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ABSTRACT

A connected graph G is said to be F-good if the
Ramsey number r(F,G) has the value ( y(F)-1)(p(G)-1) +
s(F), where s(F) is the minimum number of vertices in
some color class under all vertex colorings by x/F)
colors, It has been previously shown that certain
"large" order graphs G with "few" edges are F-good when
F is a fixed multipartite graph. We show when F is a
complete bipartite graph that this edge condition can
be relaxed.
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Let F and G be (simple) graphs. The Ramsey number

r(F,G) is the smallest positive integer p such that if
each edge of the complete graph is colored one of the
two colors red or blue, then either the red subgraph
contains a copy of F or the blue subgraph contains a
copy of G. Two surveys on this subject have been
written by S. A. Burr [2,3]. Notation throughout the
paper follows that given in ([1].

Calculation of the Ramsey number for an arbitrary
pair of graphs is known to be an extremely difficult
problem. For a given pair of graphs, a starting place
is knowing which graphical parameters affect the value
of the Ramsey number.

Consider the pair (Km,Tn) where T, denotes a
tree on n vertices and Km (as usual) the complete
graph on m vertices. V. Chvatal first observed that
r(Km,Tn) = (m-1)(n-1) + 1 [11]. The canonical example
which determines the lower bound for this number is a
(m-1) (n-1) with the blue subgraph
consisting of m-1 disjoint copies of K._1 and with

two-colored K

the red subgraph as its complementary graph. The
example indicates that the important parameters for
this pair of graphs are the chromatic number of Ko
and the order of the connected graph Tn'

The lower bound implicit in Chvital's result can
be generalized. If F is a graph, let s(F) (the
chromatic surplus of F) denote the smallest number of

vertices in a color class under any X coloring of F.
The symbols s or s(F) will always denote this
quantity.
Lemma 1 [4].

If F and G are graphs, with p(G) > s(F), and
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where G is connected, then
r(F,G) 2 (X(F)-1)(p(G)-1) + s(F).

With this lemma in mind, we say that a connected graph
G is F-good if r(F,G) = (X(F)-1)(p(G)-1) + s(F),
that is, if Lemma 1 is sharp.

One would expect G *to be F-good if G were
"almost" a tree and F were "almost" a complete
graph. Some families of graphs known to be Km-good or
F-good where F 1is almost a complete graph are given in
(4,5,6,7,13].

Recently the following results have been obtained
which show that large order trees T, are F-good for
certain fixed graphs F.

Theorem. (8]
r(K, + K ,T ) = Un-1) + 1 for %2 and 3m<m

Theorem. (8]
Let 21322 R be fixed positive integers.
For n sufficiently large
r(K(l,l,ll,ILZ,...,SLm),Tn) = (m+l)(n-1) + 1.

In each of the last two theorems a bit more is
true. The same Ramsey number results if the graphs
appearing in the first argument are replaced by
subgraphs with the same chromatic number. 1In some
sense these graphs are the most general F for which
large order trees are F-good. This follows from the
following theorems.

Theorem. [10]

Let %<2

1
n is sufficiently large, then

g ++e4, be fixed positive integers. 1If
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m(l1 + n-2) + 1 for 11
and n even
r(R(1,%, 4,02 ) ,K(1,n)) =
m(ﬂ.1 + n-1) + 1 otherwise.
Theorem. [9]

For n sufficiently large

r(K(2,2),K(1,m)) > n + nt/2 _ 5,3/10

These results suggest that large order "tree-like"
graphs might be F-good for an arbitrary fixed graph F,
if these tree-like graphs do not contain vertices of
large degree. The following result confirms this.
Theorem. [12]

Let G be a connected graph on n vertices and F a
fixed graph on p vertices with chromatic number X and
chromatic surplus s. There exist positive constants
51 and 52 sui?(ghii)if n sufficient%aqég:ge and both
a(G) < n+ en /P and A(G)<e,n/ ' ® T, then

r(F,G) = (x-1)(n-1) + s.

This result says that G is F-good when G has
limited degree and "essentially" n edges. The focus of
this paper will be to show this edge condition can be
weakened when F is a bipartite graph. In particular we
prove the following theorem.

