
SOME PROBLEMS AND RESULTS IN NUMBER THEORY

P . Erdös

Hungarian Academy of Sciences

During my very long life I published many papers of similar title .

Here I want to discuss some of my favorite problems many of which go back

50 years and which I hope are still alive and will outlive me .

Recently Graham and I published a book entitled "Old and new problems

and results in combinatorial number theory" Monographic N ° 28 de

L'Enseignement Mathématique, Univ . de Genéve . This booklet contains many

references and I do not repeat them here . I will refer to this book as I .

I gave a talk in January 1984 at a meeting organized by K . Alladi of

Matscience, Madras, held at Ooty . The proceedings of that conference will

also appear as the lecture note series of Springer Verlag and I will try to

minimize the overlap between the two papers . This is the reason why I will

not discuss problems on covering congruences in detail .

First I discuss some of my problems which have been solved in the last

two years . I hope the reader will forgive a very old man if he inserts a

few historical remarks .

Soon two further papers of mine on related topics will appear . The

first one is in a volume dedicated to the memory of E . Straus and was a

lecture given at the number theory meeting at the University of Alberta,

April 28-30, 1983 . The second was given at the meeting on number theory
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at Luminy late in May 1983 . Of course I cannot entirely avoid some over-

lap . Richard Guy recently published a very nice book on problems in

number theory .

I

1 . In a paper written jointly with L . Mirsky we investigated among

others the following question : Let F(x) be the greatest integer k so

that there exists a run of k consecutive integers n+l, n+2, . . ., n+k,

n+k < x for which all the values d(n+i), 1 <

(log x)
1/2

proved F(x) > c

	

	and with some more
loglog x

F(x) > c (log x) 1-E . Our

From above we

method certainly could

could not prove anything better than

We conjectured that the true order of magnitude of

i < k, are distinct . We

work we could have proved

not give F(x) > c
log x

loglog x

F(x) < exp
c(logx) 1/2

loglogx

F(x) is (log x) c .

We also stated a related problem: What is the longest run of consecutive

integers not exceeding x all of which have the same number of divisors?

This problem seemed very difficult to us and we even considered it hopeless

to prove that d(n) = d(n+l) has infinitely many solutions . This latter

problem was generally considered to be very difficult . To my great surprise

Claudia Spiro proved about 4 years ago in her thesis that

d(n) = d(n+5040)

has infinitely many solutions . A few weeks ago Heath-Brown, using Spiro's

method and some further ideas, completely solved our problem . He in fact

proved that the number of integers n < x for which

(1)

	

d(n) = d(n+l)

is at least cx/(log x) 4 . He remarks that his method cannot deal with

2d(n) = d(n+l) and of course it does not deal with d(n) = d(n+l) = d(n+2) .

In a forthcoming paper of Pomerance, Sárközy and myself we prove that



(1) has at most cx/(loglog x) 1/2 solutions which is probably the correct

order of magnitude .

The same problem can be asked for other number theoretic functions e .g .

for (f(n) . Presumably for every k (p(n) _ T (n+l) _ . . . _ T(n+k) has

*)
infinitely many solutions, but this seems unattackable even for k = 1 .

I further expect that for every c and x > x 0 (c) there are (log x) c

consecutive integers not exceeding, x for which all the values T(n+i),

1 - i < (log x) c , are distinct . Perhaps this will not be very difficult

but I certainly have not been able to prove it . In a forthcoming paper

Pomerance, Sárközy and I prove that if the integers T (n+í), 1 s i -< kn

are all distinct then

kn < n exp(-(log n) 1/3 )

The true order of magnitude of kn is probably 0(nE ) .

2 . Denote by 1 = dl < d2 < • • • < d
r(n) = n, the consecutive divisors

of n . One of my oldest conjectures stated that almost all integers have

two divisors satisfying

(2)

	

di < di+1 < 2di .

For a long time (2) resisted all attempts . Recently Maier and Tenenbaum

proved (2) . In fact we have for almost all n

(3)

	

(log n)
1-1og3-E < min di /d < (log n)

1-log3+e
+1 i

i

The lower bound in (3) is due to R .R. Hall and myself, the upper to Maier

and Tenenbaum. Inn fact we proved slightly better bounds than (3) .

