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During my long life I wrote many papers of similar title. To
avoid repetitions and to shorten the paper I will discuss almost
entirely recent problems and will not give proofs.

First of all I discuss some problems which came up during a

recent visit to Calgary. An old problem in graph theory states

that if & and &, both have chromatic number 2 k then & x 6

1 2 1 2
also has chromatic number 2 k. The product Gix 63 is defined
as follows: If Xys "t xu: ¥y» *** » ¥, are the vertices of

6‘1 and 6'2, then (xi,yj), 1 £1<u; 1< 3j<v are the

vertices of Gix 65. Join (xi,yj) to (x

if and only if x

v Yo )
L7

is joined to x and y, te (Observe

¥ W
i i1 31

(xi.yj) and (xil,yjl) are joined only if i # 11 and

L Y
This conjecture was known (and easy) for k £ 3 and Sauer
and El-Zahar proved it for k = 4 not long ago. The proof was
surprisingly difficult and does not seem to generalize for k > 4.
Hajnal proved that if ¢ and &, both have infinite chromatic

1 2
number then their product also has infinite chromatic number.
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Perhaps more surprisingly he showed that there are two graphs of

chromatic nlumher?n-‘-l whose product has chromatic mmberc\‘

k+l k'
The following two problems remain open: Are there two graphs of

chromatic number \f whose product has chromatic number £ 3\1

k+2
are there two graphs of chromatic number i\'u whose product has
chromatic number <i\‘u? These problems are analogous to some old
problems of Hajnal and myself. We proved [4] that for every «

U + '
there is a graph of power (iux) and chromatic number 2,'\“_‘_1

\J
so that every subgraph of powerg\!'s ?'“ has chromatic number .'.\‘u.

We did not know (even assuming G.C.H.) if there is a graph of

power and chromatic numbt-:r"\‘rir+2 so that each subgraph of power

:\‘aﬂ has chromatic number ‘\‘u. Recently Baumgartner proved
that the existence of such a graph is consistent. In fact he
proved that it is consistent with the generalised continuum hypo-
thesis there is a graph of power and chromatic number ) all of
whose subgraphs of power Sa-'l have chromatic number 5;\.'0. At
the moment it seems hopeless to find a graph of power and chro-
matic number ;\23 all of whose subgraphs of power Sﬂa have
chromatic number SNO. Laver and Foreman showed that it is
consistent (relative to the existence of a very large cardinal)
that if every subgraph of power '.\’1 of a graph of size has ‘,\rz
chromatic number Hl then the whole graph has chromatic number
S‘;\‘]. Thus it is consistent that our example is best possible.

Shelah showed that in the constructible universe for every
regular K that is not weakly compact, there is a graph of size
K and chromatic number Hl all of whose subgraphs of size (¢ K
have chromatic number SF\‘O.

As far as we know, our old problem is still open: If & has
|:tmr|=.-1";_\!m.l and chromatic number -‘Y‘l’ then it is consistent that
it must hve a subgraph of power E\'w and chromatic number "".\"l.

An old theorem of Hajnal, Shelah and myself [5) states that
if & has chromatic number ?el’ then there is an " - nO(G?
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so that & contains a circuit Cn for every n > n,- On the other
hand, we know almost nothing of the &4-chromatic subgraphs that must
be contained in &. In particular we do not know if Gl and 65
have chromatic numberi\fl whether there is an H of chromatic
number 4 which is a subgraph of both Gi and Gb. It seems
certain that this is true and perhaps it remains true if &4 is

replaced by any finite n and perhaps by;\fo. Hajnal, on the other

hand, cm‘ls'.:rm:t:nald'é\J1 graphs 6‘&, 1 2o 1 of power 2"".0 and
chromatic nunber?fl no two of which contain a common subgraph H

of chromatic numbe:'?el.

