield that

A(N ) (B(2N,)-B(N,))
_ﬂk

{15) >

€2

By (11) and (12), for =0 and k-+= we have
A(N J(B(2N )-B(K)) ) ﬂ(NkJ{Nk-A(2Nk}+A(Nk}}

Ky Ny
R(N (N -A(ZN,))  A(ND-N./2 AN
i Ny o kw pe o allgl
k k

while for >0 and kete |




ﬁ(Nk](B(ZNR}‘B(Nk))

Ny

> S(B(2N,)-B(N,)) = += .

In either case, (15) cannot hold for large k , and this contra-
diction shows that in Lase 1, thn) cannot be monotonous in-
creasing.

CASE 2.

fssume now that

{16} 1im sup {B(2n)-B(n)) < +=

N++xm

and assume first that B 1is infinite:

{16) implies that there exist constants L>0, &>0 and
i, such thax
{17} B(2x) - B(x) < L for x>0
and

B(n) = 0(log n)
s that
J sy

{18) bj > (1+é&) for J)Jo -

Furthermore, (16) implies that if t s large enough then

f

{19} bt(j+1} > 2btj

Let us fix such an integer § , and let k be & izrge integer.
For JeliBasaea®® o H0%

K.=b . +D
Ikt ek

We are going to show that there exists an integer j
such that

2

{20} 1 2j<£k1 and BN (NjIZ, Nj+112] =@ .




-9 .

In fact, if such an integer j does not exist then we have

k2-1

2
k
(21) BN p/2)-B(Ny/2) = T (B(Nj,p/2)-B(N5/2) 2 ] 1 =%

Here
b +b
N 3 2. .
1 _15__?315_:11 1 -
= >% b == (b ,+b } >
e Z Te 3 8 VRT3
1 1
> F{b .4+b ) = h
a3 a2
so that
B(lez} > B(Nszﬂ} s
{22} B(N 2/2)—B{N 2/4) 2z B(N 2;2)—B(N1/2) z
k k k

(21) and (22) yield that

BN ,/2)-B(N ,/4) 2 ke -1 .
k K

But by (17); tnis inequality cannot hold for large k which
proves the existence of an integer j satisfying (20).
Let us fix such an integer j . We are going to show by

induction on i that for i =N.,Nj+1,....N =1 .;

f) j+1

{23) 1 can be written in the form bx+by with beE. byEB 5
27y
Fcr i=N_. , we have

ish. = b +b
U3 Tl

so thet {23) holds.
kssume now that (23 holds for scme Nj i <Nj+1-1

Then we have



- 10 -

(26} Ry(i+1)-Ry{d) =

=S 1. 1 1- 1+ ] 1 -
Lgey =71 pry=i+l usry=i+l g+y=i+l -
UEE vEE uEE ,vEE

: s 5 ¥ - 1
it i 1 - . 1 - i A E 15=
ty+ved Usy=i p+v=1 uty=1
UEB vEE UEE ,vEE

[}

L E R TR T R
i usv=i+l u+e=i+l
ueES usE, v€E

sliee T 1% I 1 =
{ u+v=1i y+v=1
uER uEb,vEE

1-2(B(i)-B(i-1)) + Pt ¥ dis
u+v=qi+1 utv=1
UEE ,vEE yER ,vEB

1s E_ l1-2=-1+ E‘ 1
grv=1+1 usv=i+l
UEB ,¥EE u€eB,ves

LI

By (&), we have
(2%) Ry (i+1) - Ry(i) 2 0

{provided that &k 1is large so thst 132 Nj> b 2> %, - (24) end
tk
{2%; imply that

3l
U=V=q+]
UEE VEB

- W

o4

£C thet i+]1 car be written in the form
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furthermore, by (20), here we cannot have hxthy which proves
that (23) holds also with di+1 in place of i
By (18), (19) and (23) we have

-~ ) . ujil-z
2 2 2=2(N, -N.) =
j=N, bim =i =N K542 5)