*)

	

In the Erdös, Pomerance, Sárközy paper it will be shown that the

number of n = x with f(n) _ T(n+l) is at most x/exp(c(log x)
1/3 )
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Perhaps one will be able to get a distribution function for min di+l /di*í

Perhaps the methods of Maier and Tenenbaum will show that for every e

and almost all n there are two consecutive divisors of n satisfying

(4)

	

d i (l+c) < di+j < d i (1+2c)

and that there is a sequence of consecutive divisors di, d i+l" " , d i+t

satisfying

(4')

	

di+j+1

	

< l+c for every 1 -

	

-s j s t and di+t > 2di ,d i+1

i.e . the interval (d ., 2d .) is covered by a mesh of close divisors . It

is not clear to me at the moment how long a sequence of consecutive

divisors one can get for which for every 1 < j < t o

di+j (1+c) > di+j+l

and in fact how does t e depend on e ?

Denote by u(n) the function of Möbius i .e . u(n) = 0 if n is

divisible by a square and u(n) _ (-1) w (n) if n is squarefree, where

w(n) is the number of distinct prime factors of n . Put

m(n) = max E

	

}t(d)
x dln

d<x

Hall and I conjectured that for almost all n

m(n)

Perhaps Maier has a proof of this conjecture .

3 . At a number theory meeting held at the University of Texas,

Austin Texas in June 1982 1 stated the following conjecture : There are

infinitely many integers n for which

(5)

	

E /d i+l - 1\ 2 < C

i \ d i

where C is an absolute constant independent of n . A few weeks later



this conjecture was proved by Vose . In fact he proved (5) with the

exponent 2 replaced by l+e, but then of course C must be replaced by

C E . I further conjectured that (5) holds if n = k! or if n is the

product of the first k primes . This conjecture was proved by Tenenbaum

by a modification of the method of Vose . Denote by T(n) the number of

divisors of n . I observed that if (5) holds for a sequence of integers

n 1 < n 2 < • • • then in fact we must have

(6)

	

T(ni)/(log n
i )

2

(7)

The proof of (6) requires only simple inequalities and can be left to the

reader . I further asked : Let g(n) tend to infinity arbitrarily slowly .

Is there then a sequence ni satisfying (5) and also

T(ní ) < g(ni)(log ni)2 ?

Vose proved a slightly weaker form of (7) . He proved that there is a

sequence satisfying (5) for which T(n .) < (log n .)
a

for some a > 2 .

Denote by N(a, b) the least t for which

h - x + x +

	

+ x1

	

2

	

t

is possible . Put N(b) = max N(a, b) .
1-<a<b

I proved

N(a, b) < c	log b
loglog b

In the proof I used that every m < n! is the distinct sum of at most

n divisors of n! . The results of Vose permit us to replace n by na

for some a < 1 and this gives

(8)

	

N(b) < (log W.

1 < X < . . . < X
1

	

t

I conjectured N(b) < c loglog b which if true is best possible .
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4 . An old conjecture of mine states that ( 2n ) is never squarefree
n

for n > 4 . Sárközy recently proved that (Znn) can be squarefree only

for a finite number of values of n and in fact he proves that the number

of primes p for which p 2 2n( n ) tends to infinity with n. Probably his

proof will show that for every a there is a prime p for which pa ll( 2n)
n

for all n > n0 (a) .

Denote by f(n) the number of integers k, 0 < k < n for which

(9)

(K )

is squarefree . It is easy to see that f(n) = 0 for infinitely many

n but that f(n) can be arbitrarily large . I once conjectured that

f(n) = 0(n
e
) for every e > 0 . As far as I know this conjecture is still

open .