Now we have to state the fundamental conjecture of W. Taylor
which, unfortunately, Hajnal and I missed (probably due to old age,
stupidity and laziness): Let G be a graph of chromatic number
aﬁ. Is it then true that for every cardinal number m there is a
graph Gn of chromatic number m all finite subgraphs of which are
also subgraphs of G? No real progress has been made with this
beautiful conjecture. Hajnal, Shelah and I investigated the follow-
ing related problem: We call a family F of finite graphs good if
there is an at least\d I-Chromatic graph ¢ all whose finite
subgraphs are in F. (We write at lggggi\fl-chromatic instead of
aﬁ-chronatic since Galvin [8] observed more than 15 years ago that
it is not at all obvious that every graph of chromatic number
greater thana? 1 contains a subgraph of chromatic number'h?l.

In fact he proved that it is consistent that there is a graph of
chromatic number*afz that does not contain an induced subgraph of
chromatic number ?fl.) We call F very good if for every cardinal
number m there is a graph Gm of chromatic number 2 m all of
whose finite subgraphs are in F. Hopefully good = very good. We
observed that the set of all finite subgraphs of our [3] old
r-shift graphs are very good for every r. The r-shift graph is
defined as follows: Let {xu} be a well ordered set. The vertices

of the r-shift graph are the r-tuples
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{xa B LW } @, <@y, < --- <a . Two such r-tuples

{x ., x 5 *or , xuri,{ysl. ysz. ces o, ynr} are joined if and only

We also stated the following problem: A family Fr of finite
graphs is called r-good if there is a graph Gr of power S?fr+1
and chromatic number 2?21 all of whose finite subgraphs are in
Pr. It is called r-very good if (for every cardinal ?f“) there
is a graph G of chromatic number Sﬁfu and power s?fu+r all of
whose finite subgraphs are in Fr' Hopefully r-good = r-very good.
We proved that for r < w Fr+l c Fr and the inclusion is proper.
We do not know what happens for r > w.

We proved that the number of vertices of an at least a@l-
chromatic graph all whose finite subgraphs are subgraphs of the
r-th shift-graph must have power expr(aﬁ)+ '?cr+l' This last
equation holds if the generalised continuum hypothesis is assumed.

We formulated as a problem that every good family must contain
for some r the finite subgraphs of the r-th shift-graph. We
expected that the answer to this question will be negative, but we
could not show this. Recently A. Hajnal and P. Komjath [10] showed
that the answer is negative. Hajnal conjecture that if Fn‘
n=1, 2, -+ 1is a good family for all n then there is good
family F satisfying F 2 F“, n=1, 2, --- . A much stronger
(but also much more doubtful) conjecture is that there is a good
family F which is almost contained in Fn for every n. Perhaps
one should first try to disprove this. The answer is unknown even
for the finite subgraphs of the r-th shift-graph.

The intersection of two good families is perhaps always good,
but we cannot even exclude the possibility that there are ¢

families of almost disjoint good families of finite graphs. We are,

of course, interested only in finite graphs of chromatic number
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2 4, since our old result with Shelah implies that every & of
chromatic number Z?{l contains all odd circuits for n > ny

Hajnal and I proved that every graph of chromatic number ?Ql
contains a tree each vertex of which has degree ¥ 0’ and we also
proved that it contains for every n, a K(n,nfl) but it does not
have to contain a K(%,xo). Hajnal [9] showed that if ¢ -Nl,
it does not have to contain a K(N'O,'\Eo) and a triangle. The
problem is open (and is perhaps difficult) whether there is graph
of chromatic number Nl which does not contain a KQ\%;NO) and
has no triangle and no pentagon (and in fact no C2r+1 for
r £K).

Hajnal and Komjath [10] recently proved the following result
of astonishing accuracy: Every & of chromatic numbari\!l
contains a half-graph (i.e. a bipartite graph whose white vertices
are  X), X,, ** and whose black vertices are Yys Yoo 0t
where Xy is joined to yj for j > i) and another vertex which
is joined to all the x . On the other hand, if c =N, is assumed,
it does not have to contain two such vertices.