= 2(b -b ) > 206 -5b

t(kz-rj} Ttk +j+1)

t(k2+5+1) t(kPeje1)

g
=b > (1+5)E 0y +3*1)
t{k"+j+1}

On the other hand, by (17) we have

Ni*1-1
(27) ) 1.1+ ) 1 og
i=N bx+by=1 stbx+b (hj+l
b,EB,b €8 b€, b e
s ], 1s 1. 13-
b,+ yéNJ+1 bx£~j+1‘bysuj+l hx5N3+l J
b_€B,b €B b,€8, b 8 b B
. 2 2 2
= (B(N, y))° = (B{b ,+b 1)° s (B(2b )" =
i+ 13 (k%) ti3

= (B0b )+(B(2b )-B(b NP < (2kP4)?
tk tk tr

(2€) end (27) imply that
t(kZ+j+1) Sip9 8
{1+} I o (tkPer)
But fer large k , this inequality cannct hold. This contra-
diction proves that if Rl{n} is monctonous increasing, then

the sequence B cannot be infinite.

Thus (4) implies that B must be finite which is equi-




o

valent tc {5) and this completes ine proof of Theorem 1.
3. PROOF OF THECREM 2.

Let

B(“} = E 1 3
bEE

bzn

" e
n(1) = ;1 if i€B
Lo if igs
and let us denote tre number of solutiens of

b, + b =n, beB - byEB . X<y
by T [n;

Then we have

(28) Ry(n) = T 1= T (l-n(i}){1-n(n-1)) =
a. = <nf2

g ta =n lgi<n/
2 EA, a €A
x<y
= 1 - I 1 + R¥*(n) =
lgi<n/2 1gi<n/2

i€B, i¥n/2

E k-1-B(k-1)+R¥(2k) for n=2k ,
=4
Cok=B{k}+R¥(2k+1} for n=Zk+l
Tnus for k=1,Z,... we hzve

(29) Rp(Zk+1)-R,(2r)=1-(B(k)-B(k-1))+R*(2k=1)-R*(2k) 2
2 1-{B(k}-E(k-1))-R%(2k)

leariy,

B{k) - B{k-1) g1,



-3 -
and by (i),
R*(2k) =1 .
Furthermore, by (iii},
B(k)-B(k-1) = 1

and

R*(2k) = 1

cannot hold simultaneocusly sc tnat

(B(k)-B(k-1}) + R*(2k)

A
—

Thus we obtain from (29} that

{30) R2(2k+1}-R2(2k} z 1-1 0 (for k=1,2,...)

Similariy, we ocet from {28) that
(31) R2(2k)-R2(2k-1} = R*(2k)-R*(2k-1) z R*{2k) 2z C

since R*(2k-1) = 0 by (ii).
(30) and (31) yield (7) which completes the proof of

Theoren 2.
4. PROOF OF THEOREM 3,

We start out from the indirect assumption that (B) holds,

however, for j=2 or 3 and for some intener (9) holds.

Ny »
First we show that there exist infinitely many integers

H o satisfyinc
k3 2
(22) AlRe3) < A(N)(2) for 3e1.2,...

in fact, if (32) holds for finitely many N , then there

exists an integer Ny such that
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R(NG} > 1

and for he Hu , there exists an integer N'=N'(M) satisfyino

“'>N and
NI 2
AlN') 2 ﬁ(ﬂ){—ﬁ“) i

Then we cet {by induction) that there exist inteocers N1cH2<

<...¢Njc... such that

Moy 2
ANy ,y) 2 A(nj}t—g?l) for el Yabiwon o

hence
K A(N,q) K Wi 2
(33) A{Np.q) = Allg) T P s Al T () =
k+1 0 J-C -‘J 0 j‘ﬁ j

I 2 ] 2 .
k+1 k+1 32
= ﬁ(ﬁﬂ}(““u—) > (—ﬂ_ﬁ_) > Nk'ﬁ

for laroe enouah &k . On the other hand, clearly we have

(34) ”Nkn} = 1 < ; 1 =N

\;A <!
:é"l a..kﬂ

Yk+1
(23) and (34) cannot hold simultanecusly and this contradiction
proves the existence of infinitely many intecers # satisfyinc
(32).