It is easy to see that the density of integers n, for which f(n) _

t, exists and if we denote it by a
t

, then

	

E a = 1 .
t=O t

About 10 years ago in a paper dedicated to D . H. Lehmer, Graham,

Ruzsa, Straus and I proved among other things that for any two primes

p and q there are infinitely many integers n for which ((2n), p • q ) _

1 . We could not prove this for p •qr and in particular we could not

prove that there are infinitely many integers n for which ((2n), 105) _

1 . We conjectured that for some constant c

E

	

1 < c
PÍ(2 P

n )

p<n

5 . On p .17 of I the following conjecture is stated : "Is it true

that for any partition of

the sums xEX log x are unbounded where X ranges over all subsets

which have all pairs belonging to one class?" .

the pairs of positive integers into two classes



Rödl recently proved this conjecture and he further proved that this

no longer holds for division into three classes .

II

Now I discuss some of my favorite old problems which are still

unsolved .

1 . Perphaps my favorite conjecture goes back to 1934 . Is it true

that for every integer c there is a finite system of congruences

(10)

	

ai (mod n
i

) c = nl < n2 < . . . < nk

so that every integer satisfies at least one of the congruences (10)?

I offer 1000 dollars for a proof or disproof of (10) . This conjecture

and some of its ramifications are extensively discussed in I and in my

lecture given in Ooty; thus I will only mention questions not discussed

in my recent papers .

Graham and I posed the following problem : Is it true that if one

divides the integers greater than 1 into

	

classes then for at least

one class one can find moduli which form the moduli of a covering system?

This conjecture, if true, will no doubt be very difficult . We also

conjectured that the equation

(11)

	

E
x

= 1

	

x1 < x2 < . . . < xn
i

is solvable with all the x,
i

in the same class . This conjecture is

probably much easier and has a much better chance of being true . Perhaps

both conditions are satisfied in the same class . Perhaps these two

conjectures have really nothing to do with dividing the integers into r

classes but amount really to a density theorem . In fact perhaps the

following result holds : For every s > 0 there is an x0 so that if

x '= x 0 and 1 < n 1 < n 2 < • • •

	

satisfy
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(12)

E
1

> E log xni

then one can select among the ni the moduli of a covering system and

also a solution of (11) .

One can also formulate these problems as extremal problems : Determine

or estimate the smallest f(x) (respectively g(x)) so that if

E 1 > f (x)
n,<x

n .
ii

then one can select among the ni a set of solutions of (11) or if f(x)

is replaced by g(x) then one can select the moduli of a covering

congruence . I would expect that g(x) is very much larger than f(x) .

In any case the primes show that both must be larger than loglog x . I

expect that both are very much larger . These problems perhaps change

their character if we consider the set of all positive integers instead

of the integers not exceeding x . Thus we state in I that perhaps any

infinite sequence of positive upper density contains both the moduli of a

covering system and solutions of (11) . As far as I know these attractive

and perhaps not hopeless questions have never been seriously considered .

In I we further state the following related problems : Is it true

that if the integers are split into r classes then some class contains

three distinct integers x, y, z satisfying 1 +1 = 1 ? Is it truex y z

that one class always contains (finitely many) integers whose reciprocals

sum to each rational b ? Observe that we have to restrict ourselves to

finitely many integers since it is a simple exercise to show that if

x > 0, x i ' E 1 = - then for every a > 0 there is a subsequence forn

	

n

	

xn

i
which E x - a . As far as I know the following problems have not yet

n,i

been considered . Determine or estimate the smallest F(x) (respectively



f(x)) for which if

A(x) = E 1 > F(x) resp .

	

E 1 > f(x)~
a .<x

	

a .<x ai

then the sums 1 + I cannot all be distinct . The primes show that
a,

	

a .

F(x) > c log x

	

f(x) > loglog x, but I do not know the true order of

magnitude of these functions .

A system of congruences is called disjoint if no integer satisfies

more than one of them . Stein and I conjectured that if a i (mod ni ) with

n1 < n 2 < • • • < nr < x is a disjoint system of congruences then r = 0(x) .

This was proved by Szemerédi and myself . We in fact showed that if f(x) _

max r then for some c > 0

(13)

	

x
112 +e < f(x) <	

x	c
exp(log x)

	

(log x)

We conjectured that the lower bound in (13) is closer to the truth but we

could get nowhere with this conjecture .

I conjectured, and Mirsky and Newman proved, that there is no disjoint

system of covering congruences . Here I would like to mention the following

nice and much more general problem of Herzog and Schönheim . If G is an

abelian group, can there be an exact covering of G by cosecs of different

sizes?