Theorem 1.

Let 2<m be fixed positive integers and let G
be a connected graph on n vertices. There exists a
positive constant € such that n sufficiently large and
26y < ent/4*2) ipply that r(R(%,m),G) =n + £- 1.
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The proof of Theorem 1 requires three more lemmas.
The first is very simple and we omit the proof.
Lemma 2.

Let G be a graph of order n and maximum degree
A(G) < d. Then G contains at least n/(d2+1)
verti;és such that the distance between any two of them
is at least three.

It is helpful at this point to decide on a uniform
notation to be used in the following two lemmas and in
the proof of Theorem 1. Throughout, G(V,E) will
denote a graph of order n. We shall use [S]k to
denote the collection of k-element subsets of a set
S. Let U= {1,2,...,p} and consider a two-coloring
of [U]2 using colors red and blue. The resulting
monochromatic graphs will be denoted R and B
respectively. 1In the proof of Theorem 1, we need to
show that, subject to an appropriate growth condition
on A(G), when p=n+ 2£-1 there is either an
embedding of K(%2,m) into R or else an embedding of
G into B. The following lemma gives a start toward
an embedding of G into B.

Lemma 3.

Suppose that G has s vertices XyreoorXg such
that the distance between any two of them is at least
three. Further, suppose that with U = {1,2,...,n}
and R and B as described above, excluding
{n-s+l,...,n}, every vertex has degree at most M in
R. Let X consist of XyveeorXg together
with their additional neighbors X qreeerXy in G.
If

§(B) > M(A(G) - 1) + s -1
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then there is a map op: X - U which is an embedding
of <X> into B and where p(xj) = n-s+j, j =1,...,8.

Proof. Define p one vertex at a time. For some 8 <
j <k we can fail to find an appropriate p(x.) only
if_for the unique X0 i ¢ s, to which xj is adjacent
in G, every vertex in the neighborhood of p(xi) in
B is either an Xy o k #¥ i, or else adjacent in R

to one of the at most A(G)-1 vertices which are
images of neighbors of xj in G. But these images
have degree at most M in R. Thus, the stated
inequality assures us that we do not fail.

The next lemma is a version of a result used by
Sauer and Spencer in [14] and the proof technique is
exactly as in the proof of their Theorem 3. It is a
key result in the proof of our Theorem 1.

Lemma 4.

Let G(V,E) be a graph of order n and let

U=(l,..n}), R and B be as described above. 1If
n-k>2A(G)A(R),

then given any X € [V]k and any map p: X » U which

is an embedding of <X> into B,p extends to a map

0: V> U which is an embedding of G into B.

Proof. Given any map 0: V > U which is an extension
of p, let G; denote the corresponding image of G,
i.e. E(GU) = (0(uv): uv € E(G)}. Of course, such a Go
is not necessarily monochromatic. Let us denote by
ER(GU) and EB(GU) the sets of red edges and blue
edges respectively in G,. We claim that if the
extension o is chosen so that Go has as many blue
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edges as possible, then, in fact, ER(GO) will be
empty. Suppose not, i.e. suppose that there is an edge
uv € E(G) for which o(uv) is red. As o yields an
embedding of <X> into B, we may assume that v ¢ X.
We would like to do an "exchange" by introducing a new
map T: V > U given by 1T(v) = 0O(w), T(w) = 0(v) and
T = 0 otherwise. For this purpose, a vertex w € V\X
is bad if any one of the following four conditions is
satisfied: (i) w= v, (ii) o(vw) € Ep(Gy), (iii)

for some z € V, vz € E(G) and 0(zw) is red, (iv)
for some 2z € V, 2zw € E(G) and o(vz) is red. Suppose
that o(v) is of degree d in the red subgraph of G;.
Then d vertices w satisfy (ii) and at most d(A(R) -
1) + (A(G) -~ d)A(R) = A(G)A(R) - @ vertices satisfy
(iii). similarly, at most A(G)A(R) - d vertices
satisfy (iv). Since 4 2 1, there are at most 1 +4
+ 2(A(G)A(R)-A) < 2A(G)A(R) bad vertices. 1In view of
the assumed inequality, there is a vertex w € V\X

which is a good choice for the exchange. Using (i)-
(iv) it is easily checked that all of the edges
incident with either t(v) or T(w) in G, are blue.
Edges which are not incident with either T(v) or

1(w) are not affected. 1In particular, T 1is still an
extension of p but G. has more blue edges than does
G_. This contradiction of our choice of

o
completes the proof.