Pow we are going to estimate Ej(n} in terms of A(2n) .
In view of (9), for ning we have

FIErh A B
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) PRz § Rz IR
I 12 R.(i) = R.{i) 2 R = nR.
a;+a s2n =1 1=£+1 J 1,E+1 HE nRy(n)
aieA.ajEA'
hence
(35) Ro(ny ¢ (A2
3 n or nznu.

Furtherrore, by (9), for large n we have Rj(n)i 1 so that

we obtain from (35) that
(36) (A(zn))z > n for large n .

5. Throuchout the remaining part of the broof of Theorem 3,

we use the followine notations:

N denotes a large integer satisfying (32). We write
e 7% - (), andweput r=e M 2 - rela) where a is
a real variable (so that a function of form p(z) is a function

of the real variable o : p(z) = p(re(a)) = P(a} ). We write

+o 3

flz) = ] z i
i=1

{By r<? , this infinite series and all the other infinite
series in the remaining part of the proof are absolutely con-

vercent.) Then we have
+oo
HEENEAE) = ] rp(m2"
and

2 2es(2?) - PEAGIES

so that for both j=2 and j=3

L]
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+=
(f(2)12-18(22) | 5 2] ] Ry(m)z"|
n=1

hence
1 2 1 n
(37) rif(z)i{%ba - 5! f(z Jide = 2 .ni. }_ R (n)z" jda
o 0 ¢ 'n=1 J
Writing
1 2 1_ ? 1 :m n.
Jy=7if(2) %de, Jy=sif(2%) da and J=si ] Ry(njz’ide ,
o 0 o n=1

(37) can be rewritten in the form
{38) Jp - Jz s 2J

We will oive a lower bound for J]rdz and an upper bound for

2d . The lower bound for Jf“UE will be greater than the upper
bound for 2J 2 Jl-Jz . This contradiction will prove that the
indirect assumption (9) cannot hold, and this will compiete the

proof of Theorem 3.

6. In this section, we give a lower bound for Jl'JE‘

First we estimate J1 . By the Parseval formula, we have

1
2 - 2a 2R
(39) J. = rif(z don = ; r°% 2 o=
S ! a€4 aéA
asN
-2 ¢ -2 1
= e T 1= e “A(N) > yA(N)
aEA 1T
ash

Now we are going to estimate J2 . By (32), the Cauchy

inequality and the Parseval formula, for large N we have
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1 (
(40} JZ =

11/2
43)
K

N

[ 1 1
_— |
i

. (1-r4)l
{ l1-r ae4

[ ¢ N
F(l-rg}i i A(n)r4n +
{ ‘n=1

+ e
T A(n)r
fisl

n=k+

Z

A

P(1-r) (14r+rlerd)NALR) + (1-r%)

r=N+l i
: - o 1/2
< . fl-e 1"‘”}'.'M(I\i)-«m?'l (I-TA} ) nzrdn, <
i N n=1 J
L - 1"" - - “1/2
< RTLna)+ANTE T (nfon-nd) ettt e
¢ n=1 /
f 2 i, an¥2 | o2, 4T 4(pe1) Y
< [A(NY+A(NINTE T 2n.r <]A{w)+n[s)n .zr 7 onr b
4 n= i t n=1
¢ . . o172 ) 1)z
= asa0N Z2ef(1-e%) 78T o anszani(aen) 2 .
f = 3 s 172 ‘ - o2
= AR)e2A(NTE (171N T2 o TagnyanqnnEayan)TE T -
= t9a(n)) 12 < 3aqnyt/2
{39) and (40) yield for large K that
1 , T 12 1 ;
{61) dy -y > SghlK) = ZTAIN)) > oA (N)
7. In this section, we cive an upper bound for J eanc
we complete the proof of Theorem 3. We rewrite J in the foi-

lowing way:

1 1/2
I1f(22}!dn=lf{f(22)12dn} ={ )
[+] o a

in

4a
LA

1172
t , <
5

+

1172

2 1
7 _é{li}(ﬁ} .—"""'_

{ 1

! +e l1/2
=5(1—r4)[ ) A{n}r4n]j "