Let ai (mod n
i

) be a disjoint set of congruences . Assume that all

the ni are larger than t . Can one estimate max

	

E
n

= h(t)? Is it
n .>t i
i

true that h(t) ~ 0 as t

	

Perhaps I overlook a trivial argument .

Let T(n) denote the cardinality of the largest set of disjoint

congruences formed from the divisors of n . Can one get a non-trivial

x
estimate for T'(n) and can one get an asymptotic formula for

	

E T'(n) ?
n=1

73



74

For every integer n there is a real c
n

defined as follows : From

all divisors di of n form all possible disjoint systems a i (mod d i ) .

Let c
n

be the greatest lower bound of the densities of the set of

integers not satisfying any of these congruences . c
n
> 0 is clearly, a

rational number . It is not difficult (but not trivial) to prove that the

sequence c
n

has a distribution function but I cannot say very much about

it and in particular I cannot estimate c
n

in terms of the divisors of n .

In I we define a number n to be covering if one can form a covering

system among the divisors of n that exceed 1 . The covering numbers have

a density . Benkoski and I asked : Is there a C so that if o(n)/n > C

then n is covering? J . Haight showed that no such C exists . His

ingenious proof is quite difficult .

Benkoski and I conjectured that if C is sufficiently large and if

o(n)/n > C then n can be written as the

This conjecture is still open .

Very recently the following question occurred to me . Is it true that

for every r there are integers n
r

so that if we divide the divisors of

nr in any way into r classes then n r always is the distinct sum of

divisors of the same class? If the answer is affirmative, is there a C
r

so that every n with o(n)/n > C
r

has this property? I cannot answer

these questions even for r = 2 .

.2 . Now I discuss some problems connected with van der Waerden's

theorem. This is also discussed in I and in the excellent book of Graham,

Rothschild, and Spencer . Thus I will try to keep my report short . Let

f(n) be the smallest integer for which if one divides the integers not

exceeding f(n) into two classes, at least one class contains an

arithmetic progression of n terms . It is a surprising fact that f(n)

sum of proper divisors of n .



is very hard to estimate both from above and below . The upper bound given

by van der Waerden's proof gives that f(n) increases not faster than

Ackerman's well known function which is not primitive recursive . The best

lower bound is f(p) > p 2p (p prime) due to Berlekamp and f(n) > c2 n

due to Lován and myself . As far as I know f(n)/2n

proved . I offered 100 dollars for a proof of

(14)

	

f(n)
1/n

has never been

75

I now raise this offer to 250 dollars . I will give 100 for f(n) > (24-C ) n

and 25 for f(n)/2n + ~ . It is surprising that the proof of (14) seems to

present serious difficulties . I am convinced that (14) is true and will

pay 10000 dollars for a disproof .

As far as I know, the first person to suggest that perhaps f(n)

really increases as fast as Ackermann's function was Solloway in a discus-

sion with Graham a few years ago . At first I thought that this is complete

nonsense but in view of the surprising results of Paris-Harríngton I

realized that Solloway's suggestion should be taken very seriously . In

any case I give 100 dollars for a proof that f(n) is primitive recursive

and 500 dollars for a proof that it is not .

About 50 years ago Turán and I guessed that van der Waerden's theorem

is really a density theorem and has nothing to do with the division of the

integers into classes. In fact denote by rk(n) the smallest integer for

which every sequence 1 < a l < a2 < -* < a. < n, k = rk (n) contains an

arithmetic progression of k terms . We conjectured

(15)

	

lim rk (n)/n = 0 .

The bound r k (n) = Z for n > n0(k) would clearly imply van der Waerden's

theorem . We hoped that a good estimation of rk (n) would permit us to get

a good bound for f(n) . We at first did not realize that (15) is a very
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hard problem . The first indication that (15) was difficult came up when

Salem and Spencer showed

r3 (n) > n 1-c/loglog n

rk (n)
1-ck

= n

	

The best current bounds forWe at first thought that

r3(n) are

(16)

	

n exp(-c(log n) 1/2 ) < r3 (n) < cn/loglog n .