To end this short excursion into transfinite problems, let me
state an old problem of Hajnal and myself: 1Is it true that every
G of chromatic number N 1 contains a subgraph &' which also
has chromatic number?\!] and which cannot be disconnected by the
omission of a finite number of vertices? We observed that, if
true, this is best possible; we gave a simple example of a graph
of chromatic number a&l every subgraph of which has vertices of
degree \§ .

P. Komjath recently proved that every graph G of chromatic
number?@l contains for every n, a subgraph Grl of chromatic
number'afl which cannot be disconnected by the omission of n
vertices and he informed me that he can also insure that there is
such a Gn all vertices of which have infinite degree.

As far as I know the following Taylor-like problem has not yet
been investigated: Determine the smallest cardinal number m for

which if G has chromatic number m, then there is a G' of




206 Erdds

arbitrarily large chromatic number all of whose denumerable sub-
graphs are also subgraphs of G. Hajnal observed that it is con-
sistent that every G of chromatic numher;\fz contains a
KGq]}aﬂ. Thus it is consistent that m >?61' He suggests that
perhaps one can prove (assuming G.C.H.?) that every G of chro-
matic number 2 contains the Hajnal-Komjath graph as a subgraph.
Thus the analog of Taylor's conjecture is perhaps m -332.

Now I discuss some finite problems. El-Zahar and I considered
the following problem: 1Is it true that for every k and L there
is an n(k,%) so that if the chromatic number of G is 2 n(k,}t)
and G contains no K(f), then £ contains two vertex-disjoint
k-chromatic subgraphs ¢, and £, so that there is no edge

1 2
between &, and 6,7 We proved this for k = 3 and every (L,

but great ;ifficulties appeared for k = 4, and Rddl suggested
that the probability method may give a counterexample. It seems
to me that this method just fails.

For k = 3 the simplest unsolved problem is: Let & be a
5-chromatic graph not containing a K(4). 1Is it then true that G
contains two edges e and e so that the subgraph of G induced

1 2
by the 4 vertices of e and e, only contains these edges?

The answer is certainly a;firmstive if we assume that the chromatic
number of & is 2 9.

During a recent visit to Israel, Bruce Ruthschild was there
and we posed the following problem:

Denote by G(k;Lk) a graph of k vertices and ) edges. We
say that the pair n, e forces k, L, (n,e) =@ (k,k), if every
&nje) contains a @A k;k) or a G!k:(;)—}) as an induced sub-
graph. It seems that the most interesting problems arise if

1

L= % (;). In this case we can of course assume that c¢ £ E{;).
We have unfortunately almost no positive results. We observed that

if e > 2% then (n,e) = (4,3). This clearly does not hold for

e < Z% . This unfortunately is our only positive result. On the
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other hand, we observed that if n > n» then (n,e) # (5,5) for
every e (and n > nol. In other words, for every e there is a
&nie) which does not contain a & 5;5) as an induced subgraph
and the same holds for a &(8;14). Graham observed the same method
gives that (n,e) # (12,33). We convinced ourselves that for

k > 1?2 our method no longer will give a counterexample. The
simplest unsolved problem is, unless we overlooked a trivial idea,
perhaps interesting and non-trivial: Are there any values of

n and e for which (n,en) -+ (9,18)?7 Further and determine all
these values of n and e -

Fan Chung and I spent (wasted?) lots of time on the following
problem: Denote by f(n;k,A) [1) the smallest integer for which
every & n,f(n;k,t)) contains a &Uk;k) as a subgraph. Here we
of course do not insist that the subgraph should be induced. Also
we do not prescribe the structure of our &k;k). The first

interesting and difficult case seems to be: Is it true that

(1) e B, 120 2!2”’-»':0 7
i1}

We could not prove (1); the probability method seems to fail.