The following slight strengthening of Lemma 4 will
be the version actually used in the proof of Theorem 1.
It is a corollary to the proof of the lemma.
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Corollary.
Lemma 4 remains valid if the inequality n - k >

2 MG)IA(R) continues to hold then A(R) 1is replaced
by a bound M chosen so that no vertex X for
which p (x) is of degree > M in R is adjacent to
any vertex in V\X.

Proof of Theorem 1. 1In view of Lemma 1, we need only
show that if U= {1,2,...,n+ -1} then in the two-
coloring of [U]Z, either R will contain K(%,m) or
else B will contain G. Suppose that R contains no
K( 9 ,m). Then an easy argument shows that in any
collection of £ vertices at least one will have
degree 2 [(n-m)/%2 ] in B. Delete the %£- 1 vertices
of highest degree in R. For convenience, the vertices
deleted are ntl,...,n+ -1, Now let U = {1,2,...,n}
and let R and B refer to the red and blue subgraphs
of [U]Z. By the observation made earlier, we know
that 6(B) > nA - O(l). For an M yet to be chosen,
let r denote the number of vertices which have degree
at least M in R. Since there is no red K(%,m) a
standard argument yields the fact that

() e ()

r < (m-1)(n/(M-2+1))

Set a =1/(%42), b=2/+2), c = (L+1)/(%2),
d(n) = ¢, n?

and M(n) = C2 n®.

and so
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Now the proof reduces to routine calculations. Setting
s(n) = [n/(a@% + 1]
and assuming that A(G) < d(n), we can apply Lemma 3
if
s(n) > r(n) = (m-1)(n/M-2+1))

and n/g% - 0(l) > Md + s.
We can then apply the corollary to Lemma 4 if
n - s(d+l) > 2dM.
For % 22 the desired inequalities hold for all
sufficiently large n if
2 2
C, /C1 >m - 1
and C, C, < 1/%.
1 -2 i =B
Hence, Theorem 1 holds if we choose € < (m-1) .
For 2= 1 the theorem holds with €< (2(m-1))—1/3.

Theorem 1 holds in a slightly more general form
when the complete bipartite graph is replaced by an
arbitrary bipartite graph of order %+ m and with
chromatic surplus 2.

Theorem 2.

Let F be a bipartite graph of order L4 m
with chromatic surplus 2 and let G be a connected
graph of order n. There exists a positive constant ¢
such that A(G) < ¢ nl/(g +21
large imply that G is F-good.

and n sufficiently

It should be noted that well-known Ramsey numbers
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for special pairs of graphs appear as corollaries to
Theorems 1 and 2 or to the theorem of [12], at least
when n is large. Some examples, for n large, are
r(Km,Cn), r(Cm,Cn), r(cm,Pn), r(Tm,Pn),

r(K(ll,z2 rees ,nm),Pn), r(K(El, 22,..., zm),cn). In
addition if Gn is a regular connected graph of fixed
degree, then for n large Theorem 1 gives

r(K( ¢ ,m),G)) = n+2-1 (2< m), This would not follow
from the earlier results.

The most natural question left unanswered involves
the improvement of the results given in Theorems 1 and
2 and the theorem of [12]. Specifically, can the edge
condition or the maximum degree condition in any of
these theorems be weakened? It is likely that there
exists a constant c < 1 such that these results hold
for A(G) < cn and G of bounded edge density. Here
edge density is defined as max q(H)/p(H).

H<G

In another direction, what about r(F,G) when F is
not bipartite? 1In [4]) it was conjectured that if F is
any fixed graph, then any sufficiently large connected
graph with bounded degree is F-good. This attractive
conjecture seems difficult, but in view of the results
proved here, it may yield to a determined attack.
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