(16) has not been improved for more than 30 years .

The upper bound in (16) is due to K . F. Roth and the lower to

F. Behrend . I offered 1000 dollars for (15) and late in 1972 Szemerédi

found a brilliant but very difficult proof of (15) . 1 feel that never

was a 1000 dollars more deserved . In fact several colleagues remarked

that my offer violated the minimum wage act . Later Furstenberg obtained

a proof of (15) by using ergodic theory. There is no doubt that ergodic

theory will be useful to settle many further problems in combinatorial

number theory and perhaps it will eventually rival the applications of

algebra and analysis to number theory. It would be very desirable to

obtain as good upper and lower bounds for r k(n) as possible . To ask

for an asymptotic formula may be, to quote P . Elliott's excellent book,

Probabilistic Number Theory, like "baying at the moon" . The question

appears clearly hopeless and beyond human intelligence at the moment .

Unfortunately our original hopes with Turán that the study of rk(n)

will give an estimation for f(n) have so far not been fulfilled .

Szemerédi's proof uses van der Waerden's theorem and Furstenberg's proof

is a pure existence proof .

An old conjecture in number theory states that for every k there

are k primes in an arithmetic progression . Prichard recently found 18



primes in an arithmetic progression, which is the current record . I

conjectured about 40 years ago that if

(17)

then the a's contain arbitrarily long arithmetic progressions . I offer

3000 dollars for a proof or disproof of this conjecture . (17) at the

moment seems unattackable but if "we" live, it will perhaps be settled in

the next century ("We" here stands for humanity) . It is not even known

that if (17) holds then a í + aj = 2ar is solvable among the a's i .e .

the a's contain an arithmetic progression of three terms .

It is easy to see that if my conjecture holds then there is a g(k)

so that if

(18)

	

E1 > g(k)
aa i

then the a's contain an arithmetic progression of length k . It would

be very interesting to estimate g(k) as accurately as possible .

Trivially

(19)

	

g(k) > 2 log f(k) .

It would of course be very interesting if one could get an upper bound

for g(k) in terms of f(k) or if ore could improve the lower bound (19) .

Graham and I could not even prove g(k) > ( 2 + c) log f(k) . In fact it

seemed quite possible to us that

lim g(k)/log f(k) _

	

.

Gerver proved that

(20)

	

g(k) _ (1+0(1))k log k

and he thought that perhaps (20) could be best possible . If true this

certainly would be a sensational result .
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As far as I know the following question has never been investigated :

Assume that (18) holds . Denote by g(n; k) the upper bound E I

	

where
aa i

n < a I < a 2 <

of k terms. It would be very nice if we could estimate

(21)

	

lim g(n ; k) .
ni-

Perphaps the limit (21) is 0 for every k . I have no idea how to attack

this question, but perhaps I overlook a simple argument .

Szemerédi observed that we cannot even prove that

r4 (n)/r 3 (n) ~ W .

Perhaps even the proof of r 4 (n) - r 3 (n) -+ - is not completely trivial .

Just like the Ramsey numbers we can define van der Waerden numbers .

r(u, v) is the smallest integer so that if we split the integers not

exceeding r(u, v) into two classes either the first class contains an

arithmetic progression of u terms or the second class contains an

arithmetic progression of v terms . This led me to the following

question. Divide the integers not exceeding n into two classes s I (n)

Is I (n)I = k . Denote by h(n ; k) the largest integer

contain an arithmetic progression of h(n ; k) terms .

Trivially h(n ; k) '= k+l and Hegyván observed that for small

k (k < 00
log n

lglog n) this is best possible . The most interesting case seems

to be k = [n 112 ] . I hope that

and S 2 (n) . Assume

so that S 2 (n) must

(22)

idea .

and the a's do not contain any arithmetic progression

h(n ; n
112)/n112

I made no progress with (22) but perhaps I again overlook a simple

Finally the following problem of Graham and myself is of interest .

Estimate the length of the longest arithmetic progression



(23)

	

a+kd, 0< k< t, a+ td :--'- x

which consists entirely of primes . It is easy to see that t <

(1 + 0(1))log x and in I we conjecture that t = 0(log x) but we could

not even prove t < (1-e)log x .