Hee also holds. 1t is well known and

easy to see that f(n;8,12) < ¢ n3;2 holds, since every

3/2

G(n;cr n ) contains for sufficiently large c.» 2 K({r,2),

Probably f(n;8,13) > n

and thus a EK(6,2) of 8 vertices and 12 edges. Completely
new and interesting questions come up if we also consider the
structure of ki), e.g., Simonovits and I (7] proved

st) contains a cube - the proof is quite

that every &(njc n
difficult. We believe that our exponent 8/5 is best possible but
could not even show that for every ¢ and n > no(cJ there is a

3/2

An; cn ) which contains no cube as a subgraph. A more
general conjecture of Simonovits and myself states that if G is

bipartite then the necessary and sufficient conditions of
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f(n; €
(2) 32 + @

n
is that & should have no induced subgraph each vertex of which
has degree greater than 2. Perhaps this condition already implies

(3) flas © > a2l 2¥E,

Conjectures (2) and (3), if true, will probably require
some new ideas.

During a recent visit to Calgary, Sauer told me his con-
jecture: Let C be a sufficiently large constant. Is it true
that for every k there is an fk(C} so that every G(n;fk(c)n)
contains a subgraph each vertex of which has degree
vix), k ¢ v(x) ¢ Ck. In other words, the subgraph is quasiregular.
Related problems were also stated in our paper with Simonovits and

we used the concept of quasiregularity to prove our &(nj c n8}5)

theorem, but as far as I know the conjecture of Sauer is new and is
very interesting.

During the 1984 international meeting on graph theory in
Kalamazoo, Toft posed the following interesting question: 1Is there

a 4-chromatic edge critical graph of cl n2 edges which can be

made bipartite only by the omission of c2n2 edges? It is not
even known if for every ¢ there is a 4-chromatic critical

graph of ¢ n2 edges which can not be made 2-chromatic by

the omission o; C n edges.

Perhaps I might be permitted to make a few historical remarks:
A k-chromatic graph is called edge critical if the omission of
every edge decreases the chromatic number to k - 1. This concept
is due to G. Dirac. When I met him in London early in 1949 he told
me this definition. I was already at that time interested in
extremal problems and immediately asked: What is the largest

integer f(n:;k) for which there is a @&n; fi(n;k)) that is
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k-chromatic and edge critical? 1In particular, can f(nj;k) be

greater than ¢ nz? To my surprise Dirac showed very soon that

for k 2 6, f(n3k) > x n2 and, in particular f(n;6) > EI + cn.

This result has not been improved for more than 35 years, and

left the problem open for k =4 and k = 5. In 1970 Toft [15]

2
proved that f(n;4) > ?E + cn. Simonovits and I easily proved
n2
that f(n3;4) < "5 + cn. It would be very desirable to determine

f(n;k), or, if this is too difficult, to determine

lim £n:k) =c .
n2 k

The graph of Toft has many vertices of bounded degree. I asked:
Is there a 4-chromatic critical graph G(n) each vertex of
which has degree > cn. (Dirac's 6-chromatic critical graph has
this property.) Simonovits {14] and Toft [16] independently
found a 4-chromatic critical graph each vertex of which
has degree > cn1!3. The following question occurred to me:
Is there a 4-chromatic critical G(n; c nz) which does not
contain a very large K(t,t)? All examples known to me contain
a K(t,t) for t > ¢ n, but perhaps such an example exists with
t < C log n. (R8dl in fact recently constructed such an example).