{ n=1

TN

¥
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3w ni 1y i» i 1
(42) J = r| I Rj(n)z"de = s|(1-2) ] Ry(n)2"l{1-2]7" da
oln=1 9 o' n=1 9 |

In view of (9), (32) and (35), we have

n| LE . . ni .
(43) - z)nﬁln (mz"} = | I (Rj(n)-Ryn-1))2"! 5
:D : o += ) n
Snil- (n}-Rj{n-l);r +n=§°+likj(n)—ﬂj(n-l):r <
"o o
< iR =R.{n-1)i ‘R. CR T L
z J(n) Jf“ }|+n=£o+1. (n) j(" yir
"o .
. R.(n)-R.(n-1) R.(n)-R,(n-1))r"
nzl T
EO ) += n
< 2“21 aj(n)-aj{n-l};+nzl(Rj(n)-Rj(n-l))r ”

+e
=y # Y R; (m)(rt-r™1y = ¢ +(1-r) I Ri(n)r"
n=1 n=1 9
Y s )i "
< £qt An)+(1-r R.(n)r
1 nEJ J nino J

[N $w ]
=1/N, i \ ni

< c,+{1-e T R AR+ T R (m)r'} <
2 ) j ) . J( ) J

Ln=no
( +o 2 i
< cpen 1 nLAL2N 7" (aa)? nl
{ n=ﬁ+] )
( te o 2,2 i
< el a2 2 IRUOIC S R
n=f+1 } J

r - s 3
< e (AN 216N 1ean® T 03] -
L = ;

+=

+aN73 {1-r) P ¥ n3{ rn+1)5 =

n=1 i

= e+ (A(N)) 2 16871

2f16n"+au' (1-r)7 T (n3-(n-1) )r

n=1

=.£2+(A(N))



(44}

and (for large K )

(45)

1z, = ((1-n22r(l-cos 2:2)) /% > ((1-1)?)

- 15 -
4o

f Cz K [a(N}jz{lsﬂ_l-‘-AN-s{l—r)-I z 4112‘-“] =
n=1

+ o
. c2+{A{N))2Elﬁﬂ-1+16N'5(l-r)'znzlnz(r"—r"+l}] "

- 2 Sy A 3
- c2+(n{u))2[1su Laen3(1-r)2 EI(nz—(n-1}2)r"J <
ﬂs:
20, -1 -5 -2 ¥® a-n
< c2+(A(N)) JI6N 432N Til-r) . nr s
. r_:‘l i
1

= o+ (A(N)) 2aenezan5(1r) ") <
< oAy 26N Teaan 3 (11 M) 4 o

< e (AN E (16N Teaan B r2n) Y «

< cp+600(A(N)) N < cotarn)) BNt .
Furthermore, we have

ez =((1-2) (1-3))12 « (14,212 2Re 2 )12 .

(1+r-2r cos 20a)1/% = ((1-r)%+2r(1-cos 27a))}/% >

"

1/2 _

5 (Br{1-cos & v} (2e /M. 2 sin2nayl/2

; (e 1/2
2-d.2(20)8 % o (802,77 2 22 for 0za 5172

}

Li%

!

V2 . yop = 17K

> i/z h forail o .

>




= A=

(42), (43), (44) and (45) yield that

1
(46) 35 £ gAY L 127 de -
(o]
172
= 2c5 (A 7 1-2,7 aa -
1]
(/N ) 1/2 oy &
= e (AN 1 1oz da 4 s 1-2i7 M de) <
Lo 1/N J
2 -1 (/N /2 o
< 54[A{N)} N = 5 2N da+ & (22) “da| <
Lo 1/N
< ¢y (AN))2N (24 10g N < cs(AN))ENT 0g 1 .
By (38), (41) and (46), we have
L A(N) < 3,-9, 5 20 < c (A(N})2N"Y Tog W
i) 1 Y= 6 / g
hence

> Té‘E‘ﬁ < A(N)

By (B), this inequality cannot hold, so that the indirect assump-

tion (9) leads to a contradiction which compietes the proof of

Thecrem 3.

ta}

I

o

=1 o
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