Let us slightly modify the problem . We only insist that d < x .

Then perhaps there always is an a so that there is an arithmetic progres-

sion (23) of length (1 + 0(1))log x all of whose terms are primes, or

more generally let p be the smallest prime that does not divide d .

I expect that there always is an a so that there is a progression (23) of

length p-1 (that does not contain p) all of whose terms are primes .

If true this conjecture is clearly best possible but it is also clear

that there is no hope in the foreseeable future to prove or disprove it .

Pomerance noted that this follows from the prime k-tuples conjecture .

We have much more success if one asks for a progression which

consists entirely of squarefree numbers . In fact we prove the following

Theorem .

	

Let d be an integer and p the smallest prime with

p A d, then there is a progression

(24)

	

a+kd, 0_< k< p2 - 1

of p2 - 1 integers all of which are squarefree .

(24) is clearly best possible . It will be clear from the proof that

a can be chosen in any residue class mod d satisfying (a, d) = l . To

p = p R , i .e . pJ d but p
J
.Id for all

j < R ; clearly if (a, d) = 1 then a + ud ~ 0 mod p j for j

now y be large compared with d and let x be large compared with

First of all observe that there is a constant a > 0 so that the

number of integers a < x, (a, d) = 1 for which all the integers

prove our theorem, assume that

(25)

	

a+ kd, 0 S k< p2 - 1R

< R . Let

y .
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are not divisible by p
J
?, i < j < y, is greater than ax where a is

independent of y and x . To see this, first of all note that we

already have that none of the integers (25) are divisible by any prime

p < PC A simple sieve process now gives that

k-1

	

y / p 2
(26)

	

> x II (1 -1 ) II 	k	
2

	

> ax .
i=1

	

pi

	

j=Q\

	

p .

Now the number of integers a < x for which one of the integers (25) are

divisible by the square of a prime p > p t is clearly less than

2

(27)

	

x E
pR -1 < x

Pt p
2
j

	

pt

From (26) and (27) we obtain that the number of integers a < x for which

all the integers (25) are squarefree is greater than

(28)

	

(a - p )x > 0
t

if pt is sufficiently large. Thus our theorem is proved . Clearly an

analogous theorem holds if pk is replaced by any sequence of primes the

sum of whose reciprocals converges .

Our problem becomes much less trivial if we ask for the longest

progression (23) all terms of which are squarefree (i .e . we again insist

that a + td - x) . Here we can only show that there is a progression (23)

of length clog x all terms of which are squarefree and we cannot decide

if this is best possible . Perhaps log x can be replaced by (log x) 2 .

It is easy to see that there is no such progression of length (I+e)(log x) 2 .

3 . Now 1 discuss some problems on consecutive integers . I wrote a

great deal about this subject and here I only mention a few problems which

I like and which have perhaps been neglected . Denote by P(m) the greatest



and by p(m) the least prime factor of m . Put

n + i = a i b i where P(ai) < k and p(b i ) > k .

Denote by f(n; k) the largest index k for which all the integers

a,	aQ are distinct . Gordon and I proved that

(29)

	

lim sup f(n ; k)/k <_ 2 .
n,k

In other words there are only a finite number of integers n and k for

which f(n ; k) > (2+E)k . Probably in (29) 2 can be replaced by 1 but we

never could improve (29) . Denote by pr the least prime greater than k .

Then perhaps

(30)

	

f(k) = mnx f(n; k) = Pr+1 - 1 .

The integers 2, 3, . . ., pr+l-1 show that f(k) ? pr+l -2p

	

and perhaps (30)

holds for all k (perhaps with a finite number of exceptions) .

I conjectured that there is an absolute constant c > 0 so that for

every n and k the number of distinct integers in the sequence a l ,

a 2 , . . ., ak is greater than ck .

I further conjectured that for every e > 0 there are only finitely

many integers n and k for which

(32)

	

min ai > E: k .
1< R

Ruzsa observed that if (32) is true, it is nearly best possible since

there are infinitely many integers n and k for which

f(n ; k) < ck/log k .

These two conjectures seem attractive and not hopeless and I hope

they will be settled in a finite time .