To end this paper 1 want to mention some older problems which
I find very attractive and which I have perhaps neglected somewhat
and which have both a finite and an infinite version. First an
old conjecture of Hajnal and myself:

Is it true that for every cardinal number m there is a graph
G which contains no K(4) and if one colors the edges of G by
m colors there always is a monochromatic triangle. For m = 2
this was proved by Folkman and for every m <?\:) it was proved
by Nesetril and Rédl [11]. For m 2aeo the problem is open.
The strongest and simplest problem which is open is stated as
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follows (where we assume that the continuum-hypothesis holds): Is
it then true that there is a G of poweri\fz without a K(4) so
that if one colors the edges of G by?@ 0 colors there always

is a monochromatic triangle. If ¢ “51.)1 is not assumed, thenz\fz

+
must be replaced by ¢ . I offer a reward of 250 dollars for a
proof or disproof (perhaps this offer violates the minimum wage
act).

An interesting finite problem remains. For m = 2 Folkman's

o
graph is enormous, it has more than 10l vertices

and the graph of Nesetril and RGdl is also very large. This made
me offer 100 dollars for such a graph of less than 160 vertices
(the truth in fact may be very much smaller, there very well could

exist such a graph of less than 1000 vertices). Rodl and Szemerédi

found such a graph which has perhaps < 10!2 vertices which does
not fall very short of fulfilling my conditions and perhaps can be
improved further.

Another old conjecture of Hajnal and myself states that for
every k and r there is an f(k,r) so that if G has chromatic
number 2 f(k,r), then it contains a subgraph of girth > k and
chromatic number > r. For k = 3 this was answered affirma-
tively by Rodl [12]. The infinite version of our problem states:
Is it true that every graph of chromatic number m contains a
subgraph of chromatic number m the smallest odd circuit of which
has size > 2k + 17 This problem is open even for k = 1.

OQur triple paper with Hajnal and Szemerédi (6] contains many
interesting unsolved finite and infinite problems. Is it true that
every graph G of chromatic number ?{1 contains for every C a
finite subgraph G(n) which cannot be made bipartite by the
omission of C n edges? Perhaps one can further assume that our
G{n) has chromatic number 4. The difficulty again is that so

little is known about the critical 4-chromatic graphs.
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Let f(n) be a function that tends to infinity as slowly as
we please. Is it true that for every k there is a k-chromatic
graph so that for each n every subgraph of n vertices of G
can be made bipartite by the omission of fewer than f(n) edges.

Lovasz and Rodl [13] proved this for f(n) = O(n (1/k)-2

) and
Rodl settled the conjecture for triple systems.

Let F(n) tend to infinity as fast as we please. Is there
an?\fl—chromatic G so that for each n every n-chromatic sub-
graph of G has more than F(n) vertices?

Hajnal, Sauer and I asked in Calgary recently: Let ¢
be n-chromatic and the smallest odd circuit of which is 2k + 1.

Is it then true that the number of vertices of G 1is greater than
c

n k, where k tends to infinity together with k? Perhaps we

overlooked a trivial point, but we could not even show that the
number of vertices of G must be greater than n2+c. It seems
clear that this must hold if we only assume that G has no tri-
angle and pentagon.

An old problem of mine which has been neglected [ 2] is stated
as follows: 1Is it true that for every small € > 0 and infinitely
(lf2)+c]

so that @In) has no triangle and the largest stable set of which

many n there is a regular @ n) with degree v(x) = [n

has size wv(x). I expect that the answer is negative and offer 100
dollars for a proof or disproof.

Here is a final question of mine which I had no time to think
over carefully and which might turn out to be trivial. Let @&(n)

be a k-chromatic graph. Then clearly &(n) always has a sub-

graph of £ E%l vertices which has chromatic number 2 E%l "

Can this be strengthened if we assume say that ¢ has no tri-
angle? (Without some assumption the complete graph shows that
the original result is best possible.) As a matter of fact I now

believe that no such strengthening is possible. The probability
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method seems to give that to every € > 0 there is a ko(s) so

that for every k > kD{EJ and n > no(e,k) there is a

k-chromatic G(n) of girth L so that every set of € n
vertices of which spans a graph of chromatic number (l40(1l)) € n,

but I may be wrong since I did not check the details.
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