Finally I mention two of my problems . One is one of my favorite old

problems . Denote by

1 = al < a2 < . . . < a (n) = n-1
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the integers relatively prime to n . Is it true that there is an absolute

constant c so that

If (n)-1

	

2

	

n2

(33)

	

(a,+1 - a,) < c If (n)
?

i=1

Hooley has some interesting partial results (see I) . It is surprising

that (33) resisted so far all attacks and I offer 500 dollars for a proof

or disproof of (33) .

To state the other problem denote by

i(n) = max(ai+, - a
i )

J(n) is named after Jacobstahl who started the investigation of J(n) .

Let x be large . Is it true that there are two integers a and b O

satisfying

(34)

	

a < b < x, (a, b) = 1, J(a) > log x, J(b) > log x ?

It is easy to see that in (34) the answer is affirmative if log x

log
is replaced by loglogxx

	

Perhaps (34) should be reformulated as

follows : Put

(35)

	

h(x) = max min(J(a), J(b))

where in (35) the maximum is to be taken over all pairs (a, b) = 1,

a < x, b < x . It is an easy exercise of the application of the sieve of

Eratosthenes to show that

h(x) > c log x/(loglog x)1/2
.

At the moment I cannot improve this and what is perhaps worse I have no

non-trivial upper bound for h(x) .

4 . Now I discuss some problems on prime numbers . I will of course

not discuss the classical problems except the lower bound of pk+1 - pk

dk . The best known lower bound for dk is due to R .A. Rankin . He proved

in 1938 that there is a c > 0 so that for infinitely many k



= d

	

c log k loglog k loglogloglog k _ L
(36)

	

Pk+l-p k

	

k
(logloglog k) 2

	

k

4 years earlier I proved (36) without the last factor loglogloglog k .

(36) seems to be the natural boundary of the method of Rankin and myself .

The only improvement of (36) during the last 45 years is that Schönhage

and later Rankin himself improved the value of c . This fact made me

offer 10000 dollars for a proof that (36) holds for every c . (For a

disproof of this conjecture, which is of course out of the question I

offer 25000 dollars .) I could just as well have offered 10 dollars since

the conjecture is surely true, but in the unlikely case that I am wrong

I want to be able to pay what I promised and I believe I could earn, beg,

borrow or steal 25000 dollars . Perhaps the following little story will

show our powerlessness with the problems about primes . A little more

than 60 years ago I learned from my father the proof of Euclid that

there are infinitely many primes and that there are arbitrarily large

gaps between the primes since n :+2, . . .,n!+n are all composite . Later

I realized that this simple idea which really every baby should understand

gives
dk loglogkk which is not very much weaker than (36) .

In 1939 Cramér conjectured that

(37)

	

lim sup d k/(log k) 2 = 1 .

Cramér explains that he arrived at (37) by observing that if we define a

random sequence where the probability that n belongs to the sequence is

I

	

then it easily follows from well known results of probabilitylog n

theory that (37) holds for almost all such sequences . Needless to say,

by these arguments one can never probe (37) . I asked Maier whether he

can disprove the following (very unlikely) conjecture :
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(38)

	

(Tr(x+t) - lr(x))/(t/log x) a 1

if x ; - and t > (log x) 1-E for some E > 0 . (38) of course contradicts

(37) but is compatible with (36) . In fact Maier did much more . He proved

that for every k > 1 there is an E = E R and two sequences x n i -,

yn + - so that

(39)

	

lim(n(xn+(log xn ) z )-Tr(x n))/(log xn)R-1 > l+E

and

(40)

Thus the primes are not as uniformly distributed as one could have guessed

and it seems to me that (39) and (40) contradict the heuristic assumption

that the distribution of primes in the large can be described best by

studying the random sequences when n is in the sequence with probability
1

	

Perhaps if y

	

and z tends to infinity faster than anylog n
power of log y then uniformly in y and z

(41)

There is of course no hope to prove (41), but if it is false perhaps one

could disprove it .

I conjectured that for every r there is a c r > 0 so that for

infinitely many values of k

(42)

I proved (42) for r = 2 but could not do it for r > 2 . Maier in a

recent paper found an ingenious proof of my conjecture in the general

case . In his proof c r -> 0 as r ~ m, but in fact probably (42) holds

for every c . Put

lim(7r(Yn+(log Yn ) R )-Tr(Y n))/(log Yn) Z-1 < 1-e .

(7r(y+z) - U(z))/log
z y -> 1 .

mli<r (pk+i+l - pk+i ) > c rLk

max min (pn+i+1 - pn+i ) = f(n, r) .
p n

<x l !~ i=r



I would expect that

(43)

	

f(n, r)/f(n, 1) i 0

as n i

	

(43) is probably hopeless for the present even if the primes

are replaced by squarefree numbers . I further conjectured that for

every r

(44)

	

lim inf max(dk+l'dk+2'***' dk+r)/log k < 1

but could prove (44) only when r = 1 and for r > 1 (44) is still open .

Turán and I easily proved that dk > dk+1 and dk+l > dk both have

infinitely many solutions . We noticed that we cannot prove that dk+2 >

dk+l >
dk also has infinitely many solutions . In fact we could not even

prove that for k > k0' (_,)r (d
k+r+l -

dk+r) cannot always have the same

sign, perhaps we overlook a trivial idea . I offer 100 dollars for a proof

that this is impossible and 100000 dollars for a proof that our conjecture

is wrong (which is of course completely out of the question) . Presumably

dk -
dk+l has infinitely many solutions, but this is probably hopeless

at the present state of science .

A few days ago Pomerance and I started to investigate the following

question: Consider the r integers d
k+l' dk+2"''"

dk+r and order

them by size . This gives a permutation of the integers 1,2, . . .,r . One

would of course expect that all the r! permutations will occur, but in

view of the difficulties we had with Turán, a proof of this conjecture

cannot be expected . Denote by f(r) the number of permutations which

occur infinitely often . So far we could not prove anything better than

that f(r) >- r (which is very simple) .

By the way it is not difficult to prove that if the primes are

replaced by squarefree integers then all the r! permutations must

occur .
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Denote by P(n) the greatest prime factor of n . Pomerance and I

proved that P(n) < P(n+l) < P(n+2) has infinitely many solutions and

here in fact we can prove for r = 3 that there are at least r+1

permutations which must occur infinitely often and perhaps our proof will

work for r > 3 .

Incidentally it is not difficult to prove that with

	

T(n), d(n),

o(n) all the r! permutations occur and in fact all occur with positive

density .

Perhaps the following question which just occurs to me might be of

interest . To fix our ideas let us consider w(n), the number of distinct

prime factors of n . If h(n) tends to infinity sufficiently slowly

then for almost all n all the integers w(n+i), 1 <_ i < h(n) will be

different . If h(n) tends to infinity fast enough then for almost all

n the integers w(n+i), 1

	

i = h(n) will not be all different . Can

we find h(n) so that the density of the integers n for which the

integers w(n+i) are all different is 2 (or, more generally is c) and

how does then c determine h(n)? The same question can be asked for

the other functions too, but probably we have most hope for answering

this question for w(n) and there is very little hope for a reasonable

answer in case of, say,

	

T(n) .

To end this chapter let me retract an old statement of mine . Let

a be an irrational number . No doubt the sequence p n
a - [p

na] is not

well distributed and in fact there is no doubt that for every irrational

a and h > h0 (E) and e > a there is an n so that for all 0 < i < k

(44) 0 < Pn+ia - Ipn+ia, < E .

(44) is clearly unattackable at present . I claimed that I can prove that

there is an irrational a for which the sequence p
n
a - [p

na] is not



well distributed . The theorem is no doubt correct and perhaps will not

be difficult to prove but I never was able to reconstruct my "proof" which

perhaps never existed .

The notion of a -well distributed sequence is due to Hlawka (for more

information see the nice book of Kuipers and Niederreiter) .

Let 0 < xn < 1 . The sequence {xn } is well distributed if to

every c > 0 there is a k so that for every n and 0 < a-b < 1

number of indices i for which a < xn+i < b, 1 <_ i <_ k is between

k(b-a-c) and k(b-a+E) .

the
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